// Copyright 2019 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/warp_prediction.h" #include #include #include #include "src/tile.h" #include "src/utils/block_parameters_holder.h" #include "src/utils/common.h" #include "src/utils/constants.h" #include "src/utils/logging.h" namespace libgav1 { namespace { constexpr int kWarpModelTranslationClamp = 1 << 23; constexpr int kWarpModelAffineClamp = 1 << 13; constexpr int kLargestMotionVectorDiff = 256; constexpr uint16_t kDivisorLookup[257] = { 16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768, 15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142, 15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564, 14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028, 13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530, 13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066, 13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633, 12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228, 12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848, 11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491, 11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155, 11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838, 10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538, 10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255, 10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986, 9963, 9939, 9916, 9892, 9869, 9846, 9823, 9800, 9777, 9754, 9732, 9709, 9687, 9664, 9642, 9620, 9598, 9576, 9554, 9533, 9511, 9489, 9468, 9447, 9425, 9404, 9383, 9362, 9341, 9321, 9300, 9279, 9259, 9239, 9218, 9198, 9178, 9158, 9138, 9118, 9098, 9079, 9059, 9039, 9020, 9001, 8981, 8962, 8943, 8924, 8905, 8886, 8867, 8849, 8830, 8812, 8793, 8775, 8756, 8738, 8720, 8702, 8684, 8666, 8648, 8630, 8613, 8595, 8577, 8560, 8542, 8525, 8508, 8490, 8473, 8456, 8439, 8422, 8405, 8389, 8372, 8355, 8339, 8322, 8306, 8289, 8273, 8257, 8240, 8224, 8208, 8192}; // Number of fractional bits of lookup in divisor lookup table. constexpr int kDivisorLookupBits = 8; // Number of fractional bits of entries in divisor lookup table. constexpr int kDivisorLookupPrecisionBits = 14; // 7.11.3.7. template void GenerateApproximateDivisor(T value, int16_t* division_factor, int16_t* division_shift) { const int n = FloorLog2(std::abs(value)); const T e = std::abs(value) - (static_cast(1) << n); const int entry = (n > kDivisorLookupBits) ? RightShiftWithRounding(e, n - kDivisorLookupBits) : static_cast(e << (kDivisorLookupBits - n)); *division_shift = n + kDivisorLookupPrecisionBits; *division_factor = (value < 0) ? -kDivisorLookup[entry] : kDivisorLookup[entry]; } // 7.11.3.8. int LeastSquareProduct(int a, int b) { return ((a * b) >> 2) + a + b; } // 7.11.3.8. int DiagonalClamp(int32_t value) { return Clip3(value, (1 << kWarpedModelPrecisionBits) - kWarpModelAffineClamp + 1, (1 << kWarpedModelPrecisionBits) + kWarpModelAffineClamp - 1); } // 7.11.3.8. int NonDiagonalClamp(int32_t value) { return Clip3(value, -kWarpModelAffineClamp + 1, kWarpModelAffineClamp - 1); } int16_t GetShearParameter(int value) { return static_cast( LeftShift(RightShiftWithRoundingSigned(Clip3(value, INT16_MIN, INT16_MAX), kWarpParamRoundingBits), kWarpParamRoundingBits)); } } // namespace bool SetupShear(GlobalMotion* const warp_params) { int16_t division_shift; int16_t division_factor; const auto* const params = warp_params->params; GenerateApproximateDivisor(params[2], &division_factor, &division_shift); const int alpha = params[2] - (1 << kWarpedModelPrecisionBits); const int beta = params[3]; const int64_t v = LeftShift(params[4], kWarpedModelPrecisionBits); const int gamma = RightShiftWithRoundingSigned(v * division_factor, division_shift); const int64_t w = static_cast(params[3]) * params[4]; const int delta = params[5] - RightShiftWithRoundingSigned(w * division_factor, division_shift) - (1 << kWarpedModelPrecisionBits); warp_params->alpha = GetShearParameter(alpha); warp_params->beta = GetShearParameter(beta); warp_params->gamma = GetShearParameter(gamma); warp_params->delta = GetShearParameter(delta); if ((4 * std::abs(warp_params->alpha) + 7 * std::abs(warp_params->beta) >= (1 << kWarpedModelPrecisionBits)) || (4 * std::abs(warp_params->gamma) + 4 * std::abs(warp_params->delta) >= (1 << kWarpedModelPrecisionBits))) { return false; // NOLINT (easier condition to understand). } return true; } bool WarpEstimation(const int num_samples, const int block_width4x4, const int block_height4x4, const int row4x4, const int column4x4, const MotionVector& mv, const int candidates[kMaxLeastSquaresSamples][4], GlobalMotion* const warp_params) { // |a| fits into int32_t. To avoid cast to int64_t in the following // computation, we declare |a| as int64_t. int64_t a[2][2] = {}; int bx[2] = {}; int by[2] = {}; // Note: for simplicity, the spec always uses absolute coordinates // in the warp estimation process. subpixel_mid_x, subpixel_mid_y, // and candidates are relative to the top left of the frame. // In contrast, libaom uses a mixture of coordinate systems. // In av1/common/warped_motion.c:find_affine_int(). The coordinate is relative // to the top left of the block. // mid_y/mid_x: the row/column coordinate of the center of the block. const int mid_y = MultiplyBy4(row4x4) + MultiplyBy2(block_height4x4) - 1; const int mid_x = MultiplyBy4(column4x4) + MultiplyBy2(block_width4x4) - 1; const int subpixel_mid_y = MultiplyBy8(mid_y); const int subpixel_mid_x = MultiplyBy8(mid_x); const int reference_subpixel_mid_y = subpixel_mid_y + mv.mv[MotionVector::kRow]; const int reference_subpixel_mid_x = subpixel_mid_x + mv.mv[MotionVector::kColumn]; for (int i = 0; i < num_samples; ++i) { // candidates[][0] and candidates[][1] are the row/column coordinates of the // sample point in this block, to the top left of the frame. // candidates[][2] and candidates[][3] are the row/column coordinates of the // sample point in this reference block, to the top left of the frame. // sy/sx: the row/column coordinates of the sample point, with center of // the block as origin. const int sy = candidates[i][0] - subpixel_mid_y; const int sx = candidates[i][1] - subpixel_mid_x; // dy/dx: the row/column coordinates of the sample point in the reference // block, with center of the reference block as origin. const int dy = candidates[i][2] - reference_subpixel_mid_y; const int dx = candidates[i][3] - reference_subpixel_mid_x; if (std::abs(sx - dx) < kLargestMotionVectorDiff && std::abs(sy - dy) < kLargestMotionVectorDiff) { a[0][0] += LeastSquareProduct(sx, sx) + 8; a[0][1] += LeastSquareProduct(sx, sy) + 4; a[1][1] += LeastSquareProduct(sy, sy) + 8; bx[0] += LeastSquareProduct(sx, dx) + 8; bx[1] += LeastSquareProduct(sy, dx) + 4; by[0] += LeastSquareProduct(sx, dy) + 4; by[1] += LeastSquareProduct(sy, dy) + 8; } } // a[0][1] == a[1][0], because the matrix is symmetric. We don't have to // compute a[1][0]. const int64_t determinant = a[0][0] * a[1][1] - a[0][1] * a[0][1]; if (determinant == 0) return false; int16_t division_shift; int16_t division_factor; GenerateApproximateDivisor(determinant, &division_factor, &division_shift); division_shift -= kWarpedModelPrecisionBits; const int64_t params_2 = a[1][1] * bx[0] - a[0][1] * bx[1]; const int64_t params_3 = -a[0][1] * bx[0] + a[0][0] * bx[1]; const int64_t params_4 = a[1][1] * by[0] - a[0][1] * by[1]; const int64_t params_5 = -a[0][1] * by[0] + a[0][0] * by[1]; auto* const params = warp_params->params; if (division_shift <= 0) { division_factor <<= -division_shift; params[2] = static_cast(params_2) * division_factor; params[3] = static_cast(params_3) * division_factor; params[4] = static_cast(params_4) * division_factor; params[5] = static_cast(params_5) * division_factor; } else { params[2] = RightShiftWithRoundingSigned(params_2 * division_factor, division_shift); params[3] = RightShiftWithRoundingSigned(params_3 * division_factor, division_shift); params[4] = RightShiftWithRoundingSigned(params_4 * division_factor, division_shift); params[5] = RightShiftWithRoundingSigned(params_5 * division_factor, division_shift); } params[2] = DiagonalClamp(params[2]); params[3] = NonDiagonalClamp(params[3]); params[4] = NonDiagonalClamp(params[4]); params[5] = DiagonalClamp(params[5]); const int vx = mv.mv[MotionVector::kColumn] * (1 << (kWarpedModelPrecisionBits - 3)) - (mid_x * (params[2] - (1 << kWarpedModelPrecisionBits)) + mid_y * params[3]); const int vy = mv.mv[MotionVector::kRow] * (1 << (kWarpedModelPrecisionBits - 3)) - (mid_x * params[4] + mid_y * (params[5] - (1 << kWarpedModelPrecisionBits))); params[0] = Clip3(vx, -kWarpModelTranslationClamp, kWarpModelTranslationClamp - 1); params[1] = Clip3(vy, -kWarpModelTranslationClamp, kWarpModelTranslationClamp - 1); params[6] = 0; params[7] = 0; return true; } } // namespace libgav1