/* * Copyright (C) 2014 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.math; import com.google.common.collect.ImmutableMap; import java.math.RoundingMode; import java.util.Arrays; import java.util.Collection; import java.util.Map; /** * Enumerates several algorithms providing equivalent functionality to {@link Quantiles}, for use in * {@link QuantilesBenchmark}. These algorithms each calculate either a single quantile or multiple * quantiles. All algorithms modify the dataset they are given (the cost of a copy to avoid this * will be constant across algorithms). * * @author Pete Gillin * @since 20.0 */ enum QuantilesAlgorithm { /** * Sorts the dataset, and picks values from it. When computing multiple quantiles, we sort once * and pick multiple values. */ SORTING { @Override double singleQuantile(int index, int scale, double[] dataset) { Arrays.sort(dataset); return singleQuantileFromSorted(index, scale, dataset); } @Override Map multipleQuantiles( Collection indexes, int scale, double[] dataset) { Arrays.sort(dataset); ImmutableMap.Builder builder = ImmutableMap.builder(); for (int index : indexes) { builder.put(index, singleQuantileFromSorted(index, scale, dataset)); } return builder.build(); } private double singleQuantileFromSorted(int index, int scale, double[] dataset) { long numerator = (long) index * (dataset.length - 1); int positionFloor = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN); int remainder = (int) (numerator - positionFloor * scale); if (remainder == 0) { return dataset[positionFloor]; } else { double positionFrac = (double) remainder / scale; return dataset[positionFloor] + positionFrac * (dataset[positionFloor + 1] - dataset[positionFloor]); } } }, /** * Uses quickselect. When calculating multiple quantiles, each quickselect starts from scratch. */ QUICKSELECT { @Override double singleQuantile(int index, int scale, double[] dataset) { long numerator = (long) index * (dataset.length - 1); int positionFloor = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN); int remainder = (int) (numerator - positionFloor * scale); double percentileFloor = select(positionFloor, dataset); if (remainder == 0) { return percentileFloor; } else { double percentileCeiling = getMinValue(dataset, positionFloor + 1); double positionFrac = (double) remainder / scale; return percentileFloor + positionFrac * (percentileCeiling - percentileFloor); } } @Override Map multipleQuantiles( Collection indexes, int scale, double[] dataset) { ImmutableMap.Builder builder = ImmutableMap.builder(); for (int index : indexes) { builder.put(index, singleQuantile(index, scale, dataset)); } return builder.build(); } }, /** Uses {@link Quantiles}. */ TARGET { @Override double singleQuantile(int index, int scale, double[] dataset) { return Quantiles.scale(scale).index(index).computeInPlace(dataset); } @Override Map multipleQuantiles( Collection indexes, int scale, double[] dataset) { return Quantiles.scale(scale).indexes(indexes).computeInPlace(dataset); } }, ; /** * Calculates a single quantile. Equivalent to {@code * Quantiles.scale(scale).index(index).computeInPlace(dataset)}. */ abstract double singleQuantile(int index, int scale, double[] dataset); /** * Calculates multiple quantiles. Equivalent to {@code * Quantiles.scale(scale).indexes(indexes).computeInPlace(dataset)}. */ abstract Map multipleQuantiles( Collection indexes, int scale, double[] dataset); static double getMinValue(double[] array, int from) { // This is basically a copy of com.google.math.Rank#getMinValue, with a small change in the // method signature: we always search to the end of the array. int min = from; for (int i = from + 1; i < array.length; i++) { if (array[min] > array[i]) { min = i; } } return array[min]; } static double select(int k, double[] array) { // This is basically a copy of com.google.math.Rank#select, with a small change in the method // signature: we make k 0-based rather than 1-based; and we drop from and to, and always work on // the whole array. int from = 0; int to = array.length - 1; while (true) { if (to <= from + 1) { // Two or less elements left. if (to == from + 1 && array[to] < array[from]) { // Exactly two elements left. swap(array, from, to); } return array[k]; } else { int midIndex = (from + to) >>> 1; // Choose the median of the elements at the from, to and mid indexes, // and rearrange so that array[from]<=array[from+1], and // array[to] => array[from + 1]. swap(array, midIndex, from + 1); if (array[from] > array[to]) { swap(array, from, to); } if (array[from + 1] > array[to]) { swap(array, from + 1, to); } if (array[from] > array[from + 1]) { swap(array, from, from + 1); } // Perform a partition with the selected median. int low = from + 1, high = to; // Indexes for partitioning. double partition = array[from + 1]; // Choose partitioning element. while (true) { // Skip the elements smaller than the partition. do { low++; } while (array[low] < partition); // Skip the elements larger than the partition. do { high--; } while (array[high] > partition); if (high < low) { break; // Pointers crossed. Partitioning complete. } swap(array, low, high); // End of innermost loop. } array[from + 1] = array[high]; // Insert partitioning element. array[high] = partition; // Continue the partition that contains the kth element. if (high >= k) { to = high - 1; } if (high <= k) { from = low; } } } } private static void swap(double[] array, int i, int j) { // This is a copy of com.google.math.Rank#swap. double temp = array[i]; array[i] = array[j]; array[j] = temp; } }