/* ----------------------------------------------------------------------- ffi.c - Copyright (c) 2013 Tensilica, Inc. XTENSA Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include #include /* |----------------------------------------| | | on entry to ffi_call ----> |----------------------------------------| | caller stack frame for registers a0-a3 | |----------------------------------------| | | | additional arguments | entry of the function ---> |----------------------------------------| | copy of function arguments a2-a7 | | - - - - - - - - - - - - - | | | The area below the entry line becomes the new stack frame for the function. */ #define FFI_TYPE_STRUCT_REGS FFI_TYPE_LAST extern void ffi_call_SYSV(void *rvalue, unsigned rsize, unsigned flags, void(*fn)(void), unsigned nbytes, extended_cif*); extern void ffi_closure_SYSV(void) FFI_HIDDEN; ffi_status ffi_prep_cif_machdep(ffi_cif *cif) { switch(cif->rtype->type) { case FFI_TYPE_SINT8: case FFI_TYPE_UINT8: case FFI_TYPE_SINT16: case FFI_TYPE_UINT16: cif->flags = cif->rtype->type; break; case FFI_TYPE_VOID: case FFI_TYPE_FLOAT: cif->flags = FFI_TYPE_UINT32; break; case FFI_TYPE_DOUBLE: case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: cif->flags = FFI_TYPE_UINT64; // cif->rtype->type; break; case FFI_TYPE_STRUCT: cif->flags = FFI_TYPE_STRUCT; //_REGS; /* Up to 16 bytes are returned in registers */ if (cif->rtype->size > 4 * 4) { /* returned structure is referenced by a register; use 8 bytes (including 4 bytes for potential additional alignment) */ cif->flags = FFI_TYPE_STRUCT; cif->bytes += 8; } break; default: cif->flags = FFI_TYPE_UINT32; break; } /* Round the stack up to a full 4 register frame, just in case (we use this size in movsp). This way, it's also a multiple of 8 bytes for 64-bit arguments. */ cif->bytes = FFI_ALIGN(cif->bytes, 16); return FFI_OK; } void ffi_prep_args(extended_cif *ecif, unsigned char* stack) { unsigned int i; unsigned long *addr; ffi_type **ptr; union { void **v; char **c; signed char **sc; unsigned char **uc; signed short **ss; unsigned short **us; unsigned int **i; long long **ll; float **f; double **d; } p_argv; /* Verify that everything is aligned up properly */ FFI_ASSERT (((unsigned long) stack & 0x7) == 0); p_argv.v = ecif->avalue; addr = (unsigned long*)stack; /* structures with a size greater than 16 bytes are passed in memory */ if (ecif->cif->rtype->type == FFI_TYPE_STRUCT && ecif->cif->rtype->size > 16) { *addr++ = (unsigned long)ecif->rvalue; } for (i = ecif->cif->nargs, ptr = ecif->cif->arg_types; i > 0; i--, ptr++, p_argv.v++) { switch ((*ptr)->type) { case FFI_TYPE_SINT8: *addr++ = **p_argv.sc; break; case FFI_TYPE_UINT8: *addr++ = **p_argv.uc; break; case FFI_TYPE_SINT16: *addr++ = **p_argv.ss; break; case FFI_TYPE_UINT16: *addr++ = **p_argv.us; break; case FFI_TYPE_FLOAT: case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_POINTER: *addr++ = **p_argv.i; break; case FFI_TYPE_DOUBLE: case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: if (((unsigned long)addr & 4) != 0) addr++; *(unsigned long long*)addr = **p_argv.ll; addr += sizeof(unsigned long long) / sizeof (addr); break; case FFI_TYPE_STRUCT: { unsigned long offs; unsigned long size; if (((unsigned long)addr & 4) != 0 && (*ptr)->alignment > 4) addr++; offs = (unsigned long) addr - (unsigned long) stack; size = (*ptr)->size; /* Entire structure must fit the argument registers or referenced */ if (offs < FFI_REGISTER_NARGS * 4 && offs + size > FFI_REGISTER_NARGS * 4) addr = (unsigned long*) (stack + FFI_REGISTER_NARGS * 4); memcpy((char*) addr, *p_argv.c, size); addr += (size + 3) / 4; break; } default: FFI_ASSERT(0); } } } void ffi_call(ffi_cif* cif, void(*fn)(void), void *rvalue, void **avalue) { extended_cif ecif; unsigned long rsize = cif->rtype->size; int flags = cif->flags; void *alloc = NULL; ecif.cif = cif; ecif.avalue = avalue; /* Note that for structures that are returned in registers (size <= 16 bytes) we allocate a temporary buffer and use memcpy to copy it to the final destination. The reason is that the target address might be misaligned or the length not a multiple of 4 bytes. Handling all those cases would be very complex. */ if (flags == FFI_TYPE_STRUCT && (rsize <= 16 || rvalue == NULL)) { alloc = alloca(FFI_ALIGN(rsize, 4)); ecif.rvalue = alloc; } else { ecif.rvalue = rvalue; } if (cif->abi != FFI_SYSV) FFI_ASSERT(0); ffi_call_SYSV (ecif.rvalue, rsize, cif->flags, fn, cif->bytes, &ecif); if (alloc != NULL && rvalue != NULL) memcpy(rvalue, alloc, rsize); } extern void ffi_trampoline(); extern void ffi_cacheflush(void* start, void* end); ffi_status ffi_prep_closure_loc (ffi_closure* closure, ffi_cif* cif, void (*fun)(ffi_cif*, void*, void**, void*), void *user_data, void *codeloc) { /* copye trampoline to stack and patch 'ffi_closure_SYSV' pointer */ memcpy(closure->tramp, ffi_trampoline, FFI_TRAMPOLINE_SIZE); *(unsigned int*)(&closure->tramp[8]) = (unsigned int)ffi_closure_SYSV; // Do we have this function? // __builtin___clear_cache(closer->tramp, closer->tramp + FFI_TRAMPOLINE_SIZE) ffi_cacheflush(closure->tramp, closure->tramp + FFI_TRAMPOLINE_SIZE); closure->cif = cif; closure->fun = fun; closure->user_data = user_data; return FFI_OK; } long FFI_HIDDEN ffi_closure_SYSV_inner(ffi_closure *closure, void **values, void *rvalue) { ffi_cif *cif; ffi_type **arg_types; void **avalue; int i, areg; cif = closure->cif; if (cif->abi != FFI_SYSV) return FFI_BAD_ABI; areg = 0; int rtype = cif->rtype->type; if (rtype == FFI_TYPE_STRUCT && cif->rtype->size > 4 * 4) { rvalue = *values; areg++; } cif = closure->cif; arg_types = cif->arg_types; avalue = alloca(cif->nargs * sizeof(void *)); for (i = 0; i < cif->nargs; i++) { if (arg_types[i]->alignment == 8 && (areg & 1) != 0) areg++; // skip the entry 16,a1 framework, add 16 bytes (4 registers) if (areg == FFI_REGISTER_NARGS) areg += 4; if (arg_types[i]->type == FFI_TYPE_STRUCT) { int numregs = ((arg_types[i]->size + 3) & ~3) / 4; if (areg < FFI_REGISTER_NARGS && areg + numregs > FFI_REGISTER_NARGS) areg = FFI_REGISTER_NARGS + 4; } avalue[i] = &values[areg]; areg += (arg_types[i]->size + 3) / 4; } (closure->fun)(cif, rvalue, avalue, closure->user_data); return rtype; }