//===--- FuzzyMatch.h - Approximate identifier matching ---------*- C++-*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // To check for a match between a Pattern ('u_p') and a Word ('unique_ptr'), // we consider the possible partial match states: // // u n i q u e _ p t r // +--------------------- // |A . . . . . . . . . . // u| // |. . . . . . . . . . . // _| // |. . . . . . . O . . . // p| // |. . . . . . . . . . B // // Each dot represents some prefix of the pattern being matched against some // prefix of the word. // - A is the initial state: '' matched against '' // - O is an intermediate state: 'u_' matched against 'unique_' // - B is the target state: 'u_p' matched against 'unique_ptr' // // We aim to find the best path from A->B. // - Moving right (consuming a word character) // Always legal: not all word characters must match. // - Moving diagonally (consuming both a word and pattern character) // Legal if the characters match. // - Moving down (consuming a pattern character) is never legal. // Never legal: all pattern characters must match something. // Characters are matched case-insensitively. // The first pattern character may only match the start of a word segment. // // The scoring is based on heuristics: // - when matching a character, apply a bonus or penalty depending on the // match quality (does case match, do word segments align, etc) // - when skipping a character, apply a penalty if it hurts the match // (it starts a word segment, or splits the matched region, etc) // // These heuristics require the ability to "look backward" one character, to // see whether it was matched or not. Therefore the dynamic-programming matrix // has an extra dimension (last character matched). // Each entry also has an additional flag indicating whether the last-but-one // character matched, which is needed to trace back through the scoring table // and reconstruct the match. // // We treat strings as byte-sequences, so only ASCII has first-class support. // // This algorithm was inspired by VS code's client-side filtering, and aims // to be mostly-compatible. // //===----------------------------------------------------------------------===// #include "FuzzyMatch.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/Format.h" namespace clang { namespace clangd { constexpr int FuzzyMatcher::MaxPat; constexpr int FuzzyMatcher::MaxWord; static char lower(char C) { return C >= 'A' && C <= 'Z' ? C + ('a' - 'A') : C; } // A "negative infinity" score that won't overflow. // We use this to mark unreachable states and forbidden solutions. // Score field is 15 bits wide, min value is -2^14, we use half of that. static constexpr int AwfulScore = -(1 << 13); static bool isAwful(int S) { return S < AwfulScore / 2; } static constexpr int PerfectBonus = 4; // Perfect per-pattern-char score. FuzzyMatcher::FuzzyMatcher(llvm::StringRef Pattern) : PatN(std::min(MaxPat, Pattern.size())), ScoreScale(PatN ? float{1} / (PerfectBonus * PatN) : 0), WordN(0) { std::copy(Pattern.begin(), Pattern.begin() + PatN, Pat); for (int I = 0; I < PatN; ++I) LowPat[I] = lower(Pat[I]); Scores[0][0][Miss] = {0, Miss}; Scores[0][0][Match] = {AwfulScore, Miss}; for (int P = 0; P <= PatN; ++P) for (int W = 0; W < P; ++W) for (Action A : {Miss, Match}) Scores[P][W][A] = {AwfulScore, Miss}; PatTypeSet = calculateRoles(llvm::StringRef(Pat, PatN), llvm::makeMutableArrayRef(PatRole, PatN)); } llvm::Optional FuzzyMatcher::match(llvm::StringRef Word) { if (!(WordContainsPattern = init(Word))) return llvm::None; if (!PatN) return 1; buildGraph(); auto Best = std::max(Scores[PatN][WordN][Miss].Score, Scores[PatN][WordN][Match].Score); if (isAwful(Best)) return llvm::None; float Score = ScoreScale * std::min(PerfectBonus * PatN, std::max(0, Best)); // If the pattern is as long as the word, we have an exact string match, // since every pattern character must match something. if (WordN == PatN) Score *= 2; // May not be perfect 2 if case differs in a significant way. return Score; } // We get CharTypes from a lookup table. Each is 2 bits, 4 fit in each byte. // The top 6 bits of the char select the byte, the bottom 2 select the offset. // e.g. 'q' = 010100 01 = byte 28 (55), bits 3-2 (01) -> Lower. constexpr static uint8_t CharTypes[] = { 0x00, 0x00, 0x00, 0x00, // Control characters 0x00, 0x00, 0x00, 0x00, // Control characters 0xff, 0xff, 0xff, 0xff, // Punctuation 0x55, 0x55, 0xf5, 0xff, // Numbers->Lower, more Punctuation. 0xab, 0xaa, 0xaa, 0xaa, // @ and A-O 0xaa, 0xaa, 0xea, 0xff, // P-Z, more Punctuation. 0x57, 0x55, 0x55, 0x55, // ` and a-o 0x55, 0x55, 0xd5, 0x3f, // p-z, Punctuation, DEL. 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // Bytes over 127 -> Lower. 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // (probably UTF-8). 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, }; // The Role can be determined from the Type of a character and its neighbors: // // Example | Chars | Type | Role // ---------+--------------+----- // F(o)oBar | Foo | Ull | Tail // Foo(B)ar | oBa | lUl | Head // (f)oo | ^fo | Ell | Head // H(T)TP | HTT | UUU | Tail // // Our lookup table maps a 6 bit key (Prev, Curr, Next) to a 2-bit Role. // A byte packs 4 Roles. (Prev, Curr) selects a byte, Next selects the offset. // e.g. Lower, Upper, Lower -> 01 10 01 -> byte 6 (aa), bits 3-2 (10) -> Head. constexpr static uint8_t CharRoles[] = { // clang-format off // Curr= Empty Lower Upper Separ /* Prev=Empty */ 0x00, 0xaa, 0xaa, 0xff, // At start, Lower|Upper->Head /* Prev=Lower */ 0x00, 0x55, 0xaa, 0xff, // In word, Upper->Head;Lower->Tail /* Prev=Upper */ 0x00, 0x55, 0x59, 0xff, // Ditto, but U(U)U->Tail /* Prev=Separ */ 0x00, 0xaa, 0xaa, 0xff, // After separator, like at start // clang-format on }; template static T packedLookup(const uint8_t *Data, int I) { return static_cast((Data[I >> 2] >> ((I & 3) * 2)) & 3); } CharTypeSet calculateRoles(llvm::StringRef Text, llvm::MutableArrayRef Roles) { assert(Text.size() == Roles.size()); if (Text.size() == 0) return 0; CharType Type = packedLookup(CharTypes, Text[0]); CharTypeSet TypeSet = 1 << Type; // Types holds a sliding window of (Prev, Curr, Next) types. // Initial value is (Empty, Empty, type of Text[0]). int Types = Type; // Rotate slides in the type of the next character. auto Rotate = [&](CharType T) { Types = ((Types << 2) | T) & 0x3f; }; for (unsigned I = 0; I < Text.size() - 1; ++I) { // For each character, rotate in the next, and look up the role. Type = packedLookup(CharTypes, Text[I + 1]); TypeSet |= 1 << Type; Rotate(Type); Roles[I] = packedLookup(CharRoles, Types); } // For the last character, the "next character" is Empty. Rotate(Empty); Roles[Text.size() - 1] = packedLookup(CharRoles, Types); return TypeSet; } // Sets up the data structures matching Word. // Returns false if we can cheaply determine that no match is possible. bool FuzzyMatcher::init(llvm::StringRef NewWord) { WordN = std::min(MaxWord, NewWord.size()); if (PatN > WordN) return false; std::copy(NewWord.begin(), NewWord.begin() + WordN, Word); if (PatN == 0) return true; for (int I = 0; I < WordN; ++I) LowWord[I] = lower(Word[I]); // Cheap subsequence check. for (int W = 0, P = 0; P != PatN; ++W) { if (W == WordN) return false; if (LowWord[W] == LowPat[P]) ++P; } // FIXME: some words are hard to tokenize algorithmically. // e.g. vsprintf is V S Print F, and should match [pri] but not [int]. // We could add a tokenization dictionary for common stdlib names. WordTypeSet = calculateRoles(llvm::StringRef(Word, WordN), llvm::makeMutableArrayRef(WordRole, WordN)); return true; } // The forwards pass finds the mappings of Pattern onto Word. // Score = best score achieved matching Word[..W] against Pat[..P]. // Unlike other tables, indices range from 0 to N *inclusive* // Matched = whether we chose to match Word[W] with Pat[P] or not. // // Points are mostly assigned to matched characters, with 1 being a good score // and 3 being a great one. So we treat the score range as [0, 3 * PatN]. // This range is not strict: we can apply larger bonuses/penalties, or penalize // non-matched characters. void FuzzyMatcher::buildGraph() { for (int W = 0; W < WordN; ++W) { Scores[0][W + 1][Miss] = {Scores[0][W][Miss].Score - skipPenalty(W, Miss), Miss}; Scores[0][W + 1][Match] = {AwfulScore, Miss}; } for (int P = 0; P < PatN; ++P) { for (int W = P; W < WordN; ++W) { auto &Score = Scores[P + 1][W + 1], &PreMiss = Scores[P + 1][W]; auto MatchMissScore = PreMiss[Match].Score; auto MissMissScore = PreMiss[Miss].Score; if (P < PatN - 1) { // Skipping trailing characters is always free. MatchMissScore -= skipPenalty(W, Match); MissMissScore -= skipPenalty(W, Miss); } Score[Miss] = (MatchMissScore > MissMissScore) ? ScoreInfo{MatchMissScore, Match} : ScoreInfo{MissMissScore, Miss}; auto &PreMatch = Scores[P][W]; auto MatchMatchScore = allowMatch(P, W, Match) ? PreMatch[Match].Score + matchBonus(P, W, Match) : AwfulScore; auto MissMatchScore = allowMatch(P, W, Miss) ? PreMatch[Miss].Score + matchBonus(P, W, Miss) : AwfulScore; Score[Match] = (MatchMatchScore > MissMatchScore) ? ScoreInfo{MatchMatchScore, Match} : ScoreInfo{MissMatchScore, Miss}; } } } bool FuzzyMatcher::allowMatch(int P, int W, Action Last) const { if (LowPat[P] != LowWord[W]) return false; // We require a "strong" match: // - for the first pattern character. [foo] !~ "barefoot" // - after a gap. [pat] !~ "patnther" if (Last == Miss) { // We're banning matches outright, so conservatively accept some other cases // where our segmentation might be wrong: // - allow matching B in ABCDef (but not in NDEBUG) // - we'd like to accept print in sprintf, but too many false positives if (WordRole[W] == Tail && (Word[W] == LowWord[W] || !(WordTypeSet & 1 << Lower))) return false; } return true; } int FuzzyMatcher::skipPenalty(int W, Action Last) const { if (W == 0) // Skipping the first character. return 3; if (WordRole[W] == Head) // Skipping a segment. return 1; // We want to keep this lower than a consecutive match bonus. // Instead of penalizing non-consecutive matches, we give a bonus to a // consecutive match in matchBonus. This produces a better score distribution // than penalties in case of small patterns, e.g. 'up' for 'unique_ptr'. return 0; } int FuzzyMatcher::matchBonus(int P, int W, Action Last) const { assert(LowPat[P] == LowWord[W]); int S = 1; bool IsPatSingleCase = (PatTypeSet == 1 << Lower) || (PatTypeSet == 1 << Upper); // Bonus: case matches, or a Head in the pattern aligns with one in the word. // Single-case patterns lack segmentation signals and we assume any character // can be a head of a segment. if (Pat[P] == Word[W] || (WordRole[W] == Head && (IsPatSingleCase || PatRole[P] == Head))) ++S; // Bonus: a consecutive match. First character match also gets a bonus to // ensure prefix final match score normalizes to 1.0. if (W == 0 || Last == Match) S += 2; // Penalty: matching inside a segment (and previous char wasn't matched). if (WordRole[W] == Tail && P && Last == Miss) S -= 3; // Penalty: a Head in the pattern matches in the middle of a word segment. if (PatRole[P] == Head && WordRole[W] == Tail) --S; // Penalty: matching the first pattern character in the middle of a segment. if (P == 0 && WordRole[W] == Tail) S -= 4; assert(S <= PerfectBonus); return S; } llvm::SmallString<256> FuzzyMatcher::dumpLast(llvm::raw_ostream &OS) const { llvm::SmallString<256> Result; OS << "=== Match \"" << llvm::StringRef(Word, WordN) << "\" against [" << llvm::StringRef(Pat, PatN) << "] ===\n"; if (PatN == 0) { OS << "Pattern is empty: perfect match.\n"; return Result = llvm::StringRef(Word, WordN); } if (WordN == 0) { OS << "Word is empty: no match.\n"; return Result; } if (!WordContainsPattern) { OS << "Substring check failed.\n"; return Result; } else if (isAwful(std::max(Scores[PatN][WordN][Match].Score, Scores[PatN][WordN][Miss].Score))) { OS << "Substring check passed, but all matches are forbidden\n"; } if (!(PatTypeSet & 1 << Upper)) OS << "Lowercase query, so scoring ignores case\n"; // Traverse Matched table backwards to reconstruct the Pattern/Word mapping. // The Score table has cumulative scores, subtracting along this path gives // us the per-letter scores. Action Last = (Scores[PatN][WordN][Match].Score > Scores[PatN][WordN][Miss].Score) ? Match : Miss; int S[MaxWord]; Action A[MaxWord]; for (int W = WordN - 1, P = PatN - 1; W >= 0; --W) { A[W] = Last; const auto &Cell = Scores[P + 1][W + 1][Last]; if (Last == Match) --P; const auto &Prev = Scores[P + 1][W][Cell.Prev]; S[W] = Cell.Score - Prev.Score; Last = Cell.Prev; } for (int I = 0; I < WordN; ++I) { if (A[I] == Match && (I == 0 || A[I - 1] == Miss)) Result.push_back('['); if (A[I] == Miss && I > 0 && A[I - 1] == Match) Result.push_back(']'); Result.push_back(Word[I]); } if (A[WordN - 1] == Match) Result.push_back(']'); for (char C : llvm::StringRef(Word, WordN)) OS << " " << C << " "; OS << "\n"; for (int I = 0, J = 0; I < WordN; I++) OS << " " << (A[I] == Match ? Pat[J++] : ' ') << " "; OS << "\n"; for (int I = 0; I < WordN; I++) OS << llvm::format("%2d ", S[I]); OS << "\n"; OS << "\nSegmentation:"; OS << "\n'" << llvm::StringRef(Word, WordN) << "'\n "; for (int I = 0; I < WordN; ++I) OS << "?-+ "[static_cast(WordRole[I])]; OS << "\n[" << llvm::StringRef(Pat, PatN) << "]\n "; for (int I = 0; I < PatN; ++I) OS << "?-+ "[static_cast(PatRole[I])]; OS << "\n"; OS << "\nScoring table (last-Miss, last-Match):\n"; OS << " | "; for (char C : llvm::StringRef(Word, WordN)) OS << " " << C << " "; OS << "\n"; OS << "-+----" << std::string(WordN * 4, '-') << "\n"; for (int I = 0; I <= PatN; ++I) { for (Action A : {Miss, Match}) { OS << ((I && A == Miss) ? Pat[I - 1] : ' ') << "|"; for (int J = 0; J <= WordN; ++J) { if (!isAwful(Scores[I][J][A].Score)) OS << llvm::format("%3d%c", Scores[I][J][A].Score, Scores[I][J][A].Prev == Match ? '*' : ' '); else OS << " "; } OS << "\n"; } } return Result; } } // namespace clangd } // namespace clang