/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "lang_id/common/embedding-network.h" #include "lang_id/common/lite_base/integral-types.h" #include "lang_id/common/lite_base/logging.h" namespace libtextclassifier3 { namespace mobile { namespace { void CheckNoQuantization(const EmbeddingNetworkParams::Matrix &matrix) { SAFTM_CHECK_EQ(static_cast(QuantizationType::NONE), static_cast(matrix.quant_type)) << "Quantization not allowed here"; } int GetMatrixRowSizeInBytes(const EmbeddingNetworkParams::Matrix &matrix) { int cols = matrix.cols; QuantizationType quant_type = matrix.quant_type; switch (quant_type) { case QuantizationType::NONE: return cols * sizeof(float); case QuantizationType::UINT8: return cols * sizeof(uint8); case QuantizationType::UINT4: SAFTM_DCHECK_EQ(cols % 2, 0) << "UINT4 with odd #cols = " << cols; return cols / 2; case QuantizationType::FLOAT16: return cols * sizeof(float16); default: SAFTM_LOG(FATAL) << "Unknown quant type: " << static_cast(quant_type); } } // Computes y = weights * Relu(x) + b where Relu is optionally applied. // // weights and b are the weight matrix, respectively the bias vector of a neural // network layer. // // Note: in the research literature, usually Relu (the activation function) is // the last part of a neural layer. From that perspective, this function // computes the Relu part of the previous layer (if any) and next the first half // (the computation of the state) for the current layer. // // Note: weights is expected to be the transposed version of the real weight // matrix. Hence, instead of computing a linear combination of the columns of // weights, we compute a linear combination of its rows; but we are mindful that // these rows are the columns of the original matrix, hence the name // weights_col_i in the code. void SparseReluProductPlusBias(bool apply_relu, const EmbeddingNetworkParams::Matrix &weights, const EmbeddingNetworkParams::Matrix &b, const std::vector &x, std::vector *y) { // Initialize y to b. b is a column matrix (i.e., nb.cols == 1); we already // CHECK-ed that the EmbeddingNetwork constructor. const float *b_start = reinterpret_cast(b.elements); SAFTM_DCHECK_EQ(b.cols, 1); y->assign(b_start, b_start + b.rows); float *const y_data = y->data(); const int y_size = y->size(); SAFTM_CHECK_EQ(weights.cols, y_size); const int x_size = x.size(); SAFTM_CHECK_EQ(weights.rows, x_size); // NOTE: the code below reads x_size * y_size elements from weights; these // reads are safe as long as weights.elements contains weights.rows * // weights.cols elements (where the element size depends on the quantization // type). That requirement is checked by the params provider, e.g., by // EmbeddingNetworkParamsFromFlatbuffer. // There is some code duplication between the two main cases of the switch // below: the idea was to "lift" the switch outside the loops, to reduce the // number of tests at runtime. switch (weights.quant_type) { case QuantizationType::NONE: { // We compute a linear combination of the rows from |weights|, using // elements of x (optionally, Relu(x)) as scaling factors (the i-th row // gets multiplied by x[i] before being added with the other rows). Note: // elements of |weights| are stored in row-major order: first the elements // of row #0, next the elements of row #1, etc. In the comments below, we // write "weights[i][j]" to refer to the j-th element from the i-th row of // weights. const float *weight_ptr = reinterpret_cast(weights.elements); for (int i = 0; i < x_size; ++i) { // Invariant 1: weight_ptr points to the beginning of the i-th row from // weights (i.e., weights[i][0]). const float scale = x[i]; if (!apply_relu || (scale > 0)) { for (int j = 0; j < y_size; ++j, ++weight_ptr) { // Invariant 2: weight_ptr points to weights[i][j]. y_data[j] += (*weight_ptr) * scale; } } else { // We don't update y_data, but we still have to move weight_ptr to the // next row (to satisfy Invariant 1). We do this by adding y_size == // weights.cols() (see earlier CHECK_EQ). weight_ptr += y_size; } } break; } case QuantizationType::FLOAT16: { // See comments for the QuantizationType::NONE case: the code is almost // identical, except for float16 (instead of float) and the Float16To32 // conversion. We could unify these two cases using a template, but since // this is a critical loop, don't want to risk that e.g., inlining of the // conversion function doesn't happen. const float16 *weight_ptr = reinterpret_cast(weights.elements); for (int i = 0; i < x_size; ++i) { const float scale = x[i]; if (!apply_relu || (scale > 0)) { for (int j = 0; j < y_size; ++j, ++weight_ptr) { y_data[j] += Float16To32(*weight_ptr) * scale; } } else { weight_ptr += y_size; } } break; } default: SAFTM_LOG(FATAL) << "Unsupported weights quantization type: " << static_cast(weights.quant_type); } } } // namespace void EmbeddingNetwork::ConcatEmbeddings( const std::vector &feature_vectors, std::vector *concat) const { concat->resize(concat_layer_size_); // "es_index" stands for "embedding space index". for (int es_index = 0; es_index < feature_vectors.size(); ++es_index) { const int concat_offset = concat_offset_[es_index]; const EmbeddingNetworkParams::Matrix &embedding_matrix = embedding_matrices_[es_index]; const int embedding_dim = embedding_matrix.cols; const int embedding_row_size_in_bytes = embedding_row_size_in_bytes_[es_index]; const FeatureVector &feature_vector = feature_vectors[es_index]; const int num_features = feature_vector.size(); for (int fi = 0; fi < num_features; ++fi) { const FeatureType *feature_type = feature_vector.type(fi); int feature_offset = concat_offset + feature_type->base() * embedding_dim; SAFTM_CHECK_LE(feature_offset + embedding_dim, concat->size()); // Weighted embeddings will be added starting from this address. float *concat_ptr = concat->data() + feature_offset; // Multiplier for each embedding weight. Includes feature weight (for // continuous features) and quantization scale (for quantized embeddings). float multiplier; int feature_id; const FeatureValue feature_value = feature_vector.value(fi); if (feature_type->is_continuous()) { // Continuous features (encoded as FloatFeatureValue). FloatFeatureValue float_feature_value(feature_value); feature_id = float_feature_value.id; multiplier = float_feature_value.weight; } else { // Discrete features: every present feature has implicit value 1.0. feature_id = feature_value; multiplier = 1.0; } SAFTM_CHECK_GE(feature_id, 0); SAFTM_CHECK_LT(feature_id, embedding_matrix.rows); // Pointer to float / uint8 weights for relevant embedding. const void *embedding_data = (reinterpret_cast(embedding_matrix.elements) + feature_id * embedding_row_size_in_bytes); switch (embedding_matrix.quant_type) { case QuantizationType::NONE: { const float *weights = reinterpret_cast(embedding_data); for (int i = 0; i < embedding_dim; ++i, ++weights, ++concat_ptr) { *concat_ptr += *weights * multiplier; } break; } case QuantizationType::UINT8: { multiplier *= Float16To32(embedding_matrix.quant_scales[feature_id]); const uint8 *quant_weights = reinterpret_cast(embedding_data); for (int i = 0; i < embedding_dim; ++i, ++quant_weights, ++concat_ptr) { // 128 is bias for UINT8 quantization. *concat_ptr += (static_cast(*quant_weights) - 128) * multiplier; } break; } case QuantizationType::UINT4: { multiplier *= Float16To32(embedding_matrix.quant_scales[feature_id]); const uint8 *quant_weights = reinterpret_cast(embedding_data); for (int i = 0; i < embedding_dim / 2; ++i, ++quant_weights) { const uint8 qq = *quant_weights; concat_ptr[0] += (static_cast((qq & 0xF0) | 0x08) - 128) * multiplier; concat_ptr[1] += (static_cast(((qq & 0x0F) << 4) | 0x08) - 128) * multiplier; concat_ptr += 2; } break; } default: // We already checked (in GetMatrixRowSizeInBytes) that each embedding // matrix has a known quantization type. Hence, DLOG is enough here. SAFTM_DLOG(ERROR) << "Unknown embeddings quantization type " << static_cast(embedding_matrix.quant_type); break; } } } } void EmbeddingNetwork::ComputeFinalScores( const std::vector &features, std::vector *scores) const { ComputeFinalScores(features, {}, scores); } void EmbeddingNetwork::ComputeFinalScores( const std::vector &features, const std::vector &extra_inputs, std::vector *scores) const { // Construct the input layer for our feed-forward neural network (FFNN). std::vector input; ConcatEmbeddings(features, &input); if (!extra_inputs.empty()) { input.reserve(input.size() + extra_inputs.size()); for (int i = 0; i < extra_inputs.size(); i++) { input.push_back(extra_inputs[i]); } } // Propagate input through all layers of our FFNN. // Alternating storage for activations of the different layers. We can't use // a single vector because all activations of the previous layer are required // when computing the activations of the next one. std::vector storage[2]; const std::vector *v_in = &input; const int num_layers = layer_weights_.size(); for (int i = 0; i < num_layers; ++i) { std::vector *v_out = nullptr; if (i == num_layers - 1) { // Final layer: write results directly into |scores|. v_out = scores; } else { // Hidden layer: write results into the alternating storage. The i % 2 // trick ensures the alternation. v_out = &(storage[i % 2]); } const bool apply_relu = i > 0; SparseReluProductPlusBias( apply_relu, layer_weights_[i], layer_bias_[i], *v_in, v_out); v_in = v_out; } } EmbeddingNetwork::EmbeddingNetwork(const EmbeddingNetworkParams *model) : model_(model) { int offset_sum = 0; for (int i = 0; i < model_->embedding_num_features_size(); ++i) { concat_offset_.push_back(offset_sum); EmbeddingNetworkParams::Matrix matrix = model_->GetEmbeddingMatrix(i); offset_sum += matrix.cols * model_->embedding_num_features(i); // NOTE: each Matrix is a small struct that doesn't own the actual matrix // weights. Hence, the push_back below is fast. embedding_matrices_.push_back(matrix); embedding_row_size_in_bytes_.push_back(GetMatrixRowSizeInBytes(matrix)); } concat_layer_size_ = offset_sum; SAFTM_CHECK_EQ(model_->hidden_size(), model_->hidden_bias_size()); for (int i = 0; i < model_->hidden_size(); ++i) { layer_weights_.push_back(model_->GetHiddenLayerMatrix(i)); EmbeddingNetworkParams::Matrix bias = model_->GetHiddenLayerBias(i); SAFTM_CHECK_EQ(1, bias.cols); CheckNoQuantization(bias); layer_bias_.push_back(bias); } SAFTM_CHECK(model_->HasSoftmax()); layer_weights_.push_back(model_->GetSoftmaxMatrix()); EmbeddingNetworkParams::Matrix softmax_bias = model_->GetSoftmaxBias(); SAFTM_CHECK_EQ(1, softmax_bias.cols); CheckNoQuantization(softmax_bias); layer_bias_.push_back(softmax_bias); } } // namespace mobile } // namespace nlp_saft