// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #include #include #include #include #include "base/build_time.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/macros.h" #include "base/strings/stringprintf.h" #include "base/threading/platform_thread.h" #include "base/time/time_override.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_ANDROID) #include "base/android/jni_android.h" #elif defined(OS_IOS) #include "base/ios/ios_util.h" #elif defined(OS_WIN) #include #endif namespace base { namespace { TEST(TimeTestOutOfBounds, FromExplodedOutOfBoundsTime) { // FromUTCExploded must set time to Time(0) and failure, if the day is set to // 31 on a 28-30 day month. Test |exploded| returns Time(0) on 31st of // February and 31st of April. New implementation handles this. const struct DateTestData { Time::Exploded explode; bool is_valid; } kDateTestData[] = { // 31st of February {{2016, 2, 0, 31, 12, 30, 0, 0}, true}, // 31st of April {{2016, 4, 0, 31, 8, 43, 0, 0}, true}, // Negative month {{2016, -5, 0, 2, 4, 10, 0, 0}, false}, // Negative date of month {{2016, 6, 0, -15, 2, 50, 0, 0}, false}, // Negative hours {{2016, 7, 0, 10, -11, 29, 0, 0}, false}, // Negative minutes {{2016, 3, 0, 14, 10, -29, 0, 0}, false}, // Negative seconds {{2016, 10, 0, 25, 7, 47, -30, 0}, false}, // Negative milliseconds {{2016, 10, 0, 25, 7, 47, 20, -500}, false}, // Hours are too large {{2016, 7, 0, 10, 26, 29, 0, 0}, false}, // Minutes are too large {{2016, 3, 0, 14, 10, 78, 0, 0}, false}, // Seconds are too large {{2016, 10, 0, 25, 7, 47, 234, 0}, false}, // Milliseconds are too large {{2016, 10, 0, 25, 6, 31, 23, 1643}, false}, // Test overflow. Time is valid, but overflow case // results in Time(0). {{9840633, 1, 0, 1, 1, 1, 0, 0}, true}, // Underflow will fail as well. {{-9840633, 1, 0, 1, 1, 1, 0, 0}, true}, // Test integer overflow and underflow cases for the values themselves. {{std::numeric_limits::min(), 1, 0, 1, 1, 1, 0, 0}, true}, {{std::numeric_limits::max(), 1, 0, 1, 1, 1, 0, 0}, true}, {{2016, std::numeric_limits::min(), 0, 1, 1, 1, 0, 0}, false}, {{2016, std::numeric_limits::max(), 0, 1, 1, 1, 0, 0}, false}, }; for (const auto& test : kDateTestData) { EXPECT_EQ(test.explode.HasValidValues(), test.is_valid); base::Time result; EXPECT_FALSE(base::Time::FromUTCExploded(test.explode, &result)); EXPECT_TRUE(result.is_null()); EXPECT_FALSE(base::Time::FromLocalExploded(test.explode, &result)); EXPECT_TRUE(result.is_null()); } } // Specialized test fixture allowing time strings without timezones to be // tested by comparing them to a known time in the local zone. // See also pr_time_unittests.cc class TimeTest : public testing::Test { protected: void SetUp() override { // Use mktime to get a time_t, and turn it into a PRTime by converting // seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This // must be a time guaranteed to be outside of a DST fallback hour in // any timezone. struct tm local_comparison_tm = { 0, // second 45, // minute 12, // hour 15, // day of month 10 - 1, // month 2007 - 1900, // year 0, // day of week (ignored, output only) 0, // day of year (ignored, output only) -1 // DST in effect, -1 tells mktime to figure it out }; time_t converted_time = mktime(&local_comparison_tm); ASSERT_GT(converted_time, 0); comparison_time_local_ = Time::FromTimeT(converted_time); // time_t representation of 15th Oct 2007 12:45:00 PDT comparison_time_pdt_ = Time::FromTimeT(1192477500); } Time comparison_time_local_; Time comparison_time_pdt_; }; // Test conversion to/from TimeDeltas elapsed since the Windows epoch. // Conversions should be idempotent and non-lossy. TEST_F(TimeTest, DeltaSinceWindowsEpoch) { const TimeDelta delta = TimeDelta::FromMicroseconds(123); EXPECT_EQ(delta, Time::FromDeltaSinceWindowsEpoch(delta).ToDeltaSinceWindowsEpoch()); const Time now = Time::Now(); const Time actual = Time::FromDeltaSinceWindowsEpoch(now.ToDeltaSinceWindowsEpoch()); EXPECT_EQ(now, actual); // Null times should remain null after a round-trip conversion. This is an // important invariant for the common use case of serialization + // deserialization. const Time should_be_null = Time::FromDeltaSinceWindowsEpoch(Time().ToDeltaSinceWindowsEpoch()); EXPECT_TRUE(should_be_null.is_null()); } // Test conversion to/from time_t. TEST_F(TimeTest, TimeT) { EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT()); EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT()); // Conversions of 0 should stay 0. EXPECT_EQ(0, Time().ToTimeT()); EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue()); } // Test conversions to/from time_t and exploding/unexploding (utc time). TEST_F(TimeTest, UTCTimeT) { // C library time and exploded time. time_t now_t_1 = time(nullptr); struct tm tms; #if defined(OS_WIN) gmtime_s(&tms, &now_t_1); #elif defined(OS_POSIX) || defined(OS_FUCHSIA) gmtime_r(&now_t_1, &tms); #endif // Convert to ours. Time our_time_1 = Time::FromTimeT(now_t_1); Time::Exploded exploded; our_time_1.UTCExplode(&exploded); // This will test both our exploding and our time_t -> Time conversion. EXPECT_EQ(tms.tm_year + 1900, exploded.year); EXPECT_EQ(tms.tm_mon + 1, exploded.month); EXPECT_EQ(tms.tm_mday, exploded.day_of_month); EXPECT_EQ(tms.tm_hour, exploded.hour); EXPECT_EQ(tms.tm_min, exploded.minute); EXPECT_EQ(tms.tm_sec, exploded.second); // Convert exploded back to the time struct. Time our_time_2; EXPECT_TRUE(Time::FromUTCExploded(exploded, &our_time_2)); EXPECT_TRUE(our_time_1 == our_time_2); time_t now_t_2 = our_time_2.ToTimeT(); EXPECT_EQ(now_t_1, now_t_2); } // Test conversions to/from time_t and exploding/unexploding (local time). TEST_F(TimeTest, LocalTimeT) { #if defined(OS_IOS) && TARGET_OS_SIMULATOR // The function CFTimeZoneCopySystem() fails to determine the system timezone // when running iOS 11.0 simulator on an host running High Sierra and return // the "GMT" timezone. This causes Time::LocalExplode and localtime_r values // to differ by the local timezone offset. Disable the test if simulating // iOS 10.0 as it is not possible to check the version of the host mac. // TODO(crbug.com/782033): remove this once support for iOS pre-11.0 is // dropped or when the bug in CFTimeZoneCopySystem() is fixed. if (ios::IsRunningOnIOS10OrLater() && !ios::IsRunningOnIOS11OrLater()) { return; } #endif // C library time and exploded time. time_t now_t_1 = time(nullptr); struct tm tms; #if defined(OS_WIN) localtime_s(&tms, &now_t_1); #elif defined(OS_POSIX) || defined(OS_FUCHSIA) localtime_r(&now_t_1, &tms); #endif // Convert to ours. Time our_time_1 = Time::FromTimeT(now_t_1); Time::Exploded exploded; our_time_1.LocalExplode(&exploded); // This will test both our exploding and our time_t -> Time conversion. EXPECT_EQ(tms.tm_year + 1900, exploded.year); EXPECT_EQ(tms.tm_mon + 1, exploded.month); EXPECT_EQ(tms.tm_mday, exploded.day_of_month); EXPECT_EQ(tms.tm_hour, exploded.hour); EXPECT_EQ(tms.tm_min, exploded.minute); EXPECT_EQ(tms.tm_sec, exploded.second); // Convert exploded back to the time struct. Time our_time_2; EXPECT_TRUE(Time::FromLocalExploded(exploded, &our_time_2)); EXPECT_TRUE(our_time_1 == our_time_2); time_t now_t_2 = our_time_2.ToTimeT(); EXPECT_EQ(now_t_1, now_t_2); } // Test conversions to/from javascript time. TEST_F(TimeTest, JsTime) { Time epoch = Time::FromJsTime(0.0); EXPECT_EQ(epoch, Time::UnixEpoch()); Time t = Time::FromJsTime(700000.3); EXPECT_EQ(700.0003, t.ToDoubleT()); t = Time::FromDoubleT(800.73); EXPECT_EQ(800730.0, t.ToJsTime()); } #if defined(OS_POSIX) || defined(OS_FUCHSIA) TEST_F(TimeTest, FromTimeVal) { Time now = Time::Now(); Time also_now = Time::FromTimeVal(now.ToTimeVal()); EXPECT_EQ(now, also_now); } #endif // defined(OS_POSIX) || defined(OS_FUCHSIA) TEST_F(TimeTest, FromExplodedWithMilliseconds) { // Some platform implementations of FromExploded are liable to drop // milliseconds if we aren't careful. Time now = Time::NowFromSystemTime(); Time::Exploded exploded1 = {0}; now.UTCExplode(&exploded1); exploded1.millisecond = 500; Time time; EXPECT_TRUE(Time::FromUTCExploded(exploded1, &time)); Time::Exploded exploded2 = {0}; time.UTCExplode(&exploded2); EXPECT_EQ(exploded1.millisecond, exploded2.millisecond); } TEST_F(TimeTest, ZeroIsSymmetric) { Time zero_time(Time::FromTimeT(0)); EXPECT_EQ(0, zero_time.ToTimeT()); EXPECT_EQ(0.0, zero_time.ToDoubleT()); } TEST_F(TimeTest, LocalExplode) { Time a = Time::Now(); Time::Exploded exploded; a.LocalExplode(&exploded); Time b; EXPECT_TRUE(Time::FromLocalExploded(exploded, &b)); // The exploded structure doesn't have microseconds, and on Mac & Linux, the // internal OS conversion uses seconds, which will cause truncation. So we // can only make sure that the delta is within one second. EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST_F(TimeTest, UTCExplode) { Time a = Time::Now(); Time::Exploded exploded; a.UTCExplode(&exploded); Time b; EXPECT_TRUE(Time::FromUTCExploded(exploded, &b)); EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST_F(TimeTest, LocalMidnight) { Time::Exploded exploded; Time::Now().LocalMidnight().LocalExplode(&exploded); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); } TEST_F(TimeTest, ParseTimeTest1) { time_t current_time = 0; time(¤t_time); struct tm local_time = {}; char time_buf[64] = {}; #if defined(OS_WIN) localtime_s(&local_time, ¤t_time); asctime_s(time_buf, arraysize(time_buf), &local_time); #elif defined(OS_POSIX) || defined(OS_FUCHSIA) localtime_r(¤t_time, &local_time); asctime_r(&local_time, time_buf); #endif Time parsed_time; EXPECT_TRUE(Time::FromString(time_buf, &parsed_time)); EXPECT_EQ(current_time, parsed_time.ToTimeT()); } TEST_F(TimeTest, DayOfWeekSunday) { Time time; EXPECT_TRUE(Time::FromString("Sun, 06 May 2012 12:00:00 GMT", &time)); Time::Exploded exploded; time.UTCExplode(&exploded); EXPECT_EQ(0, exploded.day_of_week); } TEST_F(TimeTest, DayOfWeekWednesday) { Time time; EXPECT_TRUE(Time::FromString("Wed, 09 May 2012 12:00:00 GMT", &time)); Time::Exploded exploded; time.UTCExplode(&exploded); EXPECT_EQ(3, exploded.day_of_week); } TEST_F(TimeTest, DayOfWeekSaturday) { Time time; EXPECT_TRUE(Time::FromString("Sat, 12 May 2012 12:00:00 GMT", &time)); Time::Exploded exploded; time.UTCExplode(&exploded); EXPECT_EQ(6, exploded.day_of_week); } TEST_F(TimeTest, ParseTimeTest2) { Time parsed_time; EXPECT_TRUE(Time::FromString("Mon, 15 Oct 2007 19:45:00 GMT", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest3) { Time parsed_time; EXPECT_TRUE(Time::FromString("15 Oct 07 12:45:00", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest4) { Time parsed_time; EXPECT_TRUE(Time::FromString("15 Oct 07 19:45 GMT", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest5) { Time parsed_time; EXPECT_TRUE(Time::FromString("Mon Oct 15 12:45 PDT 2007", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest6) { Time parsed_time; EXPECT_TRUE(Time::FromString("Monday, Oct 15, 2007 12:45 PM", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest7) { Time parsed_time; EXPECT_TRUE(Time::FromString("10/15/07 12:45:00 PM", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest8) { Time parsed_time; EXPECT_TRUE(Time::FromString("15-OCT-2007 12:45pm", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest9) { Time parsed_time; EXPECT_TRUE(Time::FromString("16 Oct 2007 4:45-JST (Tuesday)", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest10) { Time parsed_time; EXPECT_TRUE(Time::FromString("15/10/07 12:45", &parsed_time)); EXPECT_EQ(parsed_time, comparison_time_local_); } // Test some of edge cases around epoch, etc. TEST_F(TimeTest, ParseTimeTestEpoch0) { Time parsed_time; // time_t == epoch == 0 EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:00 +0100 1970", &parsed_time)); EXPECT_EQ(0, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:00 GMT 1970", &parsed_time)); EXPECT_EQ(0, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpoch1) { Time parsed_time; // time_t == 1 second after epoch == 1 EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:01 +0100 1970", &parsed_time)); EXPECT_EQ(1, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:01 GMT 1970", &parsed_time)); EXPECT_EQ(1, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpoch2) { Time parsed_time; // time_t == 2 seconds after epoch == 2 EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:02 +0100 1970", &parsed_time)); EXPECT_EQ(2, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:02 GMT 1970", &parsed_time)); EXPECT_EQ(2, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpochNeg1) { Time parsed_time; // time_t == 1 second before epoch == -1 EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:59 +0100 1970", &parsed_time)); EXPECT_EQ(-1, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 1969", &parsed_time)); EXPECT_EQ(-1, parsed_time.ToTimeT()); } // If time_t is 32 bits, a date after year 2038 will overflow time_t and // cause timegm() to return -1. The parsed time should not be 1 second // before epoch. TEST_F(TimeTest, ParseTimeTestEpochNotNeg1) { Time parsed_time; EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 2100", &parsed_time)); EXPECT_NE(-1, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpochNeg2) { Time parsed_time; // time_t == 2 seconds before epoch == -2 EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:58 +0100 1970", &parsed_time)); EXPECT_EQ(-2, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:58 GMT 1969", &parsed_time)); EXPECT_EQ(-2, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpoch1960) { Time parsed_time; // time_t before Epoch, in 1960 EXPECT_TRUE(Time::FromString("Wed Jun 29 19:40:01 +0100 1960", &parsed_time)); EXPECT_EQ(-299999999, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Jun 29 18:40:01 GMT 1960", &parsed_time)); EXPECT_EQ(-299999999, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Jun 29 17:40:01 GMT 1960", &parsed_time)); EXPECT_EQ(-300003599, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEmpty) { Time parsed_time; EXPECT_FALSE(Time::FromString("", &parsed_time)); } TEST_F(TimeTest, ParseTimeTestInvalidString) { Time parsed_time; EXPECT_FALSE(Time::FromString("Monday morning 2000", &parsed_time)); } TEST_F(TimeTest, ExplodeBeforeUnixEpoch) { static const int kUnixEpochYear = 1970; // In case this changes (ha!). Time t; Time::Exploded exploded; t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds). EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(999, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 999 milliseconds. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(999, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds). EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(998, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:58 999 milliseconds. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(58, exploded.second); EXPECT_EQ(999, exploded.millisecond); // Make sure we still handle at/after Unix epoch correctly. t = Time::UnixEpoch(); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-12-31 00:00:00 0 milliseconds. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond). EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:00 1 millisecond. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(1, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:01. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(1, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:01 1 millisecond. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(1, exploded.second); EXPECT_EQ(1, exploded.millisecond); } TEST_F(TimeTest, Max) { Time max = Time::Max(); EXPECT_TRUE(max.is_max()); EXPECT_EQ(max, Time::Max()); EXPECT_GT(max, Time::Now()); EXPECT_GT(max, Time()); } TEST_F(TimeTest, MaxConversions) { Time t = Time::Max(); EXPECT_EQ(std::numeric_limits::max(), t.ToInternalValue()); t = Time::FromDoubleT(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::infinity(), t.ToDoubleT()); t = Time::FromJsTime(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::infinity(), t.ToJsTime()); t = Time::FromTimeT(std::numeric_limits::max()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::max(), t.ToTimeT()); #if defined(OS_POSIX) || defined(OS_FUCHSIA) struct timeval tval; tval.tv_sec = std::numeric_limits::max(); tval.tv_usec = static_cast(Time::kMicrosecondsPerSecond) - 1; t = Time::FromTimeVal(tval); EXPECT_TRUE(t.is_max()); tval = t.ToTimeVal(); EXPECT_EQ(std::numeric_limits::max(), tval.tv_sec); EXPECT_EQ(static_cast(Time::kMicrosecondsPerSecond) - 1, tval.tv_usec); #endif #if defined(OS_MACOSX) t = Time::FromCFAbsoluteTime(std::numeric_limits::infinity()); EXPECT_TRUE(t.is_max()); EXPECT_EQ(std::numeric_limits::infinity(), t.ToCFAbsoluteTime()); #endif #if defined(OS_WIN) FILETIME ftime; ftime.dwHighDateTime = std::numeric_limits::max(); ftime.dwLowDateTime = std::numeric_limits::max(); t = Time::FromFileTime(ftime); EXPECT_TRUE(t.is_max()); ftime = t.ToFileTime(); EXPECT_EQ(std::numeric_limits::max(), ftime.dwHighDateTime); EXPECT_EQ(std::numeric_limits::max(), ftime.dwLowDateTime); #endif } #if defined(OS_MACOSX) TEST_F(TimeTest, TimeTOverflow) { Time t = Time::FromInternalValue(std::numeric_limits::max() - 1); EXPECT_FALSE(t.is_max()); EXPECT_EQ(std::numeric_limits::max(), t.ToTimeT()); } #endif #if defined(OS_ANDROID) TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) { // This crashed inside Time:: FromLocalExploded() on Android 4.1.2. // See http://crbug.com/287821 Time::Exploded midnight = {2013, // year 10, // month 0, // day_of_week 13, // day_of_month 0, // hour 0, // minute 0, // second }; // The string passed to putenv() must be a char* and the documentation states // that it 'becomes part of the environment', so use a static buffer. static char buffer[] = "TZ=America/Santiago"; putenv(buffer); tzset(); Time t; EXPECT_TRUE(Time::FromLocalExploded(midnight, &t)); EXPECT_EQ(1381633200, t.ToTimeT()); } #endif // OS_ANDROID TEST_F(TimeTest, FromExploded_MinMax) { Time::Exploded exploded = {0}; exploded.month = 1; exploded.day_of_month = 1; Time parsed_time; if (Time::kExplodedMinYear != std::numeric_limits::min()) { exploded.year = Time::kExplodedMinYear; EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time)); #if defined(OS_POSIX) || defined(OS_FUCHSIA) // On Windows, January 1, 1601 00:00:00 is actually the null time. EXPECT_FALSE(parsed_time.is_null()); #endif #if !defined(OS_ANDROID) && !defined(OS_MACOSX) // The dates earlier than |kExplodedMinYear| that don't work are OS version // dependent on Android and Mac (for example, macOS 10.13 seems to support // dates before 1902). exploded.year--; EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time)); EXPECT_TRUE(parsed_time.is_null()); #endif } if (Time::kExplodedMaxYear != std::numeric_limits::max()) { exploded.year = Time::kExplodedMaxYear; exploded.month = 12; exploded.day_of_month = 31; exploded.hour = 23; exploded.minute = 59; exploded.second = 59; exploded.millisecond = 999; EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time)); EXPECT_FALSE(parsed_time.is_null()); exploded.year++; EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time)); EXPECT_TRUE(parsed_time.is_null()); } } class TimeOverride { public: static Time Now() { now_time_ += TimeDelta::FromSeconds(1); return now_time_; } static Time now_time_; }; // static Time TimeOverride::now_time_; TEST_F(TimeTest, NowOverride) { TimeOverride::now_time_ = Time::UnixEpoch(); // Choose a reference time that we know to be in the past but close to now. Time build_time = GetBuildTime(); // Override is not active. All Now() methods should return a time greater than // the build time. EXPECT_LT(build_time, Time::Now()); EXPECT_GT(Time::Max(), Time::Now()); EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride()); EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride()); EXPECT_LT(build_time, Time::NowFromSystemTime()); EXPECT_GT(Time::Max(), Time::NowFromSystemTime()); EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride()); EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride()); { // Set override. subtle::ScopedTimeClockOverrides overrides(&TimeOverride::Now, nullptr, nullptr); // Overridden value is returned and incremented when Now() or // NowFromSystemTime() is called. EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(1), Time::Now()); EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(2), Time::Now()); EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(3), Time::NowFromSystemTime()); EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(4), Time::NowFromSystemTime()); // IgnoringOverride methods still return real time. EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride()); EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride()); EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride()); EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride()); // IgnoringOverride methods didn't call NowOverrideClock::Now(). EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(5), Time::Now()); EXPECT_EQ(Time::UnixEpoch() + TimeDelta::FromSeconds(6), Time::NowFromSystemTime()); } // All methods return real time again. EXPECT_LT(build_time, Time::Now()); EXPECT_GT(Time::Max(), Time::Now()); EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride()); EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride()); EXPECT_LT(build_time, Time::NowFromSystemTime()); EXPECT_GT(Time::Max(), Time::NowFromSystemTime()); EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride()); EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride()); } TEST(TimeTicks, Deltas) { for (int index = 0; index < 50; index++) { TimeTicks ticks_start = TimeTicks::Now(); base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10)); TimeTicks ticks_stop = TimeTicks::Now(); TimeDelta delta = ticks_stop - ticks_start; // Note: Although we asked for a 10ms sleep, if the // time clock has a finer granularity than the Sleep() // clock, it is quite possible to wakeup early. Here // is how that works: // Time(ms timer) Time(us timer) // 5 5010 // 6 6010 // 7 7010 // 8 8010 // 9 9000 // Elapsed 4ms 3990us // // Unfortunately, our InMilliseconds() function truncates // rather than rounds. We should consider fixing this // so that our averages come out better. EXPECT_GE(delta.InMilliseconds(), 9); EXPECT_GE(delta.InMicroseconds(), 9000); EXPECT_EQ(delta.InSeconds(), 0); } } static void HighResClockTest(TimeTicks (*GetTicks)()) { // IsHighResolution() is false on some systems. Since the product still works // even if it's false, it makes this entire test questionable. if (!TimeTicks::IsHighResolution()) return; // Why do we loop here? // We're trying to measure that intervals increment in a VERY small amount // of time -- less than 15ms. Unfortunately, if we happen to have a // context switch in the middle of our test, the context switch could easily // exceed our limit. So, we iterate on this several times. As long as we're // able to detect the fine-granularity timers at least once, then the test // has succeeded. const int kTargetGranularityUs = 15000; // 15ms bool success = false; int retries = 100; // Arbitrary. TimeDelta delta; while (!success && retries--) { TimeTicks ticks_start = GetTicks(); // Loop until we can detect that the clock has changed. Non-HighRes timers // will increment in chunks, e.g. 15ms. By spinning until we see a clock // change, we detect the minimum time between measurements. do { delta = GetTicks() - ticks_start; } while (delta.InMilliseconds() == 0); if (delta.InMicroseconds() <= kTargetGranularityUs) success = true; } // In high resolution mode, we expect to see the clock increment // in intervals less than 15ms. EXPECT_TRUE(success); } TEST(TimeTicks, HighRes) { HighResClockTest(&TimeTicks::Now); } class TimeTicksOverride { public: static TimeTicks Now() { now_ticks_ += TimeDelta::FromSeconds(1); return now_ticks_; } static TimeTicks now_ticks_; }; // static TimeTicks TimeTicksOverride::now_ticks_; TEST(TimeTicks, NowOverride) { TimeTicksOverride::now_ticks_ = TimeTicks::Min(); // Override is not active. All Now() methods should return a sensible value. EXPECT_LT(TimeTicks::Min(), TimeTicks::UnixEpoch()); EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now()); EXPECT_GT(TimeTicks::Max(), TimeTicks::Now()); EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride()); EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride()); { // Set override. subtle::ScopedTimeClockOverrides overrides(nullptr, &TimeTicksOverride::Now, nullptr); // Overridden value is returned and incremented when Now() is called. EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(1), TimeTicks::Now()); EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(2), TimeTicks::Now()); // NowIgnoringOverride() still returns real ticks. EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride()); EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride()); // IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks(). EXPECT_EQ(TimeTicks::Min() + TimeDelta::FromSeconds(3), TimeTicks::Now()); } // All methods return real ticks again. EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now()); EXPECT_GT(TimeTicks::Max(), TimeTicks::Now()); EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride()); EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride()); } class ThreadTicksOverride { public: static ThreadTicks Now() { now_ticks_ += TimeDelta::FromSeconds(1); return now_ticks_; } static ThreadTicks now_ticks_; }; // static ThreadTicks ThreadTicksOverride::now_ticks_; // IOS doesn't support ThreadTicks::Now(). #if defined(OS_IOS) #define MAYBE_NowOverride DISABLED_NowOverride #else #define MAYBE_NowOverride NowOverride #endif TEST(ThreadTicks, MAYBE_NowOverride) { ThreadTicksOverride::now_ticks_ = ThreadTicks::Min(); // Override is not active. All Now() methods should return a sensible value. ThreadTicks initial_thread_ticks = ThreadTicks::Now(); EXPECT_LE(initial_thread_ticks, ThreadTicks::Now()); EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now()); EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride()); EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride()); { // Set override. subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr, &ThreadTicksOverride::Now); // Overridden value is returned and incremented when Now() is called. EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(1), ThreadTicks::Now()); EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(2), ThreadTicks::Now()); // NowIgnoringOverride() still returns real ticks. EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride()); EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride()); // IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks(). EXPECT_EQ(ThreadTicks::Min() + TimeDelta::FromSeconds(3), ThreadTicks::Now()); } // All methods return real ticks again. EXPECT_LE(initial_thread_ticks, ThreadTicks::Now()); EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now()); EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride()); EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride()); } TEST(ThreadTicks, ThreadNow) { if (ThreadTicks::IsSupported()) { ThreadTicks::WaitUntilInitialized(); TimeTicks begin = TimeTicks::Now(); ThreadTicks begin_thread = ThreadTicks::Now(); // Make sure that ThreadNow value is non-zero. EXPECT_GT(begin_thread, ThreadTicks()); // Sleep for 10 milliseconds to get the thread de-scheduled. base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10)); ThreadTicks end_thread = ThreadTicks::Now(); TimeTicks end = TimeTicks::Now(); TimeDelta delta = end - begin; TimeDelta delta_thread = end_thread - begin_thread; // Make sure that some thread time have elapsed. EXPECT_GE(delta_thread.InMicroseconds(), 0); // But the thread time is at least 9ms less than clock time. TimeDelta difference = delta - delta_thread; EXPECT_GE(difference.InMicroseconds(), 9000); } } TEST(TimeTicks, SnappedToNextTickBasic) { base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000); base::TimeDelta interval = base::TimeDelta::FromMicroseconds(1000); base::TimeTicks timestamp; // Timestamp in previous interval. timestamp = base::TimeTicks::FromInternalValue(3500); EXPECT_EQ(4000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp in next interval. timestamp = base::TimeTicks::FromInternalValue(4500); EXPECT_EQ(5000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp multiple intervals before. timestamp = base::TimeTicks::FromInternalValue(2500); EXPECT_EQ(3000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp multiple intervals after. timestamp = base::TimeTicks::FromInternalValue(6500); EXPECT_EQ(7000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp on previous interval. timestamp = base::TimeTicks::FromInternalValue(3000); EXPECT_EQ(3000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp on next interval. timestamp = base::TimeTicks::FromInternalValue(5000); EXPECT_EQ(5000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); // Timestamp equal to phase. timestamp = base::TimeTicks::FromInternalValue(4000); EXPECT_EQ(4000, timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); } TEST(TimeTicks, SnappedToNextTickOverflow) { // int(big_timestamp / interval) < 0, so this causes a crash if the number of // intervals elapsed is attempted to be stored in an int. base::TimeTicks phase = base::TimeTicks::FromInternalValue(0); base::TimeDelta interval = base::TimeDelta::FromMicroseconds(4000); base::TimeTicks big_timestamp = base::TimeTicks::FromInternalValue(8635916564000); EXPECT_EQ(8635916564000, big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue()); EXPECT_EQ(8635916564000, big_timestamp.SnappedToNextTick(big_timestamp, interval) .ToInternalValue()); } #if defined(OS_ANDROID) TEST(TimeTicks, Android_FromUptimeMillis_ClocksMatch) { JNIEnv* const env = android::AttachCurrentThread(); android::ScopedJavaLocalRef clazz( android::GetClass(env, "android/os/SystemClock")); ASSERT_TRUE(clazz.obj()); const jmethodID method_id = android::MethodID::Get( env, clazz.obj(), "uptimeMillis", "()J"); ASSERT_FALSE(!method_id); // Subtract 1ms from the expected lower bound to allow millisecon-level // truncation performed in uptimeMillis(). const TimeTicks lower_bound_ticks = TimeTicks::Now() - TimeDelta::FromMilliseconds(1); const TimeTicks converted_ticks = TimeTicks::FromUptimeMillis( env->CallStaticLongMethod(clazz.obj(), method_id)); const TimeTicks upper_bound_ticks = TimeTicks::Now(); EXPECT_LE(lower_bound_ticks, converted_ticks); EXPECT_GE(upper_bound_ticks, converted_ticks); } #endif // OS_ANDROID TEST(TimeDelta, FromAndIn) { // static_assert also checks that the contained expression is a constant // expression, meaning all its components are suitable for initializing global // variables. static_assert(TimeDelta::FromDays(2) == TimeDelta::FromHours(48), ""); static_assert(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180), ""); static_assert(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120), ""); static_assert(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000), ""); static_assert( TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000), ""); static_assert( TimeDelta::FromSecondsD(2.3) == TimeDelta::FromMilliseconds(2300), ""); static_assert( TimeDelta::FromMillisecondsD(2.5) == TimeDelta::FromMicroseconds(2500), ""); EXPECT_EQ(TimeDelta::FromDays(13).InDays(), 13); EXPECT_EQ(TimeDelta::FromHours(13).InHours(), 13); EXPECT_EQ(TimeDelta::FromMinutes(13).InMinutes(), 13); EXPECT_EQ(TimeDelta::FromSeconds(13).InSeconds(), 13); EXPECT_EQ(TimeDelta::FromSeconds(13).InSecondsF(), 13.0); EXPECT_EQ(TimeDelta::FromMilliseconds(13).InMilliseconds(), 13); EXPECT_EQ(TimeDelta::FromMilliseconds(13).InMillisecondsF(), 13.0); EXPECT_EQ(TimeDelta::FromSecondsD(13.1).InSeconds(), 13); EXPECT_EQ(TimeDelta::FromSecondsD(13.1).InSecondsF(), 13.1); EXPECT_EQ(TimeDelta::FromMillisecondsD(13.3).InMilliseconds(), 13); EXPECT_EQ(TimeDelta::FromMillisecondsD(13.3).InMillisecondsF(), 13.3); EXPECT_EQ(TimeDelta::FromMicroseconds(13).InMicroseconds(), 13); EXPECT_EQ(TimeDelta::FromMicrosecondsD(13.3).InMicroseconds(), 13); EXPECT_EQ(TimeDelta::FromMillisecondsD(3.45678).InMillisecondsF(), 3.456); EXPECT_EQ(TimeDelta::FromNanoseconds(12345).InNanoseconds(), 12000); EXPECT_EQ(TimeDelta::FromNanosecondsD(12345.678).InNanoseconds(), 12000); } TEST(TimeDelta, InRoundsTowardsZero) { EXPECT_EQ(TimeDelta::FromHours(23).InDays(), 0); EXPECT_EQ(TimeDelta::FromHours(-23).InDays(), 0); EXPECT_EQ(TimeDelta::FromMinutes(59).InHours(), 0); EXPECT_EQ(TimeDelta::FromMinutes(-59).InHours(), 0); EXPECT_EQ(TimeDelta::FromSeconds(59).InMinutes(), 0); EXPECT_EQ(TimeDelta::FromSeconds(-59).InMinutes(), 0); EXPECT_EQ(TimeDelta::FromMilliseconds(999).InSeconds(), 0); EXPECT_EQ(TimeDelta::FromMilliseconds(-999).InSeconds(), 0); EXPECT_EQ(TimeDelta::FromMicroseconds(999).InMilliseconds(), 0); EXPECT_EQ(TimeDelta::FromMicroseconds(-999).InMilliseconds(), 0); } TEST(TimeDelta, InDaysFloored) { EXPECT_EQ(TimeDelta::FromHours(-25).InDaysFloored(), -2); EXPECT_EQ(TimeDelta::FromHours(-24).InDaysFloored(), -1); EXPECT_EQ(TimeDelta::FromHours(-23).InDaysFloored(), -1); EXPECT_EQ(TimeDelta::FromHours(-1).InDaysFloored(), -1); EXPECT_EQ(TimeDelta::FromHours(0).InDaysFloored(), 0); EXPECT_EQ(TimeDelta::FromHours(1).InDaysFloored(), 0); EXPECT_EQ(TimeDelta::FromHours(23).InDaysFloored(), 0); EXPECT_EQ(TimeDelta::FromHours(24).InDaysFloored(), 1); EXPECT_EQ(TimeDelta::FromHours(25).InDaysFloored(), 1); } TEST(TimeDelta, InMillisecondsRoundedUp) { EXPECT_EQ(TimeDelta::FromMicroseconds(-1001).InMillisecondsRoundedUp(), -1); EXPECT_EQ(TimeDelta::FromMicroseconds(-1000).InMillisecondsRoundedUp(), -1); EXPECT_EQ(TimeDelta::FromMicroseconds(-999).InMillisecondsRoundedUp(), 0); EXPECT_EQ(TimeDelta::FromMicroseconds(-1).InMillisecondsRoundedUp(), 0); EXPECT_EQ(TimeDelta::FromMicroseconds(0).InMillisecondsRoundedUp(), 0); EXPECT_EQ(TimeDelta::FromMicroseconds(1).InMillisecondsRoundedUp(), 1); EXPECT_EQ(TimeDelta::FromMicroseconds(999).InMillisecondsRoundedUp(), 1); EXPECT_EQ(TimeDelta::FromMicroseconds(1000).InMillisecondsRoundedUp(), 1); EXPECT_EQ(TimeDelta::FromMicroseconds(1001).InMillisecondsRoundedUp(), 2); } #if defined(OS_POSIX) || defined(OS_FUCHSIA) TEST(TimeDelta, TimeSpecConversion) { TimeDelta delta = TimeDelta::FromSeconds(0); struct timespec result = delta.ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 0); EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); delta = TimeDelta::FromSeconds(1); result = delta.ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 0); EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); delta = TimeDelta::FromMicroseconds(1); result = delta.ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 1000); EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); delta = TimeDelta::FromMicroseconds(Time::kMicrosecondsPerSecond + 1); result = delta.ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 1000); EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result)); } #endif // defined(OS_POSIX) || defined(OS_FUCHSIA) // Our internal time format is serialized in things like databases, so it's // important that it's consistent across all our platforms. We use the 1601 // Windows epoch as the internal format across all platforms. TEST(TimeDelta, WindowsEpoch) { Time::Exploded exploded; exploded.year = 1970; exploded.month = 1; exploded.day_of_week = 0; // Should be unusued. exploded.day_of_month = 1; exploded.hour = 0; exploded.minute = 0; exploded.second = 0; exploded.millisecond = 0; Time t; EXPECT_TRUE(Time::FromUTCExploded(exploded, &t)); // Unix 1970 epoch. EXPECT_EQ(INT64_C(11644473600000000), t.ToInternalValue()); // We can't test 1601 epoch, since the system time functions on Linux // only compute years starting from 1900. } // We could define this separately for Time, TimeTicks and TimeDelta but the // definitions would be identical anyway. template std::string AnyToString(Any any) { std::ostringstream oss; oss << any; return oss.str(); } TEST(TimeDelta, Magnitude) { constexpr int64_t zero = 0; static_assert(TimeDelta::FromMicroseconds(zero) == TimeDelta::FromMicroseconds(zero).magnitude(), ""); constexpr int64_t one = 1; constexpr int64_t negative_one = -1; static_assert(TimeDelta::FromMicroseconds(one) == TimeDelta::FromMicroseconds(one).magnitude(), ""); static_assert(TimeDelta::FromMicroseconds(one) == TimeDelta::FromMicroseconds(negative_one).magnitude(), ""); constexpr int64_t max_int64_minus_one = std::numeric_limits::max() - 1; constexpr int64_t min_int64_plus_two = std::numeric_limits::min() + 2; static_assert( TimeDelta::FromMicroseconds(max_int64_minus_one) == TimeDelta::FromMicroseconds(max_int64_minus_one).magnitude(), ""); static_assert(TimeDelta::FromMicroseconds(max_int64_minus_one) == TimeDelta::FromMicroseconds(min_int64_plus_two).magnitude(), ""); } TEST(TimeDelta, ZeroMinMax) { constexpr TimeDelta kZero; static_assert(kZero.is_zero(), ""); constexpr TimeDelta kMax = TimeDelta::Max(); static_assert(kMax.is_max(), ""); static_assert(kMax == TimeDelta::Max(), ""); static_assert(kMax > TimeDelta::FromDays(100 * 365), ""); static_assert(kMax > kZero, ""); constexpr TimeDelta kMin = TimeDelta::Min(); static_assert(kMin.is_min(), ""); static_assert(kMin == TimeDelta::Min(), ""); static_assert(kMin < TimeDelta::FromDays(-100 * 365), ""); static_assert(kMin < kZero, ""); } TEST(TimeDelta, MaxConversions) { // static_assert also confirms constexpr works as intended. constexpr TimeDelta kMax = TimeDelta::Max(); static_assert(kMax.ToInternalValue() == std::numeric_limits::max(), ""); EXPECT_EQ(kMax.InDays(), std::numeric_limits::max()); EXPECT_EQ(kMax.InHours(), std::numeric_limits::max()); EXPECT_EQ(kMax.InMinutes(), std::numeric_limits::max()); EXPECT_EQ(kMax.InSecondsF(), std::numeric_limits::infinity()); EXPECT_EQ(kMax.InSeconds(), std::numeric_limits::max()); EXPECT_EQ(kMax.InMillisecondsF(), std::numeric_limits::infinity()); EXPECT_EQ(kMax.InMilliseconds(), std::numeric_limits::max()); EXPECT_EQ(kMax.InMillisecondsRoundedUp(), std::numeric_limits::max()); static_assert(TimeDelta::FromDays(std::numeric_limits::max()).is_max(), ""); static_assert(TimeDelta::FromHours(std::numeric_limits::max()).is_max(), ""); static_assert( TimeDelta::FromMinutes(std::numeric_limits::max()).is_max(), ""); constexpr int64_t max_int = std::numeric_limits::max(); constexpr int64_t min_int = std::numeric_limits::min(); static_assert( TimeDelta::FromSeconds(max_int / Time::kMicrosecondsPerSecond + 1) .is_max(), ""); static_assert( TimeDelta::FromMilliseconds(max_int / Time::kMillisecondsPerSecond + 1) .is_max(), ""); static_assert(TimeDelta::FromMicroseconds(max_int).is_max(), ""); static_assert( TimeDelta::FromSeconds(min_int / Time::kMicrosecondsPerSecond - 1) .is_min(), ""); static_assert( TimeDelta::FromMilliseconds(min_int / Time::kMillisecondsPerSecond - 1) .is_min(), ""); static_assert(TimeDelta::FromMicroseconds(min_int).is_min(), ""); static_assert( TimeDelta::FromMicroseconds(std::numeric_limits::min()).is_min(), ""); // Floating point arithmetic resulting in infinity isn't constexpr in C++14. EXPECT_TRUE(TimeDelta::FromSecondsD(std::numeric_limits::infinity()) .is_max()); // Note that max_int/min_int will be rounded when converted to doubles - they // can't be exactly represented. constexpr double max_d = static_cast(max_int); constexpr double min_d = static_cast(min_int); static_assert( TimeDelta::FromSecondsD(max_d / Time::kMicrosecondsPerSecond + 1) .is_max(), ""); // Floating point arithmetic resulting in infinity isn't constexpr in C++14. EXPECT_TRUE( TimeDelta::FromMillisecondsD(std::numeric_limits::infinity()) .is_max()); static_assert( TimeDelta::FromMillisecondsD(max_d / Time::kMillisecondsPerSecond * 2) .is_max(), ""); static_assert( TimeDelta::FromSecondsD(min_d / Time::kMicrosecondsPerSecond - 1) .is_min(), ""); static_assert( TimeDelta::FromMillisecondsD(min_d / Time::kMillisecondsPerSecond * 2) .is_min(), ""); } TEST(TimeDelta, NumericOperators) { constexpr double d = 0.5; EXPECT_EQ(TimeDelta::FromMilliseconds(500), (TimeDelta::FromMilliseconds(1000) * d)); static_assert(TimeDelta::FromMilliseconds(2000) == (TimeDelta::FromMilliseconds(1000) / d), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(500), (TimeDelta::FromMilliseconds(1000) *= d)); static_assert(TimeDelta::FromMilliseconds(2000) == (TimeDelta::FromMilliseconds(1000) /= d), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(500), (d * TimeDelta::FromMilliseconds(1000))); constexpr float f = 0.5; EXPECT_EQ(TimeDelta::FromMilliseconds(500), (TimeDelta::FromMilliseconds(1000) * f)); static_assert(TimeDelta::FromMilliseconds(2000) == (TimeDelta::FromMilliseconds(1000) / f), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(500), (TimeDelta::FromMilliseconds(1000) *= f)); static_assert(TimeDelta::FromMilliseconds(2000) == (TimeDelta::FromMilliseconds(1000) /= f), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(500), (f * TimeDelta::FromMilliseconds(1000))); constexpr int i = 2; EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (TimeDelta::FromMilliseconds(1000) * i)); static_assert(TimeDelta::FromMilliseconds(500) == (TimeDelta::FromMilliseconds(1000) / i), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (TimeDelta::FromMilliseconds(1000) *= i)); static_assert(TimeDelta::FromMilliseconds(500) == (TimeDelta::FromMilliseconds(1000) /= i), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (i * TimeDelta::FromMilliseconds(1000))); constexpr int64_t i64 = 2; EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (TimeDelta::FromMilliseconds(1000) * i64)); static_assert(TimeDelta::FromMilliseconds(500) == (TimeDelta::FromMilliseconds(1000) / i64), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (TimeDelta::FromMilliseconds(1000) *= i64)); static_assert(TimeDelta::FromMilliseconds(500) == (TimeDelta::FromMilliseconds(1000) /= i64), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (i64 * TimeDelta::FromMilliseconds(1000))); EXPECT_EQ(TimeDelta::FromMilliseconds(500), (TimeDelta::FromMilliseconds(1000) * 0.5)); static_assert(TimeDelta::FromMilliseconds(2000) == (TimeDelta::FromMilliseconds(1000) / 0.5), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(500), (TimeDelta::FromMilliseconds(1000) *= 0.5)); static_assert(TimeDelta::FromMilliseconds(2000) == (TimeDelta::FromMilliseconds(1000) /= 0.5), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(500), (0.5 * TimeDelta::FromMilliseconds(1000))); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (TimeDelta::FromMilliseconds(1000) * 2)); static_assert(TimeDelta::FromMilliseconds(500) == (TimeDelta::FromMilliseconds(1000) / 2), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (TimeDelta::FromMilliseconds(1000) *= 2)); static_assert(TimeDelta::FromMilliseconds(500) == (TimeDelta::FromMilliseconds(1000) /= 2), ""); EXPECT_EQ(TimeDelta::FromMilliseconds(2000), (2 * TimeDelta::FromMilliseconds(1000))); } // Basic test of operators between TimeDeltas (without overflow -- next test // handles overflow). TEST(TimeDelta, TimeDeltaOperators) { constexpr TimeDelta kElevenSeconds = TimeDelta::FromSeconds(11); constexpr TimeDelta kThreeSeconds = TimeDelta::FromSeconds(3); EXPECT_EQ(TimeDelta::FromSeconds(14), kElevenSeconds + kThreeSeconds); EXPECT_EQ(TimeDelta::FromSeconds(14), kThreeSeconds + kElevenSeconds); EXPECT_EQ(TimeDelta::FromSeconds(8), kElevenSeconds - kThreeSeconds); EXPECT_EQ(TimeDelta::FromSeconds(-8), kThreeSeconds - kElevenSeconds); static_assert(3 == kElevenSeconds / kThreeSeconds, ""); static_assert(0 == kThreeSeconds / kElevenSeconds, ""); static_assert(TimeDelta::FromSeconds(2) == kElevenSeconds % kThreeSeconds, ""); } TEST(TimeDelta, Overflows) { // Some sanity checks. static_assert's used were possible to verify constexpr // evaluation at the same time. static_assert(TimeDelta::Max().is_max(), ""); static_assert(-TimeDelta::Max() < TimeDelta(), ""); static_assert(-TimeDelta::Max() > TimeDelta::Min(), ""); static_assert(TimeDelta() > -TimeDelta::Max(), ""); TimeDelta large_delta = TimeDelta::Max() - TimeDelta::FromMilliseconds(1); TimeDelta large_negative = -large_delta; EXPECT_GT(TimeDelta(), large_negative); EXPECT_FALSE(large_delta.is_max()); EXPECT_FALSE((-large_negative).is_min()); constexpr TimeDelta kOneSecond = TimeDelta::FromSeconds(1); // Test +, -, * and / operators. EXPECT_TRUE((large_delta + kOneSecond).is_max()); EXPECT_TRUE((large_negative + (-kOneSecond)).is_min()); EXPECT_TRUE((large_negative - kOneSecond).is_min()); EXPECT_TRUE((large_delta - (-kOneSecond)).is_max()); EXPECT_TRUE((large_delta * 2).is_max()); EXPECT_TRUE((large_delta * -2).is_min()); EXPECT_TRUE((large_delta / 0.5).is_max()); EXPECT_TRUE((large_delta / -0.5).is_min()); // Test that double conversions overflow to infinity. EXPECT_EQ((large_delta + kOneSecond).InSecondsF(), std::numeric_limits::infinity()); EXPECT_EQ((large_delta + kOneSecond).InMillisecondsF(), std::numeric_limits::infinity()); EXPECT_EQ((large_delta + kOneSecond).InMicrosecondsF(), std::numeric_limits::infinity()); // Test +=, -=, *= and /= operators. TimeDelta delta = large_delta; delta += kOneSecond; EXPECT_TRUE(delta.is_max()); delta = large_negative; delta += -kOneSecond; EXPECT_TRUE((delta).is_min()); delta = large_negative; delta -= kOneSecond; EXPECT_TRUE((delta).is_min()); delta = large_delta; delta -= -kOneSecond; EXPECT_TRUE(delta.is_max()); delta = large_delta; delta *= 2; EXPECT_TRUE(delta.is_max()); delta = large_negative; delta *= 1.5; EXPECT_TRUE((delta).is_min()); delta = large_delta; delta /= 0.5; EXPECT_TRUE(delta.is_max()); delta = large_negative; delta /= 0.5; EXPECT_TRUE((delta).is_min()); // Test operations with Time and TimeTicks. EXPECT_TRUE((large_delta + Time::Now()).is_max()); EXPECT_TRUE((large_delta + TimeTicks::Now()).is_max()); EXPECT_TRUE((Time::Now() + large_delta).is_max()); EXPECT_TRUE((TimeTicks::Now() + large_delta).is_max()); Time time_now = Time::Now(); EXPECT_EQ(kOneSecond, (time_now + kOneSecond) - time_now); EXPECT_EQ(-kOneSecond, (time_now - kOneSecond) - time_now); TimeTicks ticks_now = TimeTicks::Now(); EXPECT_EQ(-kOneSecond, (ticks_now - kOneSecond) - ticks_now); EXPECT_EQ(kOneSecond, (ticks_now + kOneSecond) - ticks_now); } TEST(TimeDeltaLogging, DCheckEqCompiles) { DCHECK_EQ(TimeDelta(), TimeDelta()); } TEST(TimeDeltaLogging, EmptyIsZero) { constexpr TimeDelta kZero; EXPECT_EQ("0 s", AnyToString(kZero)); } TEST(TimeDeltaLogging, FiveHundredMs) { constexpr TimeDelta kFiveHundredMs = TimeDelta::FromMilliseconds(500); EXPECT_EQ("0.5 s", AnyToString(kFiveHundredMs)); } TEST(TimeDeltaLogging, MinusTenSeconds) { constexpr TimeDelta kMinusTenSeconds = TimeDelta::FromSeconds(-10); EXPECT_EQ("-10 s", AnyToString(kMinusTenSeconds)); } TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) { std::ostringstream oss; std::ios_base::fmtflags flags_before = oss.flags(); oss << TimeDelta(); EXPECT_EQ(flags_before, oss.flags()); } TEST(TimeDeltaLogging, DoesNotMakeStreamBad) { std::ostringstream oss; oss << TimeDelta(); EXPECT_TRUE(oss.good()); } TEST(TimeLogging, DCheckEqCompiles) { DCHECK_EQ(Time(), Time()); } TEST(TimeLogging, ChromeBirthdate) { Time birthdate; ASSERT_TRUE(Time::FromString("Tue, 02 Sep 2008 09:42:18 GMT", &birthdate)); EXPECT_EQ("2008-09-02 09:42:18.000 UTC", AnyToString(birthdate)); } TEST(TimeLogging, DoesNotMessUpFormattingFlags) { std::ostringstream oss; std::ios_base::fmtflags flags_before = oss.flags(); oss << Time(); EXPECT_EQ(flags_before, oss.flags()); } TEST(TimeLogging, DoesNotMakeStreamBad) { std::ostringstream oss; oss << Time(); EXPECT_TRUE(oss.good()); } TEST(TimeTicksLogging, DCheckEqCompiles) { DCHECK_EQ(TimeTicks(), TimeTicks()); } TEST(TimeTicksLogging, ZeroTime) { TimeTicks zero; EXPECT_EQ("0 bogo-microseconds", AnyToString(zero)); } TEST(TimeTicksLogging, FortyYearsLater) { TimeTicks forty_years_later = TimeTicks() + TimeDelta::FromDays(365.25 * 40); EXPECT_EQ("1262304000000000 bogo-microseconds", AnyToString(forty_years_later)); } TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) { std::ostringstream oss; std::ios_base::fmtflags flags_before = oss.flags(); oss << TimeTicks(); EXPECT_EQ(flags_before, oss.flags()); } TEST(TimeTicksLogging, DoesNotMakeStreamBad) { std::ostringstream oss; oss << TimeTicks(); EXPECT_TRUE(oss.good()); } } // namespace } // namespace base