/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Shared methods for the text and token encoders. #ifndef LIBTEXTCLASSIFIER_UTILS_TFLITE_ENCODER_COMMON_H_ #define LIBTEXTCLASSIFIER_UTILS_TFLITE_ENCODER_COMMON_H_ #include #include #include "tensorflow/lite/model.h" namespace libtextclassifier3 { // Input rank for the encoder ops is 2, because the first dimension is // always considered to be for batching, and during inference is always set to // 1, and the second dimension indexes the input values (texts or token // lengths). constexpr const int kEncoderInputRank = 2; constexpr const int kEncoderBatchSize = 1; // Creates a TensorFlow Lite array from an initializer list. TfLiteIntArray* CreateIntArray(const std::initializer_list& values); // Copies values associated with the input to the output. // Typically we have attribute values associated with each item in the input, // e.g. user id per message in the conversation. // This aligns and replicates the attribute values with the encoded input, e.g. // replicates the same user id per token or sentence piece of the input. // As the input for the whole conversation is concatenated and (potentially) // trimmed, `encoding_end_offset` indicates where each item ends and // `start_offset` indicates how many elements at the beginning were dropped. TfLiteStatus CopyValuesToTensorAndPadOrTruncate( const TfLiteTensor& in, const std::vector& encoding_end_offsets, int start_offset, TfLiteContext* context, TfLiteTensor* out); // Resizes an output tensor to shape {kBatchSize, max_output_length}. TfLiteStatus ResizeOutputTensor(const int max_output_length, TfLiteTensor* tensor, TfLiteContext* context); // Copy a slice of data to output. // If the size of the data is smaller than `max_output_length` then the output // is padded with `padding_value`. // If the size of the data is larger than `max_output_length` then entries at // the beginning a dropped to fit into the limit. int CopyDataToTensorAndPadOrTruncate(const int32_t max_output_length, const std::vector& data, const int32_t padding_value, TfLiteTensor* output_tensor); } // namespace libtextclassifier3 #endif // LIBTEXTCLASSIFIER_UTILS_TFLITE_ENCODER_COMMON_H_