//===--- LoopConvertCheck.cpp - clang-tidy---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "LoopConvertCheck.h" #include "clang/AST/ASTContext.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Lexer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace clang::ast_matchers; using namespace llvm; namespace clang { namespace tidy { template <> struct OptionEnumMapping { static llvm::ArrayRef> getEnumMapping() { static constexpr std::pair Mapping[] = {{modernize::Confidence::CL_Reasonable, "reasonable"}, {modernize::Confidence::CL_Safe, "safe"}, {modernize::Confidence::CL_Risky, "risky"}}; return makeArrayRef(Mapping); } }; template <> struct OptionEnumMapping { static llvm::ArrayRef< std::pair> getEnumMapping() { static constexpr std::pair Mapping[] = {{modernize::VariableNamer::NS_CamelCase, "CamelCase"}, {modernize::VariableNamer::NS_CamelBack, "camelBack"}, {modernize::VariableNamer::NS_LowerCase, "lower_case"}, {modernize::VariableNamer::NS_UpperCase, "UPPER_CASE"}}; return makeArrayRef(Mapping); } }; namespace modernize { static const char LoopNameArray[] = "forLoopArray"; static const char LoopNameIterator[] = "forLoopIterator"; static const char LoopNameReverseIterator[] = "forLoopReverseIterator"; static const char LoopNamePseudoArray[] = "forLoopPseudoArray"; static const char ConditionBoundName[] = "conditionBound"; static const char ConditionVarName[] = "conditionVar"; static const char IncrementVarName[] = "incrementVar"; static const char InitVarName[] = "initVar"; static const char BeginCallName[] = "beginCall"; static const char EndCallName[] = "endCall"; static const char ConditionEndVarName[] = "conditionEndVar"; static const char EndVarName[] = "endVar"; static const char DerefByValueResultName[] = "derefByValueResult"; static const char DerefByRefResultName[] = "derefByRefResult"; // shared matchers static const TypeMatcher AnyType() { return anything(); } static const StatementMatcher IntegerComparisonMatcher() { return expr(ignoringParenImpCasts( declRefExpr(to(varDecl(hasType(isInteger())).bind(ConditionVarName))))); } static const DeclarationMatcher InitToZeroMatcher() { return varDecl( hasInitializer(ignoringParenImpCasts(integerLiteral(equals(0))))) .bind(InitVarName); } static const StatementMatcher IncrementVarMatcher() { return declRefExpr(to(varDecl(hasType(isInteger())).bind(IncrementVarName))); } /// The matcher for loops over arrays. /// /// In this general example, assuming 'j' and 'k' are of integral type: /// \code /// for (int i = 0; j < 3 + 2; ++k) { ... } /// \endcode /// The following string identifiers are bound to these parts of the AST: /// ConditionVarName: 'j' (as a VarDecl) /// ConditionBoundName: '3 + 2' (as an Expr) /// InitVarName: 'i' (as a VarDecl) /// IncrementVarName: 'k' (as a VarDecl) /// LoopName: The entire for loop (as a ForStmt) /// /// Client code will need to make sure that: /// - The three index variables identified by the matcher are the same /// VarDecl. /// - The index variable is only used as an array index. /// - All arrays indexed by the loop are the same. StatementMatcher makeArrayLoopMatcher() { StatementMatcher ArrayBoundMatcher = expr(hasType(isInteger())).bind(ConditionBoundName); return forStmt( unless(isInTemplateInstantiation()), hasLoopInit(declStmt(hasSingleDecl(InitToZeroMatcher()))), hasCondition(anyOf( binaryOperator(hasOperatorName("<"), hasLHS(IntegerComparisonMatcher()), hasRHS(ArrayBoundMatcher)), binaryOperator(hasOperatorName(">"), hasLHS(ArrayBoundMatcher), hasRHS(IntegerComparisonMatcher())))), hasIncrement(unaryOperator(hasOperatorName("++"), hasUnaryOperand(IncrementVarMatcher())))) .bind(LoopNameArray); } /// The matcher used for iterator-based for loops. /// /// This matcher is more flexible than array-based loops. It will match /// catch loops of the following textual forms (regardless of whether the /// iterator type is actually a pointer type or a class type): /// /// Assuming f, g, and h are of type containerType::iterator, /// \code /// for (containerType::iterator it = container.begin(), /// e = createIterator(); f != g; ++h) { ... } /// for (containerType::iterator it = container.begin(); /// f != anotherContainer.end(); ++h) { ... } /// \endcode /// The following string identifiers are bound to the parts of the AST: /// InitVarName: 'it' (as a VarDecl) /// ConditionVarName: 'f' (as a VarDecl) /// LoopName: The entire for loop (as a ForStmt) /// In the first example only: /// EndVarName: 'e' (as a VarDecl) /// ConditionEndVarName: 'g' (as a VarDecl) /// In the second example only: /// EndCallName: 'container.end()' (as a CXXMemberCallExpr) /// /// Client code will need to make sure that: /// - The iterator variables 'it', 'f', and 'h' are the same. /// - The two containers on which 'begin' and 'end' are called are the same. /// - If the end iterator variable 'g' is defined, it is the same as 'f'. StatementMatcher makeIteratorLoopMatcher(bool IsReverse) { auto BeginNameMatcher = IsReverse ? hasAnyName("rbegin", "crbegin") : hasAnyName("begin", "cbegin"); auto EndNameMatcher = IsReverse ? hasAnyName("rend", "crend") : hasAnyName("end", "cend"); StatementMatcher BeginCallMatcher = cxxMemberCallExpr(argumentCountIs(0), callee(cxxMethodDecl(BeginNameMatcher))) .bind(BeginCallName); DeclarationMatcher InitDeclMatcher = varDecl(hasInitializer(anyOf(ignoringParenImpCasts(BeginCallMatcher), materializeTemporaryExpr( ignoringParenImpCasts(BeginCallMatcher)), hasDescendant(BeginCallMatcher)))) .bind(InitVarName); DeclarationMatcher EndDeclMatcher = varDecl(hasInitializer(anything())).bind(EndVarName); StatementMatcher EndCallMatcher = cxxMemberCallExpr( argumentCountIs(0), callee(cxxMethodDecl(EndNameMatcher))); StatementMatcher IteratorBoundMatcher = expr(anyOf(ignoringParenImpCasts( declRefExpr(to(varDecl().bind(ConditionEndVarName)))), ignoringParenImpCasts(expr(EndCallMatcher).bind(EndCallName)), materializeTemporaryExpr(ignoringParenImpCasts( expr(EndCallMatcher).bind(EndCallName))))); StatementMatcher IteratorComparisonMatcher = expr( ignoringParenImpCasts(declRefExpr(to(varDecl().bind(ConditionVarName))))); auto OverloadedNEQMatcher = ignoringImplicit( cxxOperatorCallExpr(hasOverloadedOperatorName("!="), argumentCountIs(2), hasArgument(0, IteratorComparisonMatcher), hasArgument(1, IteratorBoundMatcher))); // This matcher tests that a declaration is a CXXRecordDecl that has an // overloaded operator*(). If the operator*() returns by value instead of by // reference then the return type is tagged with DerefByValueResultName. internal::Matcher TestDerefReturnsByValue = hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(cxxRecordDecl(hasMethod(cxxMethodDecl( hasOverloadedOperatorName("*"), anyOf( // Tag the return type if it's by value. returns(qualType(unless(hasCanonicalType(referenceType()))) .bind(DerefByValueResultName)), returns( // Skip loops where the iterator's operator* returns an // rvalue reference. This is just weird. qualType(unless(hasCanonicalType(rValueReferenceType()))) .bind(DerefByRefResultName)))))))))); return forStmt( unless(isInTemplateInstantiation()), hasLoopInit(anyOf(declStmt(declCountIs(2), containsDeclaration(0, InitDeclMatcher), containsDeclaration(1, EndDeclMatcher)), declStmt(hasSingleDecl(InitDeclMatcher)))), hasCondition( anyOf(binaryOperator(hasOperatorName("!="), hasLHS(IteratorComparisonMatcher), hasRHS(IteratorBoundMatcher)), binaryOperator(hasOperatorName("!="), hasLHS(IteratorBoundMatcher), hasRHS(IteratorComparisonMatcher)), OverloadedNEQMatcher)), hasIncrement(anyOf( unaryOperator(hasOperatorName("++"), hasUnaryOperand(declRefExpr( to(varDecl(hasType(pointsTo(AnyType()))) .bind(IncrementVarName))))), cxxOperatorCallExpr( hasOverloadedOperatorName("++"), hasArgument( 0, declRefExpr(to(varDecl(TestDerefReturnsByValue) .bind(IncrementVarName)))))))) .bind(IsReverse ? LoopNameReverseIterator : LoopNameIterator); } /// The matcher used for array-like containers (pseudoarrays). /// /// This matcher is more flexible than array-based loops. It will match /// loops of the following textual forms (regardless of whether the /// iterator type is actually a pointer type or a class type): /// /// Assuming f, g, and h are of type containerType::iterator, /// \code /// for (int i = 0, j = container.size(); f < g; ++h) { ... } /// for (int i = 0; f < container.size(); ++h) { ... } /// \endcode /// The following string identifiers are bound to the parts of the AST: /// InitVarName: 'i' (as a VarDecl) /// ConditionVarName: 'f' (as a VarDecl) /// LoopName: The entire for loop (as a ForStmt) /// In the first example only: /// EndVarName: 'j' (as a VarDecl) /// ConditionEndVarName: 'g' (as a VarDecl) /// In the second example only: /// EndCallName: 'container.size()' (as a CXXMemberCallExpr) /// /// Client code will need to make sure that: /// - The index variables 'i', 'f', and 'h' are the same. /// - The containers on which 'size()' is called is the container indexed. /// - The index variable is only used in overloaded operator[] or /// container.at(). /// - If the end iterator variable 'g' is defined, it is the same as 'j'. /// - The container's iterators would not be invalidated during the loop. StatementMatcher makePseudoArrayLoopMatcher() { // Test that the incoming type has a record declaration that has methods // called 'begin' and 'end'. If the incoming type is const, then make sure // these methods are also marked const. // // FIXME: To be completely thorough this matcher should also ensure the // return type of begin/end is an iterator that dereferences to the same as // what operator[] or at() returns. Such a test isn't likely to fail except // for pathological cases. // // FIXME: Also, a record doesn't necessarily need begin() and end(). Free // functions called begin() and end() taking the container as an argument // are also allowed. TypeMatcher RecordWithBeginEnd = qualType(anyOf( qualType( isConstQualified(), hasUnqualifiedDesugaredType(recordType(hasDeclaration(cxxRecordDecl( hasMethod(cxxMethodDecl(hasName("begin"), isConst())), hasMethod(cxxMethodDecl(hasName("end"), isConst())))) // hasDeclaration ))), // qualType qualType(unless(isConstQualified()), hasUnqualifiedDesugaredType(recordType(hasDeclaration( cxxRecordDecl(hasMethod(hasName("begin")), hasMethod(hasName("end"))))))) // qualType )); StatementMatcher SizeCallMatcher = cxxMemberCallExpr( argumentCountIs(0), callee(cxxMethodDecl(hasAnyName("size", "length"))), on(anyOf(hasType(pointsTo(RecordWithBeginEnd)), hasType(RecordWithBeginEnd)))); StatementMatcher EndInitMatcher = expr(anyOf(ignoringParenImpCasts(expr(SizeCallMatcher).bind(EndCallName)), explicitCastExpr(hasSourceExpression(ignoringParenImpCasts( expr(SizeCallMatcher).bind(EndCallName)))))); DeclarationMatcher EndDeclMatcher = varDecl(hasInitializer(EndInitMatcher)).bind(EndVarName); StatementMatcher IndexBoundMatcher = expr(anyOf(ignoringParenImpCasts(declRefExpr(to( varDecl(hasType(isInteger())).bind(ConditionEndVarName)))), EndInitMatcher)); return forStmt( unless(isInTemplateInstantiation()), hasLoopInit( anyOf(declStmt(declCountIs(2), containsDeclaration(0, InitToZeroMatcher()), containsDeclaration(1, EndDeclMatcher)), declStmt(hasSingleDecl(InitToZeroMatcher())))), hasCondition(anyOf( binaryOperator(hasOperatorName("<"), hasLHS(IntegerComparisonMatcher()), hasRHS(IndexBoundMatcher)), binaryOperator(hasOperatorName(">"), hasLHS(IndexBoundMatcher), hasRHS(IntegerComparisonMatcher())))), hasIncrement(unaryOperator(hasOperatorName("++"), hasUnaryOperand(IncrementVarMatcher())))) .bind(LoopNamePseudoArray); } /// Determine whether Init appears to be an initializing an iterator. /// /// If it is, returns the object whose begin() or end() method is called, and /// the output parameter isArrow is set to indicate whether the initialization /// is called via . or ->. static const Expr *getContainerFromBeginEndCall(const Expr *Init, bool IsBegin, bool *IsArrow, bool IsReverse) { // FIXME: Maybe allow declaration/initialization outside of the for loop. const auto *TheCall = dyn_cast_or_null(digThroughConstructors(Init)); if (!TheCall || TheCall->getNumArgs() != 0) return nullptr; const auto *Member = dyn_cast(TheCall->getCallee()); if (!Member) return nullptr; StringRef Name = Member->getMemberDecl()->getName(); if (!Name.consume_back(IsBegin ? "begin" : "end")) return nullptr; if (IsReverse && !Name.consume_back("r")) return nullptr; if (!Name.empty() && !Name.equals("c")) return nullptr; const Expr *SourceExpr = Member->getBase(); if (!SourceExpr) return nullptr; *IsArrow = Member->isArrow(); return SourceExpr; } /// Determines the container whose begin() and end() functions are called /// for an iterator-based loop. /// /// BeginExpr must be a member call to a function named "begin()", and EndExpr /// must be a member. static const Expr *findContainer(ASTContext *Context, const Expr *BeginExpr, const Expr *EndExpr, bool *ContainerNeedsDereference, bool IsReverse) { // Now that we know the loop variable and test expression, make sure they are // valid. bool BeginIsArrow = false; bool EndIsArrow = false; const Expr *BeginContainerExpr = getContainerFromBeginEndCall( BeginExpr, /*IsBegin=*/true, &BeginIsArrow, IsReverse); if (!BeginContainerExpr) return nullptr; const Expr *EndContainerExpr = getContainerFromBeginEndCall( EndExpr, /*IsBegin=*/false, &EndIsArrow, IsReverse); // Disallow loops that try evil things like this (note the dot and arrow): // for (IteratorType It = Obj.begin(), E = Obj->end(); It != E; ++It) { } if (!EndContainerExpr || BeginIsArrow != EndIsArrow || !areSameExpr(Context, EndContainerExpr, BeginContainerExpr)) return nullptr; *ContainerNeedsDereference = BeginIsArrow; return BeginContainerExpr; } /// Obtain the original source code text from a SourceRange. static StringRef getStringFromRange(SourceManager &SourceMgr, const LangOptions &LangOpts, SourceRange Range) { if (SourceMgr.getFileID(Range.getBegin()) != SourceMgr.getFileID(Range.getEnd())) { return StringRef(); // Empty string. } return Lexer::getSourceText(CharSourceRange(Range, true), SourceMgr, LangOpts); } /// If the given expression is actually a DeclRefExpr or a MemberExpr, /// find and return the underlying ValueDecl; otherwise, return NULL. static const ValueDecl *getReferencedVariable(const Expr *E) { if (const DeclRefExpr *DRE = getDeclRef(E)) return dyn_cast(DRE->getDecl()); if (const auto *Mem = dyn_cast(E->IgnoreParenImpCasts())) return dyn_cast(Mem->getMemberDecl()); return nullptr; } /// Returns true when the given expression is a member expression /// whose base is `this` (implicitly or not). static bool isDirectMemberExpr(const Expr *E) { if (const auto *Member = dyn_cast(E->IgnoreParenImpCasts())) return isa(Member->getBase()->IgnoreParenImpCasts()); return false; } /// Given an expression that represents an usage of an element from the /// containter that we are iterating over, returns false when it can be /// guaranteed this element cannot be modified as a result of this usage. static bool canBeModified(ASTContext *Context, const Expr *E) { if (E->getType().isConstQualified()) return false; auto Parents = Context->getParents(*E); if (Parents.size() != 1) return true; if (const auto *Cast = Parents[0].get()) { if ((Cast->getCastKind() == CK_NoOp && Cast->getType() == E->getType().withConst()) || (Cast->getCastKind() == CK_LValueToRValue && !Cast->getType().isNull() && Cast->getType()->isFundamentalType())) return false; } // FIXME: Make this function more generic. return true; } /// Returns true when it can be guaranteed that the elements of the /// container are not being modified. static bool usagesAreConst(ASTContext *Context, const UsageResult &Usages) { for (const Usage &U : Usages) { // Lambda captures are just redeclarations (VarDecl) of the same variable, // not expressions. If we want to know if a variable that is captured by // reference can be modified in an usage inside the lambda's body, we need // to find the expression corresponding to that particular usage, later in // this loop. if (U.Kind != Usage::UK_CaptureByCopy && U.Kind != Usage::UK_CaptureByRef && canBeModified(Context, U.Expression)) return false; } return true; } /// Returns true if the elements of the container are never accessed /// by reference. static bool usagesReturnRValues(const UsageResult &Usages) { for (const auto &U : Usages) { if (U.Expression && !U.Expression->isRValue()) return false; } return true; } /// Returns true if the container is const-qualified. static bool containerIsConst(const Expr *ContainerExpr, bool Dereference) { if (const auto *VDec = getReferencedVariable(ContainerExpr)) { QualType CType = VDec->getType(); if (Dereference) { if (!CType->isPointerType()) return false; CType = CType->getPointeeType(); } // If VDec is a reference to a container, Dereference is false, // but we still need to check the const-ness of the underlying container // type. CType = CType.getNonReferenceType(); return CType.isConstQualified(); } return false; } LoopConvertCheck::RangeDescriptor::RangeDescriptor() : ContainerNeedsDereference(false), DerefByConstRef(false), DerefByValue(false), NeedsReverseCall(false) {} LoopConvertCheck::LoopConvertCheck(StringRef Name, ClangTidyContext *Context) : ClangTidyCheck(Name, Context), TUInfo(new TUTrackingInfo), MaxCopySize(Options.get("MaxCopySize", 16ULL)), MinConfidence(Options.get("MinConfidence", Confidence::CL_Reasonable)), NamingStyle(Options.get("NamingStyle", VariableNamer::NS_CamelCase)), Inserter(Options.getLocalOrGlobal("IncludeStyle", utils::IncludeSorter::IS_LLVM)), UseCxx20IfAvailable(Options.get("UseCxx20ReverseRanges", true)), ReverseFunction(Options.get("MakeReverseRangeFunction", "")), ReverseHeader(Options.get("MakeReverseRangeHeader", "")) { if (ReverseFunction.empty() && !ReverseHeader.empty()) { configurationDiag( "modernize-loop-convert: 'MakeReverseRangeHeader' is set but " "'MakeReverseRangeFunction' is not, disabling reverse loop " "transformation"); UseReverseRanges = false; } else if (ReverseFunction.empty()) { UseReverseRanges = UseCxx20IfAvailable && getLangOpts().CPlusPlus20; } else { UseReverseRanges = true; } } void LoopConvertCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) { Options.store(Opts, "MaxCopySize", MaxCopySize); Options.store(Opts, "MinConfidence", MinConfidence); Options.store(Opts, "NamingStyle", NamingStyle); Options.store(Opts, "IncludeStyle", Inserter.getStyle()); Options.store(Opts, "UseCxx20ReverseRanges", UseCxx20IfAvailable); Options.store(Opts, "MakeReverseRangeFunction", ReverseFunction); Options.store(Opts, "MakeReverseRangeHeader", ReverseHeader); } void LoopConvertCheck::registerPPCallbacks(const SourceManager &SM, Preprocessor *PP, Preprocessor *ModuleExpanderPP) { Inserter.registerPreprocessor(PP); } void LoopConvertCheck::registerMatchers(MatchFinder *Finder) { Finder->addMatcher(traverse(ast_type_traits::TK_AsIs, makeArrayLoopMatcher()), this); Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, makeIteratorLoopMatcher(false)), this); Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, makePseudoArrayLoopMatcher()), this); if (UseReverseRanges) Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, makeIteratorLoopMatcher(true)), this); } /// Given the range of a single declaration, such as: /// \code /// unsigned &ThisIsADeclarationThatCanSpanSeveralLinesOfCode = /// InitializationValues[I]; /// next_instruction; /// \endcode /// Finds the range that has to be erased to remove this declaration without /// leaving empty lines, by extending the range until the beginning of the /// next instruction. /// /// We need to delete a potential newline after the deleted alias, as /// clang-format will leave empty lines untouched. For all other formatting we /// rely on clang-format to fix it. void LoopConvertCheck::getAliasRange(SourceManager &SM, SourceRange &Range) { bool Invalid = false; const char *TextAfter = SM.getCharacterData(Range.getEnd().getLocWithOffset(1), &Invalid); if (Invalid) return; unsigned Offset = std::strspn(TextAfter, " \t\r\n"); Range = SourceRange(Range.getBegin(), Range.getEnd().getLocWithOffset(Offset)); } /// Computes the changes needed to convert a given for loop, and /// applies them. void LoopConvertCheck::doConversion( ASTContext *Context, const VarDecl *IndexVar, const ValueDecl *MaybeContainer, const UsageResult &Usages, const DeclStmt *AliasDecl, bool AliasUseRequired, bool AliasFromForInit, const ForStmt *Loop, RangeDescriptor Descriptor) { std::string VarName; bool VarNameFromAlias = (Usages.size() == 1) && AliasDecl; bool AliasVarIsRef = false; bool CanCopy = true; std::vector FixIts; if (VarNameFromAlias) { const auto *AliasVar = cast(AliasDecl->getSingleDecl()); VarName = AliasVar->getName().str(); // Use the type of the alias if it's not the same QualType AliasVarType = AliasVar->getType(); assert(!AliasVarType.isNull() && "Type in VarDecl is null"); if (AliasVarType->isReferenceType()) { AliasVarType = AliasVarType.getNonReferenceType(); AliasVarIsRef = true; } if (Descriptor.ElemType.isNull() || !Context->hasSameUnqualifiedType(AliasVarType, Descriptor.ElemType)) Descriptor.ElemType = AliasVarType; // We keep along the entire DeclStmt to keep the correct range here. SourceRange ReplaceRange = AliasDecl->getSourceRange(); std::string ReplacementText; if (AliasUseRequired) { ReplacementText = VarName; } else if (AliasFromForInit) { // FIXME: Clang includes the location of the ';' but only for DeclStmt's // in a for loop's init clause. Need to put this ';' back while removing // the declaration of the alias variable. This is probably a bug. ReplacementText = ";"; } else { // Avoid leaving empty lines or trailing whitespaces. getAliasRange(Context->getSourceManager(), ReplaceRange); } FixIts.push_back(FixItHint::CreateReplacement( CharSourceRange::getTokenRange(ReplaceRange), ReplacementText)); // No further replacements are made to the loop, since the iterator or index // was used exactly once - in the initialization of AliasVar. } else { VariableNamer Namer(&TUInfo->getGeneratedDecls(), &TUInfo->getParentFinder().getStmtToParentStmtMap(), Loop, IndexVar, MaybeContainer, Context, NamingStyle); VarName = Namer.createIndexName(); // First, replace all usages of the array subscript expression with our new // variable. for (const auto &Usage : Usages) { std::string ReplaceText; SourceRange Range = Usage.Range; if (Usage.Expression) { // If this is an access to a member through the arrow operator, after // the replacement it must be accessed through the '.' operator. ReplaceText = Usage.Kind == Usage::UK_MemberThroughArrow ? VarName + "." : VarName; auto Parents = Context->getParents(*Usage.Expression); if (Parents.size() == 1) { if (const auto *Paren = Parents[0].get()) { // Usage.Expression will be replaced with the new index variable, // and parenthesis around a simple DeclRefExpr can always be // removed. Range = Paren->getSourceRange(); } else if (const auto *UOP = Parents[0].get()) { // If we are taking the address of the loop variable, then we must // not use a copy, as it would mean taking the address of the loop's // local index instead. // FIXME: This won't catch cases where the address is taken outside // of the loop's body (for instance, in a function that got the // loop's index as a const reference parameter), or where we take // the address of a member (like "&Arr[i].A.B.C"). if (UOP->getOpcode() == UO_AddrOf) CanCopy = false; } } } else { // The Usage expression is only null in case of lambda captures (which // are VarDecl). If the index is captured by value, add '&' to capture // by reference instead. ReplaceText = Usage.Kind == Usage::UK_CaptureByCopy ? "&" + VarName : VarName; } TUInfo->getReplacedVars().insert(std::make_pair(Loop, IndexVar)); FixIts.push_back(FixItHint::CreateReplacement( CharSourceRange::getTokenRange(Range), ReplaceText)); } } // Now, we need to construct the new range expression. SourceRange ParenRange(Loop->getLParenLoc(), Loop->getRParenLoc()); QualType Type = Context->getAutoDeductType(); if (!Descriptor.ElemType.isNull() && Descriptor.ElemType->isFundamentalType()) Type = Descriptor.ElemType.getUnqualifiedType(); Type = Type.getDesugaredType(*Context); // If the new variable name is from the aliased variable, then the reference // type for the new variable should only be used if the aliased variable was // declared as a reference. bool IsCheapToCopy = !Descriptor.ElemType.isNull() && Descriptor.ElemType.isTriviallyCopyableType(*Context) && // TypeInfo::Width is in bits. Context->getTypeInfo(Descriptor.ElemType).Width <= 8 * MaxCopySize; bool UseCopy = CanCopy && ((VarNameFromAlias && !AliasVarIsRef) || (Descriptor.DerefByConstRef && IsCheapToCopy)); if (!UseCopy) { if (Descriptor.DerefByConstRef) { Type = Context->getLValueReferenceType(Context->getConstType(Type)); } else if (Descriptor.DerefByValue) { if (!IsCheapToCopy) Type = Context->getRValueReferenceType(Type); } else { Type = Context->getLValueReferenceType(Type); } } SmallString<128> Range; llvm::raw_svector_ostream Output(Range); Output << '('; Type.print(Output, getLangOpts()); Output << ' ' << VarName << " : "; if (Descriptor.NeedsReverseCall) Output << getReverseFunction() << '('; if (Descriptor.ContainerNeedsDereference) Output << '*'; Output << Descriptor.ContainerString; if (Descriptor.NeedsReverseCall) Output << "))"; else Output << ')'; FixIts.push_back(FixItHint::CreateReplacement( CharSourceRange::getTokenRange(ParenRange), Range)); if (Descriptor.NeedsReverseCall && !getReverseHeader().empty()) { if (Optional Insertion = Inserter.createIncludeInsertion( Context->getSourceManager().getFileID(Loop->getBeginLoc()), getReverseHeader())) FixIts.push_back(*Insertion); } diag(Loop->getForLoc(), "use range-based for loop instead") << FixIts; TUInfo->getGeneratedDecls().insert(make_pair(Loop, VarName)); } /// Returns a string which refers to the container iterated over. StringRef LoopConvertCheck::getContainerString(ASTContext *Context, const ForStmt *Loop, const Expr *ContainerExpr) { StringRef ContainerString; ContainerExpr = ContainerExpr->IgnoreParenImpCasts(); if (isa(ContainerExpr)) { ContainerString = "this"; } else { // For CXXOperatorCallExpr (e.g. vector_ptr->size()), its first argument is // the class object (vector_ptr) we are targeting. if (const auto* E = dyn_cast(ContainerExpr)) ContainerExpr = E->getArg(0); ContainerString = getStringFromRange(Context->getSourceManager(), Context->getLangOpts(), ContainerExpr->getSourceRange()); } return ContainerString; } /// Determines what kind of 'auto' must be used after converting a for /// loop that iterates over an array or pseudoarray. void LoopConvertCheck::getArrayLoopQualifiers(ASTContext *Context, const BoundNodes &Nodes, const Expr *ContainerExpr, const UsageResult &Usages, RangeDescriptor &Descriptor) { // On arrays and pseudoarrays, we must figure out the qualifiers from the // usages. if (usagesAreConst(Context, Usages) || containerIsConst(ContainerExpr, Descriptor.ContainerNeedsDereference)) { Descriptor.DerefByConstRef = true; } if (usagesReturnRValues(Usages)) { // If the index usages (dereference, subscript, at, ...) return rvalues, // then we should not use a reference, because we need to keep the code // correct if it mutates the returned objects. Descriptor.DerefByValue = true; } // Try to find the type of the elements on the container, to check if // they are trivially copyable. for (const Usage &U : Usages) { if (!U.Expression || U.Expression->getType().isNull()) continue; QualType Type = U.Expression->getType().getCanonicalType(); if (U.Kind == Usage::UK_MemberThroughArrow) { if (!Type->isPointerType()) { continue; } Type = Type->getPointeeType(); } Descriptor.ElemType = Type; } } /// Determines what kind of 'auto' must be used after converting an /// iterator based for loop. void LoopConvertCheck::getIteratorLoopQualifiers(ASTContext *Context, const BoundNodes &Nodes, RangeDescriptor &Descriptor) { // The matchers for iterator loops provide bound nodes to obtain this // information. const auto *InitVar = Nodes.getNodeAs(InitVarName); QualType CanonicalInitVarType = InitVar->getType().getCanonicalType(); const auto *DerefByValueType = Nodes.getNodeAs(DerefByValueResultName); Descriptor.DerefByValue = DerefByValueType; if (Descriptor.DerefByValue) { // If the dereference operator returns by value then test for the // canonical const qualification of the init variable type. Descriptor.DerefByConstRef = CanonicalInitVarType.isConstQualified(); Descriptor.ElemType = *DerefByValueType; } else { if (const auto *DerefType = Nodes.getNodeAs(DerefByRefResultName)) { // A node will only be bound with DerefByRefResultName if we're dealing // with a user-defined iterator type. Test the const qualification of // the reference type. auto ValueType = DerefType->getNonReferenceType(); Descriptor.DerefByConstRef = ValueType.isConstQualified(); Descriptor.ElemType = ValueType; } else { // By nature of the matcher this case is triggered only for built-in // iterator types (i.e. pointers). assert(isa(CanonicalInitVarType) && "Non-class iterator type is not a pointer type"); // We test for const qualification of the pointed-at type. Descriptor.DerefByConstRef = CanonicalInitVarType->getPointeeType().isConstQualified(); Descriptor.ElemType = CanonicalInitVarType->getPointeeType(); } } } /// Determines the parameters needed to build the range replacement. void LoopConvertCheck::determineRangeDescriptor( ASTContext *Context, const BoundNodes &Nodes, const ForStmt *Loop, LoopFixerKind FixerKind, const Expr *ContainerExpr, const UsageResult &Usages, RangeDescriptor &Descriptor) { Descriptor.ContainerString = std::string(getContainerString(Context, Loop, ContainerExpr)); Descriptor.NeedsReverseCall = (FixerKind == LFK_ReverseIterator); if (FixerKind == LFK_Iterator || FixerKind == LFK_ReverseIterator) getIteratorLoopQualifiers(Context, Nodes, Descriptor); else getArrayLoopQualifiers(Context, Nodes, ContainerExpr, Usages, Descriptor); } /// Check some of the conditions that must be met for the loop to be /// convertible. bool LoopConvertCheck::isConvertible(ASTContext *Context, const ast_matchers::BoundNodes &Nodes, const ForStmt *Loop, LoopFixerKind FixerKind) { // If we already modified the range of this for loop, don't do any further // updates on this iteration. if (TUInfo->getReplacedVars().count(Loop)) return false; // Check that we have exactly one index variable and at most one end variable. const auto *LoopVar = Nodes.getNodeAs(IncrementVarName); const auto *CondVar = Nodes.getNodeAs(ConditionVarName); const auto *InitVar = Nodes.getNodeAs(InitVarName); if (!areSameVariable(LoopVar, CondVar) || !areSameVariable(LoopVar, InitVar)) return false; const auto *EndVar = Nodes.getNodeAs(EndVarName); const auto *ConditionEndVar = Nodes.getNodeAs(ConditionEndVarName); if (EndVar && !areSameVariable(EndVar, ConditionEndVar)) return false; // FIXME: Try to put most of this logic inside a matcher. if (FixerKind == LFK_Iterator || FixerKind == LFK_ReverseIterator) { QualType InitVarType = InitVar->getType(); QualType CanonicalInitVarType = InitVarType.getCanonicalType(); const auto *BeginCall = Nodes.getNodeAs(BeginCallName); assert(BeginCall && "Bad Callback. No begin call expression"); QualType CanonicalBeginType = BeginCall->getMethodDecl()->getReturnType().getCanonicalType(); if (CanonicalBeginType->isPointerType() && CanonicalInitVarType->isPointerType()) { // If the initializer and the variable are both pointers check if the // un-qualified pointee types match, otherwise we don't use auto. if (!Context->hasSameUnqualifiedType( CanonicalBeginType->getPointeeType(), CanonicalInitVarType->getPointeeType())) return false; } } else if (FixerKind == LFK_PseudoArray) { // This call is required to obtain the container. const auto *EndCall = Nodes.getNodeAs(EndCallName); if (!EndCall || !dyn_cast(EndCall->getCallee())) return false; } return true; } void LoopConvertCheck::check(const MatchFinder::MatchResult &Result) { const BoundNodes &Nodes = Result.Nodes; Confidence ConfidenceLevel(Confidence::CL_Safe); ASTContext *Context = Result.Context; const ForStmt *Loop; LoopFixerKind FixerKind; RangeDescriptor Descriptor; if ((Loop = Nodes.getNodeAs(LoopNameArray))) { FixerKind = LFK_Array; } else if ((Loop = Nodes.getNodeAs(LoopNameIterator))) { FixerKind = LFK_Iterator; } else if ((Loop = Nodes.getNodeAs(LoopNameReverseIterator))) { FixerKind = LFK_ReverseIterator; } else { Loop = Nodes.getNodeAs(LoopNamePseudoArray); assert(Loop && "Bad Callback. No for statement"); FixerKind = LFK_PseudoArray; } if (!isConvertible(Context, Nodes, Loop, FixerKind)) return; const auto *LoopVar = Nodes.getNodeAs(IncrementVarName); const auto *EndVar = Nodes.getNodeAs(EndVarName); // If the loop calls end()/size() after each iteration, lower our confidence // level. if (FixerKind != LFK_Array && !EndVar) ConfidenceLevel.lowerTo(Confidence::CL_Reasonable); // If the end comparison isn't a variable, we can try to work with the // expression the loop variable is being tested against instead. const auto *EndCall = Nodes.getNodeAs(EndCallName); const auto *BoundExpr = Nodes.getNodeAs(ConditionBoundName); // Find container expression of iterators and pseudoarrays, and determine if // this expression needs to be dereferenced to obtain the container. // With array loops, the container is often discovered during the // ForLoopIndexUseVisitor traversal. const Expr *ContainerExpr = nullptr; if (FixerKind == LFK_Iterator || FixerKind == LFK_ReverseIterator) { ContainerExpr = findContainer( Context, LoopVar->getInit(), EndVar ? EndVar->getInit() : EndCall, &Descriptor.ContainerNeedsDereference, /*IsReverse=*/FixerKind == LFK_ReverseIterator); } else if (FixerKind == LFK_PseudoArray) { ContainerExpr = EndCall->getImplicitObjectArgument(); Descriptor.ContainerNeedsDereference = dyn_cast(EndCall->getCallee())->isArrow(); } // We must know the container or an array length bound. if (!ContainerExpr && !BoundExpr) return; ForLoopIndexUseVisitor Finder(Context, LoopVar, EndVar, ContainerExpr, BoundExpr, Descriptor.ContainerNeedsDereference); // Find expressions and variables on which the container depends. if (ContainerExpr) { ComponentFinderASTVisitor ComponentFinder; ComponentFinder.findExprComponents(ContainerExpr->IgnoreParenImpCasts()); Finder.addComponents(ComponentFinder.getComponents()); } // Find usages of the loop index. If they are not used in a convertible way, // stop here. if (!Finder.findAndVerifyUsages(Loop->getBody())) return; ConfidenceLevel.lowerTo(Finder.getConfidenceLevel()); // Obtain the container expression, if we don't have it yet. if (FixerKind == LFK_Array) { ContainerExpr = Finder.getContainerIndexed()->IgnoreParenImpCasts(); // Very few loops are over expressions that generate arrays rather than // array variables. Consider loops over arrays that aren't just represented // by a variable to be risky conversions. if (!getReferencedVariable(ContainerExpr) && !isDirectMemberExpr(ContainerExpr)) ConfidenceLevel.lowerTo(Confidence::CL_Risky); } // Find out which qualifiers we have to use in the loop range. TraversalKindScope RAII(*Context, ast_type_traits::TK_AsIs); const UsageResult &Usages = Finder.getUsages(); determineRangeDescriptor(Context, Nodes, Loop, FixerKind, ContainerExpr, Usages, Descriptor); // Ensure that we do not try to move an expression dependent on a local // variable declared inside the loop outside of it. // FIXME: Determine when the external dependency isn't an expression converted // by another loop. TUInfo->getParentFinder().gatherAncestors(*Context); DependencyFinderASTVisitor DependencyFinder( &TUInfo->getParentFinder().getStmtToParentStmtMap(), &TUInfo->getParentFinder().getDeclToParentStmtMap(), &TUInfo->getReplacedVars(), Loop); if (DependencyFinder.dependsOnInsideVariable(ContainerExpr) || Descriptor.ContainerString.empty() || Usages.empty() || ConfidenceLevel.getLevel() < MinConfidence) return; doConversion(Context, LoopVar, getReferencedVariable(ContainerExpr), Usages, Finder.getAliasDecl(), Finder.aliasUseRequired(), Finder.aliasFromForInit(), Loop, Descriptor); } llvm::StringRef LoopConvertCheck::getReverseFunction() const { if (!ReverseFunction.empty()) return ReverseFunction; if (UseReverseRanges) return "std::ranges::reverse_view"; return ""; } llvm::StringRef LoopConvertCheck::getReverseHeader() const { if (!ReverseHeader.empty()) return ReverseHeader; if (UseReverseRanges && ReverseFunction.empty()) { return ""; } return ""; } } // namespace modernize } // namespace tidy } // namespace clang