//===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the Decl and DeclContext interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLBASE_H #define LLVM_CLANG_AST_DECLBASE_H #include "clang/AST/ASTDumperUtils.h" #include "clang/AST/AttrIterator.h" #include "clang/AST/DeclarationName.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/VersionTuple.h" #include #include #include #include #include #include #include namespace clang { class ASTContext; class ASTMutationListener; class Attr; class BlockDecl; class DeclContext; class ExternalSourceSymbolAttr; class FunctionDecl; class FunctionType; class IdentifierInfo; enum Linkage : unsigned char; class LinkageSpecDecl; class Module; class NamedDecl; class ObjCCategoryDecl; class ObjCCategoryImplDecl; class ObjCContainerDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCInterfaceDecl; class ObjCMethodDecl; class ObjCProtocolDecl; struct PrintingPolicy; class RecordDecl; class SourceManager; class Stmt; class StoredDeclsMap; class TemplateDecl; class TemplateParameterList; class TranslationUnitDecl; class UsingDirectiveDecl; /// Captures the result of checking the availability of a /// declaration. enum AvailabilityResult { AR_Available = 0, AR_NotYetIntroduced, AR_Deprecated, AR_Unavailable }; /// Decl - This represents one declaration (or definition), e.g. a variable, /// typedef, function, struct, etc. /// /// Note: There are objects tacked on before the *beginning* of Decl /// (and its subclasses) in its Decl::operator new(). Proper alignment /// of all subclasses (not requiring more than the alignment of Decl) is /// asserted in DeclBase.cpp. class alignas(8) Decl { public: /// Lists the kind of concrete classes of Decl. enum Kind { #define DECL(DERIVED, BASE) DERIVED, #define ABSTRACT_DECL(DECL) #define DECL_RANGE(BASE, START, END) \ first##BASE = START, last##BASE = END, #define LAST_DECL_RANGE(BASE, START, END) \ first##BASE = START, last##BASE = END #include "clang/AST/DeclNodes.inc" }; /// A placeholder type used to construct an empty shell of a /// decl-derived type that will be filled in later (e.g., by some /// deserialization method). struct EmptyShell {}; /// IdentifierNamespace - The different namespaces in which /// declarations may appear. According to C99 6.2.3, there are /// four namespaces, labels, tags, members and ordinary /// identifiers. C++ describes lookup completely differently: /// certain lookups merely "ignore" certain kinds of declarations, /// usually based on whether the declaration is of a type, etc. /// /// These are meant as bitmasks, so that searches in /// C++ can look into the "tag" namespace during ordinary lookup. /// /// Decl currently provides 15 bits of IDNS bits. enum IdentifierNamespace { /// Labels, declared with 'x:' and referenced with 'goto x'. IDNS_Label = 0x0001, /// Tags, declared with 'struct foo;' and referenced with /// 'struct foo'. All tags are also types. This is what /// elaborated-type-specifiers look for in C. /// This also contains names that conflict with tags in the /// same scope but that are otherwise ordinary names (non-type /// template parameters and indirect field declarations). IDNS_Tag = 0x0002, /// Types, declared with 'struct foo', typedefs, etc. /// This is what elaborated-type-specifiers look for in C++, /// but note that it's ill-formed to find a non-tag. IDNS_Type = 0x0004, /// Members, declared with object declarations within tag /// definitions. In C, these can only be found by "qualified" /// lookup in member expressions. In C++, they're found by /// normal lookup. IDNS_Member = 0x0008, /// Namespaces, declared with 'namespace foo {}'. /// Lookup for nested-name-specifiers find these. IDNS_Namespace = 0x0010, /// Ordinary names. In C, everything that's not a label, tag, /// member, or function-local extern ends up here. IDNS_Ordinary = 0x0020, /// Objective C \@protocol. IDNS_ObjCProtocol = 0x0040, /// This declaration is a friend function. A friend function /// declaration is always in this namespace but may also be in /// IDNS_Ordinary if it was previously declared. IDNS_OrdinaryFriend = 0x0080, /// This declaration is a friend class. A friend class /// declaration is always in this namespace but may also be in /// IDNS_Tag|IDNS_Type if it was previously declared. IDNS_TagFriend = 0x0100, /// This declaration is a using declaration. A using declaration /// *introduces* a number of other declarations into the current /// scope, and those declarations use the IDNS of their targets, /// but the actual using declarations go in this namespace. IDNS_Using = 0x0200, /// This declaration is a C++ operator declared in a non-class /// context. All such operators are also in IDNS_Ordinary. /// C++ lexical operator lookup looks for these. IDNS_NonMemberOperator = 0x0400, /// This declaration is a function-local extern declaration of a /// variable or function. This may also be IDNS_Ordinary if it /// has been declared outside any function. These act mostly like /// invisible friend declarations, but are also visible to unqualified /// lookup within the scope of the declaring function. IDNS_LocalExtern = 0x0800, /// This declaration is an OpenMP user defined reduction construction. IDNS_OMPReduction = 0x1000, /// This declaration is an OpenMP user defined mapper. IDNS_OMPMapper = 0x2000, }; /// ObjCDeclQualifier - 'Qualifiers' written next to the return and /// parameter types in method declarations. Other than remembering /// them and mangling them into the method's signature string, these /// are ignored by the compiler; they are consumed by certain /// remote-messaging frameworks. /// /// in, inout, and out are mutually exclusive and apply only to /// method parameters. bycopy and byref are mutually exclusive and /// apply only to method parameters (?). oneway applies only to /// results. All of these expect their corresponding parameter to /// have a particular type. None of this is currently enforced by /// clang. /// /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier. enum ObjCDeclQualifier { OBJC_TQ_None = 0x0, OBJC_TQ_In = 0x1, OBJC_TQ_Inout = 0x2, OBJC_TQ_Out = 0x4, OBJC_TQ_Bycopy = 0x8, OBJC_TQ_Byref = 0x10, OBJC_TQ_Oneway = 0x20, /// The nullability qualifier is set when the nullability of the /// result or parameter was expressed via a context-sensitive /// keyword. OBJC_TQ_CSNullability = 0x40 }; /// The kind of ownership a declaration has, for visibility purposes. /// This enumeration is designed such that higher values represent higher /// levels of name hiding. enum class ModuleOwnershipKind : unsigned { /// This declaration is not owned by a module. Unowned, /// This declaration has an owning module, but is globally visible /// (typically because its owning module is visible and we know that /// modules cannot later become hidden in this compilation). /// After serialization and deserialization, this will be converted /// to VisibleWhenImported. Visible, /// This declaration has an owning module, and is visible when that /// module is imported. VisibleWhenImported, /// This declaration has an owning module, but is only visible to /// lookups that occur within that module. ModulePrivate }; protected: /// The next declaration within the same lexical /// DeclContext. These pointers form the linked list that is /// traversed via DeclContext's decls_begin()/decls_end(). /// /// The extra two bits are used for the ModuleOwnershipKind. llvm::PointerIntPair NextInContextAndBits; private: friend class DeclContext; struct MultipleDC { DeclContext *SemanticDC; DeclContext *LexicalDC; }; /// DeclCtx - Holds either a DeclContext* or a MultipleDC*. /// For declarations that don't contain C++ scope specifiers, it contains /// the DeclContext where the Decl was declared. /// For declarations with C++ scope specifiers, it contains a MultipleDC* /// with the context where it semantically belongs (SemanticDC) and the /// context where it was lexically declared (LexicalDC). /// e.g.: /// /// namespace A { /// void f(); // SemanticDC == LexicalDC == 'namespace A' /// } /// void A::f(); // SemanticDC == namespace 'A' /// // LexicalDC == global namespace llvm::PointerUnion DeclCtx; bool isInSemaDC() const { return DeclCtx.is(); } bool isOutOfSemaDC() const { return DeclCtx.is(); } MultipleDC *getMultipleDC() const { return DeclCtx.get(); } DeclContext *getSemanticDC() const { return DeclCtx.get(); } /// Loc - The location of this decl. SourceLocation Loc; /// DeclKind - This indicates which class this is. unsigned DeclKind : 7; /// InvalidDecl - This indicates a semantic error occurred. unsigned InvalidDecl : 1; /// HasAttrs - This indicates whether the decl has attributes or not. unsigned HasAttrs : 1; /// Implicit - Whether this declaration was implicitly generated by /// the implementation rather than explicitly written by the user. unsigned Implicit : 1; /// Whether this declaration was "used", meaning that a definition is /// required. unsigned Used : 1; /// Whether this declaration was "referenced". /// The difference with 'Used' is whether the reference appears in a /// evaluated context or not, e.g. functions used in uninstantiated templates /// are regarded as "referenced" but not "used". unsigned Referenced : 1; /// Whether this declaration is a top-level declaration (function, /// global variable, etc.) that is lexically inside an objc container /// definition. unsigned TopLevelDeclInObjCContainer : 1; /// Whether statistic collection is enabled. static bool StatisticsEnabled; protected: friend class ASTDeclReader; friend class ASTDeclWriter; friend class ASTNodeImporter; friend class ASTReader; friend class CXXClassMemberWrapper; friend class LinkageComputer; template friend class Redeclarable; /// Access - Used by C++ decls for the access specifier. // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum unsigned Access : 2; /// Whether this declaration was loaded from an AST file. unsigned FromASTFile : 1; /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in. unsigned IdentifierNamespace : 14; /// If 0, we have not computed the linkage of this declaration. /// Otherwise, it is the linkage + 1. mutable unsigned CacheValidAndLinkage : 3; /// Allocate memory for a deserialized declaration. /// /// This routine must be used to allocate memory for any declaration that is /// deserialized from a module file. /// /// \param Size The size of the allocated object. /// \param Ctx The context in which we will allocate memory. /// \param ID The global ID of the deserialized declaration. /// \param Extra The amount of extra space to allocate after the object. void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID, std::size_t Extra = 0); /// Allocate memory for a non-deserialized declaration. void *operator new(std::size_t Size, const ASTContext &Ctx, DeclContext *Parent, std::size_t Extra = 0); private: bool AccessDeclContextSanity() const; /// Get the module ownership kind to use for a local lexical child of \p DC, /// which may be either a local or (rarely) an imported declaration. static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) { if (DC) { auto *D = cast(DC); auto MOK = D->getModuleOwnershipKind(); if (MOK != ModuleOwnershipKind::Unowned && (!D->isFromASTFile() || D->hasLocalOwningModuleStorage())) return MOK; // If D is not local and we have no local module storage, then we don't // need to track module ownership at all. } return ModuleOwnershipKind::Unowned; } public: Decl() = delete; Decl(const Decl&) = delete; Decl(Decl &&) = delete; Decl &operator=(const Decl&) = delete; Decl &operator=(Decl&&) = delete; protected: Decl(Kind DK, DeclContext *DC, SourceLocation L) : NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)), DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false), Used(false), Referenced(false), TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0), IdentifierNamespace(getIdentifierNamespaceForKind(DK)), CacheValidAndLinkage(0) { if (StatisticsEnabled) add(DK); } Decl(Kind DK, EmptyShell Empty) : DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false), Used(false), Referenced(false), TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0), IdentifierNamespace(getIdentifierNamespaceForKind(DK)), CacheValidAndLinkage(0) { if (StatisticsEnabled) add(DK); } virtual ~Decl(); /// Update a potentially out-of-date declaration. void updateOutOfDate(IdentifierInfo &II) const; Linkage getCachedLinkage() const { return Linkage(CacheValidAndLinkage - 1); } void setCachedLinkage(Linkage L) const { CacheValidAndLinkage = L + 1; } bool hasCachedLinkage() const { return CacheValidAndLinkage; } public: /// Source range that this declaration covers. virtual SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getLocation(), getLocation()); } SourceLocation getBeginLoc() const LLVM_READONLY { return getSourceRange().getBegin(); } SourceLocation getEndLoc() const LLVM_READONLY { return getSourceRange().getEnd(); } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } Kind getKind() const { return static_cast(DeclKind); } const char *getDeclKindName() const; Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); } const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();} DeclContext *getDeclContext() { if (isInSemaDC()) return getSemanticDC(); return getMultipleDC()->SemanticDC; } const DeclContext *getDeclContext() const { return const_cast(this)->getDeclContext(); } /// Find the innermost non-closure ancestor of this declaration, /// walking up through blocks, lambdas, etc. If that ancestor is /// not a code context (!isFunctionOrMethod()), returns null. /// /// A declaration may be its own non-closure context. Decl *getNonClosureContext(); const Decl *getNonClosureContext() const { return const_cast(this)->getNonClosureContext(); } TranslationUnitDecl *getTranslationUnitDecl(); const TranslationUnitDecl *getTranslationUnitDecl() const { return const_cast(this)->getTranslationUnitDecl(); } bool isInAnonymousNamespace() const; bool isInStdNamespace() const; ASTContext &getASTContext() const LLVM_READONLY; /// Helper to get the language options from the ASTContext. /// Defined out of line to avoid depending on ASTContext.h. const LangOptions &getLangOpts() const LLVM_READONLY; void setAccess(AccessSpecifier AS) { Access = AS; assert(AccessDeclContextSanity()); } AccessSpecifier getAccess() const { assert(AccessDeclContextSanity()); return AccessSpecifier(Access); } /// Retrieve the access specifier for this declaration, even though /// it may not yet have been properly set. AccessSpecifier getAccessUnsafe() const { return AccessSpecifier(Access); } bool hasAttrs() const { return HasAttrs; } void setAttrs(const AttrVec& Attrs) { return setAttrsImpl(Attrs, getASTContext()); } AttrVec &getAttrs() { return const_cast(const_cast(this)->getAttrs()); } const AttrVec &getAttrs() const; void dropAttrs(); void addAttr(Attr *A); using attr_iterator = AttrVec::const_iterator; using attr_range = llvm::iterator_range; attr_range attrs() const { return attr_range(attr_begin(), attr_end()); } attr_iterator attr_begin() const { return hasAttrs() ? getAttrs().begin() : nullptr; } attr_iterator attr_end() const { return hasAttrs() ? getAttrs().end() : nullptr; } template void dropAttr() { if (!HasAttrs) return; AttrVec &Vec = getAttrs(); llvm::erase_if(Vec, [](Attr *A) { return isa(A); }); if (Vec.empty()) HasAttrs = false; } template llvm::iterator_range> specific_attrs() const { return llvm::make_range(specific_attr_begin(), specific_attr_end()); } template specific_attr_iterator specific_attr_begin() const { return specific_attr_iterator(attr_begin()); } template specific_attr_iterator specific_attr_end() const { return specific_attr_iterator(attr_end()); } template T *getAttr() const { return hasAttrs() ? getSpecificAttr(getAttrs()) : nullptr; } template bool hasAttr() const { return hasAttrs() && hasSpecificAttr(getAttrs()); } /// getMaxAlignment - return the maximum alignment specified by attributes /// on this decl, 0 if there are none. unsigned getMaxAlignment() const; /// setInvalidDecl - Indicates the Decl had a semantic error. This /// allows for graceful error recovery. void setInvalidDecl(bool Invalid = true); bool isInvalidDecl() const { return (bool) InvalidDecl; } /// isImplicit - Indicates whether the declaration was implicitly /// generated by the implementation. If false, this declaration /// was written explicitly in the source code. bool isImplicit() const { return Implicit; } void setImplicit(bool I = true) { Implicit = I; } /// Whether *any* (re-)declaration of the entity was used, meaning that /// a definition is required. /// /// \param CheckUsedAttr When true, also consider the "used" attribute /// (in addition to the "used" bit set by \c setUsed()) when determining /// whether the function is used. bool isUsed(bool CheckUsedAttr = true) const; /// Set whether the declaration is used, in the sense of odr-use. /// /// This should only be used immediately after creating a declaration. /// It intentionally doesn't notify any listeners. void setIsUsed() { getCanonicalDecl()->Used = true; } /// Mark the declaration used, in the sense of odr-use. /// /// This notifies any mutation listeners in addition to setting a bit /// indicating the declaration is used. void markUsed(ASTContext &C); /// Whether any declaration of this entity was referenced. bool isReferenced() const; /// Whether this declaration was referenced. This should not be relied /// upon for anything other than debugging. bool isThisDeclarationReferenced() const { return Referenced; } void setReferenced(bool R = true) { Referenced = R; } /// Whether this declaration is a top-level declaration (function, /// global variable, etc.) that is lexically inside an objc container /// definition. bool isTopLevelDeclInObjCContainer() const { return TopLevelDeclInObjCContainer; } void setTopLevelDeclInObjCContainer(bool V = true) { TopLevelDeclInObjCContainer = V; } /// Looks on this and related declarations for an applicable /// external source symbol attribute. ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const; /// Whether this declaration was marked as being private to the /// module in which it was defined. bool isModulePrivate() const { return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate; } /// Return true if this declaration has an attribute which acts as /// definition of the entity, such as 'alias' or 'ifunc'. bool hasDefiningAttr() const; /// Return this declaration's defining attribute if it has one. const Attr *getDefiningAttr() const; protected: /// Specify that this declaration was marked as being private /// to the module in which it was defined. void setModulePrivate() { // The module-private specifier has no effect on unowned declarations. // FIXME: We should track this in some way for source fidelity. if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned) return; setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate); } public: /// Set the FromASTFile flag. This indicates that this declaration /// was deserialized and not parsed from source code and enables /// features such as module ownership information. void setFromASTFile() { FromASTFile = true; } /// Set the owning module ID. This may only be called for /// deserialized Decls. void setOwningModuleID(unsigned ID) { assert(isFromASTFile() && "Only works on a deserialized declaration"); *((unsigned*)this - 2) = ID; } public: /// Determine the availability of the given declaration. /// /// This routine will determine the most restrictive availability of /// the given declaration (e.g., preferring 'unavailable' to /// 'deprecated'). /// /// \param Message If non-NULL and the result is not \c /// AR_Available, will be set to a (possibly empty) message /// describing why the declaration has not been introduced, is /// deprecated, or is unavailable. /// /// \param EnclosingVersion The version to compare with. If empty, assume the /// deployment target version. /// /// \param RealizedPlatform If non-NULL and the availability result is found /// in an available attribute it will set to the platform which is written in /// the available attribute. AvailabilityResult getAvailability(std::string *Message = nullptr, VersionTuple EnclosingVersion = VersionTuple(), StringRef *RealizedPlatform = nullptr) const; /// Retrieve the version of the target platform in which this /// declaration was introduced. /// /// \returns An empty version tuple if this declaration has no 'introduced' /// availability attributes, or the version tuple that's specified in the /// attribute otherwise. VersionTuple getVersionIntroduced() const; /// Determine whether this declaration is marked 'deprecated'. /// /// \param Message If non-NULL and the declaration is deprecated, /// this will be set to the message describing why the declaration /// was deprecated (which may be empty). bool isDeprecated(std::string *Message = nullptr) const { return getAvailability(Message) == AR_Deprecated; } /// Determine whether this declaration is marked 'unavailable'. /// /// \param Message If non-NULL and the declaration is unavailable, /// this will be set to the message describing why the declaration /// was made unavailable (which may be empty). bool isUnavailable(std::string *Message = nullptr) const { return getAvailability(Message) == AR_Unavailable; } /// Determine whether this is a weak-imported symbol. /// /// Weak-imported symbols are typically marked with the /// 'weak_import' attribute, but may also be marked with an /// 'availability' attribute where we're targing a platform prior to /// the introduction of this feature. bool isWeakImported() const; /// Determines whether this symbol can be weak-imported, /// e.g., whether it would be well-formed to add the weak_import /// attribute. /// /// \param IsDefinition Set to \c true to indicate that this /// declaration cannot be weak-imported because it has a definition. bool canBeWeakImported(bool &IsDefinition) const; /// Determine whether this declaration came from an AST file (such as /// a precompiled header or module) rather than having been parsed. bool isFromASTFile() const { return FromASTFile; } /// Retrieve the global declaration ID associated with this /// declaration, which specifies where this Decl was loaded from. unsigned getGlobalID() const { if (isFromASTFile()) return *((const unsigned*)this - 1); return 0; } /// Retrieve the global ID of the module that owns this particular /// declaration. unsigned getOwningModuleID() const { if (isFromASTFile()) return *((const unsigned*)this - 2); return 0; } private: Module *getOwningModuleSlow() const; protected: bool hasLocalOwningModuleStorage() const; public: /// Get the imported owning module, if this decl is from an imported /// (non-local) module. Module *getImportedOwningModule() const { if (!isFromASTFile() || !hasOwningModule()) return nullptr; return getOwningModuleSlow(); } /// Get the local owning module, if known. Returns nullptr if owner is /// not yet known or declaration is not from a module. Module *getLocalOwningModule() const { if (isFromASTFile() || !hasOwningModule()) return nullptr; assert(hasLocalOwningModuleStorage() && "owned local decl but no local module storage"); return reinterpret_cast(this)[-1]; } void setLocalOwningModule(Module *M) { assert(!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && "should not have a cached owning module"); reinterpret_cast(this)[-1] = M; } /// Is this declaration owned by some module? bool hasOwningModule() const { return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned; } /// Get the module that owns this declaration (for visibility purposes). Module *getOwningModule() const { return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule(); } /// Get the module that owns this declaration for linkage purposes. /// There only ever is such a module under the C++ Modules TS. /// /// \param IgnoreLinkage Ignore the linkage of the entity; assume that /// all declarations in a global module fragment are unowned. Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const; /// Determine whether this declaration is definitely visible to name lookup, /// independent of whether the owning module is visible. /// Note: The declaration may be visible even if this returns \c false if the /// owning module is visible within the query context. This is a low-level /// helper function; most code should be calling Sema::isVisible() instead. bool isUnconditionallyVisible() const { return (int)getModuleOwnershipKind() <= (int)ModuleOwnershipKind::Visible; } /// Set that this declaration is globally visible, even if it came from a /// module that is not visible. void setVisibleDespiteOwningModule() { if (!isUnconditionallyVisible()) setModuleOwnershipKind(ModuleOwnershipKind::Visible); } /// Get the kind of module ownership for this declaration. ModuleOwnershipKind getModuleOwnershipKind() const { return NextInContextAndBits.getInt(); } /// Set whether this declaration is hidden from name lookup. void setModuleOwnershipKind(ModuleOwnershipKind MOK) { assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"); NextInContextAndBits.setInt(MOK); } unsigned getIdentifierNamespace() const { return IdentifierNamespace; } bool isInIdentifierNamespace(unsigned NS) const { return getIdentifierNamespace() & NS; } static unsigned getIdentifierNamespaceForKind(Kind DK); bool hasTagIdentifierNamespace() const { return isTagIdentifierNamespace(getIdentifierNamespace()); } static bool isTagIdentifierNamespace(unsigned NS) { // TagDecls have Tag and Type set and may also have TagFriend. return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type); } /// getLexicalDeclContext - The declaration context where this Decl was /// lexically declared (LexicalDC). May be different from /// getDeclContext() (SemanticDC). /// e.g.: /// /// namespace A { /// void f(); // SemanticDC == LexicalDC == 'namespace A' /// } /// void A::f(); // SemanticDC == namespace 'A' /// // LexicalDC == global namespace DeclContext *getLexicalDeclContext() { if (isInSemaDC()) return getSemanticDC(); return getMultipleDC()->LexicalDC; } const DeclContext *getLexicalDeclContext() const { return const_cast(this)->getLexicalDeclContext(); } /// Determine whether this declaration is declared out of line (outside its /// semantic context). virtual bool isOutOfLine() const; /// setDeclContext - Set both the semantic and lexical DeclContext /// to DC. void setDeclContext(DeclContext *DC); void setLexicalDeclContext(DeclContext *DC); /// Determine whether this declaration is a templated entity (whether it is // within the scope of a template parameter). bool isTemplated() const; /// Determine the number of levels of template parameter surrounding this /// declaration. unsigned getTemplateDepth() const; /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this /// scoped decl is defined outside the current function or method. This is /// roughly global variables and functions, but also handles enums (which /// could be defined inside or outside a function etc). bool isDefinedOutsideFunctionOrMethod() const { return getParentFunctionOrMethod() == nullptr; } /// Determine whether a substitution into this declaration would occur as /// part of a substitution into a dependent local scope. Such a substitution /// transitively substitutes into all constructs nested within this /// declaration. /// /// This recognizes non-defining declarations as well as members of local /// classes and lambdas: /// \code /// template void foo() { void bar(); } /// template void foo2() { class ABC { void bar(); }; } /// template inline int x = [](){ return 0; }(); /// \endcode bool isInLocalScopeForInstantiation() const; /// If this decl is defined inside a function/method/block it returns /// the corresponding DeclContext, otherwise it returns null. const DeclContext *getParentFunctionOrMethod() const; DeclContext *getParentFunctionOrMethod() { return const_cast( const_cast(this)->getParentFunctionOrMethod()); } /// Retrieves the "canonical" declaration of the given declaration. virtual Decl *getCanonicalDecl() { return this; } const Decl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } /// Whether this particular Decl is a canonical one. bool isCanonicalDecl() const { return getCanonicalDecl() == this; } protected: /// Returns the next redeclaration or itself if this is the only decl. /// /// Decl subclasses that can be redeclared should override this method so that /// Decl::redecl_iterator can iterate over them. virtual Decl *getNextRedeclarationImpl() { return this; } /// Implementation of getPreviousDecl(), to be overridden by any /// subclass that has a redeclaration chain. virtual Decl *getPreviousDeclImpl() { return nullptr; } /// Implementation of getMostRecentDecl(), to be overridden by any /// subclass that has a redeclaration chain. virtual Decl *getMostRecentDeclImpl() { return this; } public: /// Iterates through all the redeclarations of the same decl. class redecl_iterator { /// Current - The current declaration. Decl *Current = nullptr; Decl *Starter; public: using value_type = Decl *; using reference = const value_type &; using pointer = const value_type *; using iterator_category = std::forward_iterator_tag; using difference_type = std::ptrdiff_t; redecl_iterator() = default; explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {} reference operator*() const { return Current; } value_type operator->() const { return Current; } redecl_iterator& operator++() { assert(Current && "Advancing while iterator has reached end"); // Get either previous decl or latest decl. Decl *Next = Current->getNextRedeclarationImpl(); assert(Next && "Should return next redeclaration or itself, never null!"); Current = (Next != Starter) ? Next : nullptr; return *this; } redecl_iterator operator++(int) { redecl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(redecl_iterator x, redecl_iterator y) { return x.Current == y.Current; } friend bool operator!=(redecl_iterator x, redecl_iterator y) { return x.Current != y.Current; } }; using redecl_range = llvm::iterator_range; /// Returns an iterator range for all the redeclarations of the same /// decl. It will iterate at least once (when this decl is the only one). redecl_range redecls() const { return redecl_range(redecls_begin(), redecls_end()); } redecl_iterator redecls_begin() const { return redecl_iterator(const_cast(this)); } redecl_iterator redecls_end() const { return redecl_iterator(); } /// Retrieve the previous declaration that declares the same entity /// as this declaration, or NULL if there is no previous declaration. Decl *getPreviousDecl() { return getPreviousDeclImpl(); } /// Retrieve the previous declaration that declares the same entity /// as this declaration, or NULL if there is no previous declaration. const Decl *getPreviousDecl() const { return const_cast(this)->getPreviousDeclImpl(); } /// True if this is the first declaration in its redeclaration chain. bool isFirstDecl() const { return getPreviousDecl() == nullptr; } /// Retrieve the most recent declaration that declares the same entity /// as this declaration (which may be this declaration). Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); } /// Retrieve the most recent declaration that declares the same entity /// as this declaration (which may be this declaration). const Decl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDeclImpl(); } /// getBody - If this Decl represents a declaration for a body of code, /// such as a function or method definition, this method returns the /// top-level Stmt* of that body. Otherwise this method returns null. virtual Stmt* getBody() const { return nullptr; } /// Returns true if this \c Decl represents a declaration for a body of /// code, such as a function or method definition. /// Note that \c hasBody can also return true if any redeclaration of this /// \c Decl represents a declaration for a body of code. virtual bool hasBody() const { return getBody() != nullptr; } /// getBodyRBrace - Gets the right brace of the body, if a body exists. /// This works whether the body is a CompoundStmt or a CXXTryStmt. SourceLocation getBodyRBrace() const; // global temp stats (until we have a per-module visitor) static void add(Kind k); static void EnableStatistics(); static void PrintStats(); /// isTemplateParameter - Determines whether this declaration is a /// template parameter. bool isTemplateParameter() const; /// isTemplateParameter - Determines whether this declaration is a /// template parameter pack. bool isTemplateParameterPack() const; /// Whether this declaration is a parameter pack. bool isParameterPack() const; /// returns true if this declaration is a template bool isTemplateDecl() const; /// Whether this declaration is a function or function template. bool isFunctionOrFunctionTemplate() const { return (DeclKind >= Decl::firstFunction && DeclKind <= Decl::lastFunction) || DeclKind == FunctionTemplate; } /// If this is a declaration that describes some template, this /// method returns that template declaration. /// /// Note that this returns nullptr for partial specializations, because they /// are not modeled as TemplateDecls. Use getDescribedTemplateParams to handle /// those cases. TemplateDecl *getDescribedTemplate() const; /// If this is a declaration that describes some template or partial /// specialization, this returns the corresponding template parameter list. const TemplateParameterList *getDescribedTemplateParams() const; /// Returns the function itself, or the templated function if this is a /// function template. FunctionDecl *getAsFunction() LLVM_READONLY; const FunctionDecl *getAsFunction() const { return const_cast(this)->getAsFunction(); } /// Changes the namespace of this declaration to reflect that it's /// a function-local extern declaration. /// /// These declarations appear in the lexical context of the extern /// declaration, but in the semantic context of the enclosing namespace /// scope. void setLocalExternDecl() { Decl *Prev = getPreviousDecl(); IdentifierNamespace &= ~IDNS_Ordinary; // It's OK for the declaration to still have the "invisible friend" flag or // the "conflicts with tag declarations in this scope" flag for the outer // scope. assert((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && "namespace is not ordinary"); IdentifierNamespace |= IDNS_LocalExtern; if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary) IdentifierNamespace |= IDNS_Ordinary; } /// Determine whether this is a block-scope declaration with linkage. /// This will either be a local variable declaration declared 'extern', or a /// local function declaration. bool isLocalExternDecl() { return IdentifierNamespace & IDNS_LocalExtern; } /// Changes the namespace of this declaration to reflect that it's /// the object of a friend declaration. /// /// These declarations appear in the lexical context of the friending /// class, but in the semantic context of the actual entity. This property /// applies only to a specific decl object; other redeclarations of the /// same entity may not (and probably don't) share this property. void setObjectOfFriendDecl(bool PerformFriendInjection = false) { unsigned OldNS = IdentifierNamespace; assert((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"); assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes other than ordinary or tag"); Decl *Prev = getPreviousDecl(); IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type); if (OldNS & (IDNS_Tag | IDNS_TagFriend)) { IdentifierNamespace |= IDNS_TagFriend; if (PerformFriendInjection || (Prev && Prev->getIdentifierNamespace() & IDNS_Tag)) IdentifierNamespace |= IDNS_Tag | IDNS_Type; } if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) { IdentifierNamespace |= IDNS_OrdinaryFriend; if (PerformFriendInjection || (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)) IdentifierNamespace |= IDNS_Ordinary; } } enum FriendObjectKind { FOK_None, ///< Not a friend object. FOK_Declared, ///< A friend of a previously-declared entity. FOK_Undeclared ///< A friend of a previously-undeclared entity. }; /// Determines whether this declaration is the object of a /// friend declaration and, if so, what kind. /// /// There is currently no direct way to find the associated FriendDecl. FriendObjectKind getFriendObjectKind() const { unsigned mask = (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend)); if (!mask) return FOK_None; return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared : FOK_Undeclared); } /// Specifies that this declaration is a C++ overloaded non-member. void setNonMemberOperator() { assert(getKind() == Function || getKind() == FunctionTemplate); assert((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"); IdentifierNamespace |= IDNS_NonMemberOperator; } static bool classofKind(Kind K) { return true; } static DeclContext *castToDeclContext(const Decl *); static Decl *castFromDeclContext(const DeclContext *); void print(raw_ostream &Out, unsigned Indentation = 0, bool PrintInstantiation = false) const; void print(raw_ostream &Out, const PrintingPolicy &Policy, unsigned Indentation = 0, bool PrintInstantiation = false) const; static void printGroup(Decl** Begin, unsigned NumDecls, raw_ostream &Out, const PrintingPolicy &Policy, unsigned Indentation = 0); // Debuggers don't usually respect default arguments. void dump() const; // Same as dump(), but forces color printing. void dumpColor() const; void dump(raw_ostream &Out, bool Deserialize = false, ASTDumpOutputFormat OutputFormat = ADOF_Default) const; /// \return Unique reproducible object identifier int64_t getID() const; /// Looks through the Decl's underlying type to extract a FunctionType /// when possible. Will return null if the type underlying the Decl does not /// have a FunctionType. const FunctionType *getFunctionType(bool BlocksToo = true) const; private: void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx); void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC, ASTContext &Ctx); protected: ASTMutationListener *getASTMutationListener() const; }; /// Determine whether two declarations declare the same entity. inline bool declaresSameEntity(const Decl *D1, const Decl *D2) { if (!D1 || !D2) return false; if (D1 == D2) return true; return D1->getCanonicalDecl() == D2->getCanonicalDecl(); } /// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when /// doing something to a specific decl. class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry { const Decl *TheDecl; SourceLocation Loc; SourceManager &SM; const char *Message; public: PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L, SourceManager &sm, const char *Msg) : TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {} void print(raw_ostream &OS) const override; }; /// The results of name lookup within a DeclContext. This is either a /// single result (with no stable storage) or a collection of results (with /// stable storage provided by the lookup table). class DeclContextLookupResult { using ResultTy = ArrayRef; ResultTy Result; // If there is only one lookup result, it would be invalidated by // reallocations of the name table, so store it separately. NamedDecl *Single = nullptr; static NamedDecl *const SingleElementDummyList; public: DeclContextLookupResult() = default; DeclContextLookupResult(ArrayRef Result) : Result(Result) {} DeclContextLookupResult(NamedDecl *Single) : Result(SingleElementDummyList), Single(Single) {} class iterator; using IteratorBase = llvm::iterator_adaptor_base; class iterator : public IteratorBase { value_type SingleElement; public: explicit iterator(pointer Pos, value_type Single = nullptr) : IteratorBase(Pos), SingleElement(Single) {} reference operator*() const { return SingleElement ? SingleElement : IteratorBase::operator*(); } }; using const_iterator = iterator; using pointer = iterator::pointer; using reference = iterator::reference; iterator begin() const { return iterator(Result.begin(), Single); } iterator end() const { return iterator(Result.end(), Single); } bool empty() const { return Result.empty(); } pointer data() const { return Single ? &Single : Result.data(); } size_t size() const { return Single ? 1 : Result.size(); } reference front() const { return Single ? Single : Result.front(); } reference back() const { return Single ? Single : Result.back(); } reference operator[](size_t N) const { return Single ? Single : Result[N]; } // FIXME: Remove this from the interface DeclContextLookupResult slice(size_t N) const { DeclContextLookupResult Sliced = Result.slice(N); Sliced.Single = Single; return Sliced; } }; /// DeclContext - This is used only as base class of specific decl types that /// can act as declaration contexts. These decls are (only the top classes /// that directly derive from DeclContext are mentioned, not their subclasses): /// /// TranslationUnitDecl /// ExternCContext /// NamespaceDecl /// TagDecl /// OMPDeclareReductionDecl /// OMPDeclareMapperDecl /// FunctionDecl /// ObjCMethodDecl /// ObjCContainerDecl /// LinkageSpecDecl /// ExportDecl /// BlockDecl /// CapturedDecl class DeclContext { /// For makeDeclVisibleInContextImpl friend class ASTDeclReader; /// For reconcileExternalVisibleStorage, CreateStoredDeclsMap, /// hasNeedToReconcileExternalVisibleStorage friend class ExternalASTSource; /// For CreateStoredDeclsMap friend class DependentDiagnostic; /// For hasNeedToReconcileExternalVisibleStorage, /// hasLazyLocalLexicalLookups, hasLazyExternalLexicalLookups friend class ASTWriter; // We use uint64_t in the bit-fields below since some bit-fields // cross the unsigned boundary and this breaks the packing. /// Stores the bits used by DeclContext. /// If modified NumDeclContextBit, the ctor of DeclContext and the accessor /// methods in DeclContext should be updated appropriately. class DeclContextBitfields { friend class DeclContext; /// DeclKind - This indicates which class this is. uint64_t DeclKind : 7; /// Whether this declaration context also has some external /// storage that contains additional declarations that are lexically /// part of this context. mutable uint64_t ExternalLexicalStorage : 1; /// Whether this declaration context also has some external /// storage that contains additional declarations that are visible /// in this context. mutable uint64_t ExternalVisibleStorage : 1; /// Whether this declaration context has had externally visible /// storage added since the last lookup. In this case, \c LookupPtr's /// invariant may not hold and needs to be fixed before we perform /// another lookup. mutable uint64_t NeedToReconcileExternalVisibleStorage : 1; /// If \c true, this context may have local lexical declarations /// that are missing from the lookup table. mutable uint64_t HasLazyLocalLexicalLookups : 1; /// If \c true, the external source may have lexical declarations /// that are missing from the lookup table. mutable uint64_t HasLazyExternalLexicalLookups : 1; /// If \c true, lookups should only return identifier from /// DeclContext scope (for example TranslationUnit). Used in /// LookupQualifiedName() mutable uint64_t UseQualifiedLookup : 1; }; /// Number of bits in DeclContextBitfields. enum { NumDeclContextBits = 13 }; /// Stores the bits used by TagDecl. /// If modified NumTagDeclBits and the accessor /// methods in TagDecl should be updated appropriately. class TagDeclBitfields { friend class TagDecl; /// For the bits in DeclContextBitfields uint64_t : NumDeclContextBits; /// The TagKind enum. uint64_t TagDeclKind : 3; /// True if this is a definition ("struct foo {};"), false if it is a /// declaration ("struct foo;"). It is not considered a definition /// until the definition has been fully processed. uint64_t IsCompleteDefinition : 1; /// True if this is currently being defined. uint64_t IsBeingDefined : 1; /// True if this tag declaration is "embedded" (i.e., defined or declared /// for the very first time) in the syntax of a declarator. uint64_t IsEmbeddedInDeclarator : 1; /// True if this tag is free standing, e.g. "struct foo;". uint64_t IsFreeStanding : 1; /// Indicates whether it is possible for declarations of this kind /// to have an out-of-date definition. /// /// This option is only enabled when modules are enabled. uint64_t MayHaveOutOfDateDef : 1; /// Has the full definition of this type been required by a use somewhere in /// the TU. uint64_t IsCompleteDefinitionRequired : 1; }; /// Number of non-inherited bits in TagDeclBitfields. enum { NumTagDeclBits = 9 }; /// Stores the bits used by EnumDecl. /// If modified NumEnumDeclBit and the accessor /// methods in EnumDecl should be updated appropriately. class EnumDeclBitfields { friend class EnumDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// For the bits in TagDeclBitfields. uint64_t : NumTagDeclBits; /// Width in bits required to store all the non-negative /// enumerators of this enum. uint64_t NumPositiveBits : 8; /// Width in bits required to store all the negative /// enumerators of this enum. uint64_t NumNegativeBits : 8; /// True if this tag declaration is a scoped enumeration. Only /// possible in C++11 mode. uint64_t IsScoped : 1; /// If this tag declaration is a scoped enum, /// then this is true if the scoped enum was declared using the class /// tag, false if it was declared with the struct tag. No meaning is /// associated if this tag declaration is not a scoped enum. uint64_t IsScopedUsingClassTag : 1; /// True if this is an enumeration with fixed underlying type. Only /// possible in C++11, Microsoft extensions, or Objective C mode. uint64_t IsFixed : 1; /// True if a valid hash is stored in ODRHash. uint64_t HasODRHash : 1; }; /// Number of non-inherited bits in EnumDeclBitfields. enum { NumEnumDeclBits = 20 }; /// Stores the bits used by RecordDecl. /// If modified NumRecordDeclBits and the accessor /// methods in RecordDecl should be updated appropriately. class RecordDeclBitfields { friend class RecordDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// For the bits in TagDeclBitfields. uint64_t : NumTagDeclBits; /// This is true if this struct ends with a flexible /// array member (e.g. int X[]) or if this union contains a struct that does. /// If so, this cannot be contained in arrays or other structs as a member. uint64_t HasFlexibleArrayMember : 1; /// Whether this is the type of an anonymous struct or union. uint64_t AnonymousStructOrUnion : 1; /// This is true if this struct has at least one member /// containing an Objective-C object pointer type. uint64_t HasObjectMember : 1; /// This is true if struct has at least one member of /// 'volatile' type. uint64_t HasVolatileMember : 1; /// Whether the field declarations of this record have been loaded /// from external storage. To avoid unnecessary deserialization of /// methods/nested types we allow deserialization of just the fields /// when needed. mutable uint64_t LoadedFieldsFromExternalStorage : 1; /// Basic properties of non-trivial C structs. uint64_t NonTrivialToPrimitiveDefaultInitialize : 1; uint64_t NonTrivialToPrimitiveCopy : 1; uint64_t NonTrivialToPrimitiveDestroy : 1; /// The following bits indicate whether this is or contains a C union that /// is non-trivial to default-initialize, destruct, or copy. These bits /// imply the associated basic non-triviality predicates declared above. uint64_t HasNonTrivialToPrimitiveDefaultInitializeCUnion : 1; uint64_t HasNonTrivialToPrimitiveDestructCUnion : 1; uint64_t HasNonTrivialToPrimitiveCopyCUnion : 1; /// Indicates whether this struct is destroyed in the callee. uint64_t ParamDestroyedInCallee : 1; /// Represents the way this type is passed to a function. uint64_t ArgPassingRestrictions : 2; }; /// Number of non-inherited bits in RecordDeclBitfields. enum { NumRecordDeclBits = 14 }; /// Stores the bits used by OMPDeclareReductionDecl. /// If modified NumOMPDeclareReductionDeclBits and the accessor /// methods in OMPDeclareReductionDecl should be updated appropriately. class OMPDeclareReductionDeclBitfields { friend class OMPDeclareReductionDecl; /// For the bits in DeclContextBitfields uint64_t : NumDeclContextBits; /// Kind of initializer, /// function call or omp_priv initializtion. uint64_t InitializerKind : 2; }; /// Number of non-inherited bits in OMPDeclareReductionDeclBitfields. enum { NumOMPDeclareReductionDeclBits = 2 }; /// Stores the bits used by FunctionDecl. /// If modified NumFunctionDeclBits and the accessor /// methods in FunctionDecl and CXXDeductionGuideDecl /// (for IsCopyDeductionCandidate) should be updated appropriately. class FunctionDeclBitfields { friend class FunctionDecl; /// For IsCopyDeductionCandidate friend class CXXDeductionGuideDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; uint64_t SClass : 3; uint64_t IsInline : 1; uint64_t IsInlineSpecified : 1; uint64_t IsVirtualAsWritten : 1; uint64_t IsPure : 1; uint64_t HasInheritedPrototype : 1; uint64_t HasWrittenPrototype : 1; uint64_t IsDeleted : 1; /// Used by CXXMethodDecl uint64_t IsTrivial : 1; /// This flag indicates whether this function is trivial for the purpose of /// calls. This is meaningful only when this function is a copy/move /// constructor or a destructor. uint64_t IsTrivialForCall : 1; uint64_t IsDefaulted : 1; uint64_t IsExplicitlyDefaulted : 1; uint64_t HasDefaultedFunctionInfo : 1; uint64_t HasImplicitReturnZero : 1; uint64_t IsLateTemplateParsed : 1; /// Kind of contexpr specifier as defined by ConstexprSpecKind. uint64_t ConstexprKind : 2; uint64_t InstantiationIsPending : 1; /// Indicates if the function uses __try. uint64_t UsesSEHTry : 1; /// Indicates if the function was a definition /// but its body was skipped. uint64_t HasSkippedBody : 1; /// Indicates if the function declaration will /// have a body, once we're done parsing it. uint64_t WillHaveBody : 1; /// Indicates that this function is a multiversioned /// function using attribute 'target'. uint64_t IsMultiVersion : 1; /// [C++17] Only used by CXXDeductionGuideDecl. Indicates that /// the Deduction Guide is the implicitly generated 'copy /// deduction candidate' (is used during overload resolution). uint64_t IsCopyDeductionCandidate : 1; /// Store the ODRHash after first calculation. uint64_t HasODRHash : 1; /// Indicates if the function uses Floating Point Constrained Intrinsics uint64_t UsesFPIntrin : 1; }; /// Number of non-inherited bits in FunctionDeclBitfields. enum { NumFunctionDeclBits = 27 }; /// Stores the bits used by CXXConstructorDecl. If modified /// NumCXXConstructorDeclBits and the accessor /// methods in CXXConstructorDecl should be updated appropriately. class CXXConstructorDeclBitfields { friend class CXXConstructorDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// For the bits in FunctionDeclBitfields. uint64_t : NumFunctionDeclBits; /// 24 bits to fit in the remaining available space. /// Note that this makes CXXConstructorDeclBitfields take /// exactly 64 bits and thus the width of NumCtorInitializers /// will need to be shrunk if some bit is added to NumDeclContextBitfields, /// NumFunctionDeclBitfields or CXXConstructorDeclBitfields. uint64_t NumCtorInitializers : 21; uint64_t IsInheritingConstructor : 1; /// Whether this constructor has a trail-allocated explicit specifier. uint64_t HasTrailingExplicitSpecifier : 1; /// If this constructor does't have a trail-allocated explicit specifier. /// Whether this constructor is explicit specified. uint64_t IsSimpleExplicit : 1; }; /// Number of non-inherited bits in CXXConstructorDeclBitfields. enum { NumCXXConstructorDeclBits = 64 - NumDeclContextBits - NumFunctionDeclBits }; /// Stores the bits used by ObjCMethodDecl. /// If modified NumObjCMethodDeclBits and the accessor /// methods in ObjCMethodDecl should be updated appropriately. class ObjCMethodDeclBitfields { friend class ObjCMethodDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// The conventional meaning of this method; an ObjCMethodFamily. /// This is not serialized; instead, it is computed on demand and /// cached. mutable uint64_t Family : ObjCMethodFamilyBitWidth; /// instance (true) or class (false) method. uint64_t IsInstance : 1; uint64_t IsVariadic : 1; /// True if this method is the getter or setter for an explicit property. uint64_t IsPropertyAccessor : 1; /// True if this method is a synthesized property accessor stub. uint64_t IsSynthesizedAccessorStub : 1; /// Method has a definition. uint64_t IsDefined : 1; /// Method redeclaration in the same interface. uint64_t IsRedeclaration : 1; /// Is redeclared in the same interface. mutable uint64_t HasRedeclaration : 1; /// \@required/\@optional uint64_t DeclImplementation : 2; /// in, inout, etc. uint64_t objcDeclQualifier : 7; /// Indicates whether this method has a related result type. uint64_t RelatedResultType : 1; /// Whether the locations of the selector identifiers are in a /// "standard" position, a enum SelectorLocationsKind. uint64_t SelLocsKind : 2; /// Whether this method overrides any other in the class hierarchy. /// /// A method is said to override any method in the class's /// base classes, its protocols, or its categories' protocols, that has /// the same selector and is of the same kind (class or instance). /// A method in an implementation is not considered as overriding the same /// method in the interface or its categories. uint64_t IsOverriding : 1; /// Indicates if the method was a definition but its body was skipped. uint64_t HasSkippedBody : 1; }; /// Number of non-inherited bits in ObjCMethodDeclBitfields. enum { NumObjCMethodDeclBits = 24 }; /// Stores the bits used by ObjCContainerDecl. /// If modified NumObjCContainerDeclBits and the accessor /// methods in ObjCContainerDecl should be updated appropriately. class ObjCContainerDeclBitfields { friend class ObjCContainerDecl; /// For the bits in DeclContextBitfields uint32_t : NumDeclContextBits; // Not a bitfield but this saves space. // Note that ObjCContainerDeclBitfields is full. SourceLocation AtStart; }; /// Number of non-inherited bits in ObjCContainerDeclBitfields. /// Note that here we rely on the fact that SourceLocation is 32 bits /// wide. We check this with the static_assert in the ctor of DeclContext. enum { NumObjCContainerDeclBits = 64 - NumDeclContextBits }; /// Stores the bits used by LinkageSpecDecl. /// If modified NumLinkageSpecDeclBits and the accessor /// methods in LinkageSpecDecl should be updated appropriately. class LinkageSpecDeclBitfields { friend class LinkageSpecDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; /// The language for this linkage specification with values /// in the enum LinkageSpecDecl::LanguageIDs. uint64_t Language : 3; /// True if this linkage spec has braces. /// This is needed so that hasBraces() returns the correct result while the /// linkage spec body is being parsed. Once RBraceLoc has been set this is /// not used, so it doesn't need to be serialized. uint64_t HasBraces : 1; }; /// Number of non-inherited bits in LinkageSpecDeclBitfields. enum { NumLinkageSpecDeclBits = 4 }; /// Stores the bits used by BlockDecl. /// If modified NumBlockDeclBits and the accessor /// methods in BlockDecl should be updated appropriately. class BlockDeclBitfields { friend class BlockDecl; /// For the bits in DeclContextBitfields. uint64_t : NumDeclContextBits; uint64_t IsVariadic : 1; uint64_t CapturesCXXThis : 1; uint64_t BlockMissingReturnType : 1; uint64_t IsConversionFromLambda : 1; /// A bit that indicates this block is passed directly to a function as a /// non-escaping parameter. uint64_t DoesNotEscape : 1; /// A bit that indicates whether it's possible to avoid coying this block to /// the heap when it initializes or is assigned to a local variable with /// automatic storage. uint64_t CanAvoidCopyToHeap : 1; }; /// Number of non-inherited bits in BlockDeclBitfields. enum { NumBlockDeclBits = 5 }; /// Pointer to the data structure used to lookup declarations /// within this context (or a DependentStoredDeclsMap if this is a /// dependent context). We maintain the invariant that, if the map /// contains an entry for a DeclarationName (and we haven't lazily /// omitted anything), then it contains all relevant entries for that /// name (modulo the hasExternalDecls() flag). mutable StoredDeclsMap *LookupPtr = nullptr; protected: /// This anonymous union stores the bits belonging to DeclContext and classes /// deriving from it. The goal is to use otherwise wasted /// space in DeclContext to store data belonging to derived classes. /// The space saved is especially significient when pointers are aligned /// to 8 bytes. In this case due to alignment requirements we have a /// little less than 8 bytes free in DeclContext which we can use. /// We check that none of the classes in this union is larger than /// 8 bytes with static_asserts in the ctor of DeclContext. union { DeclContextBitfields DeclContextBits; TagDeclBitfields TagDeclBits; EnumDeclBitfields EnumDeclBits; RecordDeclBitfields RecordDeclBits; OMPDeclareReductionDeclBitfields OMPDeclareReductionDeclBits; FunctionDeclBitfields FunctionDeclBits; CXXConstructorDeclBitfields CXXConstructorDeclBits; ObjCMethodDeclBitfields ObjCMethodDeclBits; ObjCContainerDeclBitfields ObjCContainerDeclBits; LinkageSpecDeclBitfields LinkageSpecDeclBits; BlockDeclBitfields BlockDeclBits; static_assert(sizeof(DeclContextBitfields) <= 8, "DeclContextBitfields is larger than 8 bytes!"); static_assert(sizeof(TagDeclBitfields) <= 8, "TagDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(EnumDeclBitfields) <= 8, "EnumDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(RecordDeclBitfields) <= 8, "RecordDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8, "OMPDeclareReductionDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(FunctionDeclBitfields) <= 8, "FunctionDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(CXXConstructorDeclBitfields) <= 8, "CXXConstructorDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(ObjCMethodDeclBitfields) <= 8, "ObjCMethodDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(ObjCContainerDeclBitfields) <= 8, "ObjCContainerDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(LinkageSpecDeclBitfields) <= 8, "LinkageSpecDeclBitfields is larger than 8 bytes!"); static_assert(sizeof(BlockDeclBitfields) <= 8, "BlockDeclBitfields is larger than 8 bytes!"); }; /// FirstDecl - The first declaration stored within this declaration /// context. mutable Decl *FirstDecl = nullptr; /// LastDecl - The last declaration stored within this declaration /// context. FIXME: We could probably cache this value somewhere /// outside of the DeclContext, to reduce the size of DeclContext by /// another pointer. mutable Decl *LastDecl = nullptr; /// Build up a chain of declarations. /// /// \returns the first/last pair of declarations. static std::pair BuildDeclChain(ArrayRef Decls, bool FieldsAlreadyLoaded); DeclContext(Decl::Kind K); public: ~DeclContext(); Decl::Kind getDeclKind() const { return static_cast(DeclContextBits.DeclKind); } const char *getDeclKindName() const; /// getParent - Returns the containing DeclContext. DeclContext *getParent() { return cast(this)->getDeclContext(); } const DeclContext *getParent() const { return const_cast(this)->getParent(); } /// getLexicalParent - Returns the containing lexical DeclContext. May be /// different from getParent, e.g.: /// /// namespace A { /// struct S; /// } /// struct A::S {}; // getParent() == namespace 'A' /// // getLexicalParent() == translation unit /// DeclContext *getLexicalParent() { return cast(this)->getLexicalDeclContext(); } const DeclContext *getLexicalParent() const { return const_cast(this)->getLexicalParent(); } DeclContext *getLookupParent(); const DeclContext *getLookupParent() const { return const_cast(this)->getLookupParent(); } ASTContext &getParentASTContext() const { return cast(this)->getASTContext(); } bool isClosure() const { return getDeclKind() == Decl::Block; } /// Return this DeclContext if it is a BlockDecl. Otherwise, return the /// innermost enclosing BlockDecl or null if there are no enclosing blocks. const BlockDecl *getInnermostBlockDecl() const; bool isObjCContainer() const { switch (getDeclKind()) { case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::ObjCInterface: case Decl::ObjCProtocol: return true; default: return false; } } bool isFunctionOrMethod() const { switch (getDeclKind()) { case Decl::Block: case Decl::Captured: case Decl::ObjCMethod: return true; default: return getDeclKind() >= Decl::firstFunction && getDeclKind() <= Decl::lastFunction; } } /// Test whether the context supports looking up names. bool isLookupContext() const { return !isFunctionOrMethod() && getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export; } bool isFileContext() const { return getDeclKind() == Decl::TranslationUnit || getDeclKind() == Decl::Namespace; } bool isTranslationUnit() const { return getDeclKind() == Decl::TranslationUnit; } bool isRecord() const { return getDeclKind() >= Decl::firstRecord && getDeclKind() <= Decl::lastRecord; } bool isNamespace() const { return getDeclKind() == Decl::Namespace; } bool isStdNamespace() const; bool isInlineNamespace() const; /// Determines whether this context is dependent on a /// template parameter. bool isDependentContext() const; /// isTransparentContext - Determines whether this context is a /// "transparent" context, meaning that the members declared in this /// context are semantically declared in the nearest enclosing /// non-transparent (opaque) context but are lexically declared in /// this context. For example, consider the enumerators of an /// enumeration type: /// @code /// enum E { /// Val1 /// }; /// @endcode /// Here, E is a transparent context, so its enumerator (Val1) will /// appear (semantically) that it is in the same context of E. /// Examples of transparent contexts include: enumerations (except for /// C++0x scoped enums), and C++ linkage specifications. bool isTransparentContext() const; /// Determines whether this context or some of its ancestors is a /// linkage specification context that specifies C linkage. bool isExternCContext() const; /// Retrieve the nearest enclosing C linkage specification context. const LinkageSpecDecl *getExternCContext() const; /// Determines whether this context or some of its ancestors is a /// linkage specification context that specifies C++ linkage. bool isExternCXXContext() const; /// Determine whether this declaration context is equivalent /// to the declaration context DC. bool Equals(const DeclContext *DC) const { return DC && this->getPrimaryContext() == DC->getPrimaryContext(); } /// Determine whether this declaration context encloses the /// declaration context DC. bool Encloses(const DeclContext *DC) const; /// Find the nearest non-closure ancestor of this context, /// i.e. the innermost semantic parent of this context which is not /// a closure. A context may be its own non-closure ancestor. Decl *getNonClosureAncestor(); const Decl *getNonClosureAncestor() const { return const_cast(this)->getNonClosureAncestor(); } /// getPrimaryContext - There may be many different /// declarations of the same entity (including forward declarations /// of classes, multiple definitions of namespaces, etc.), each with /// a different set of declarations. This routine returns the /// "primary" DeclContext structure, which will contain the /// information needed to perform name lookup into this context. DeclContext *getPrimaryContext(); const DeclContext *getPrimaryContext() const { return const_cast(this)->getPrimaryContext(); } /// getRedeclContext - Retrieve the context in which an entity conflicts with /// other entities of the same name, or where it is a redeclaration if the /// two entities are compatible. This skips through transparent contexts. DeclContext *getRedeclContext(); const DeclContext *getRedeclContext() const { return const_cast(this)->getRedeclContext(); } /// Retrieve the nearest enclosing namespace context. DeclContext *getEnclosingNamespaceContext(); const DeclContext *getEnclosingNamespaceContext() const { return const_cast(this)->getEnclosingNamespaceContext(); } /// Retrieve the outermost lexically enclosing record context. RecordDecl *getOuterLexicalRecordContext(); const RecordDecl *getOuterLexicalRecordContext() const { return const_cast(this)->getOuterLexicalRecordContext(); } /// Test if this context is part of the enclosing namespace set of /// the context NS, as defined in C++0x [namespace.def]p9. If either context /// isn't a namespace, this is equivalent to Equals(). /// /// The enclosing namespace set of a namespace is the namespace and, if it is /// inline, its enclosing namespace, recursively. bool InEnclosingNamespaceSetOf(const DeclContext *NS) const; /// Collects all of the declaration contexts that are semantically /// connected to this declaration context. /// /// For declaration contexts that have multiple semantically connected but /// syntactically distinct contexts, such as C++ namespaces, this routine /// retrieves the complete set of such declaration contexts in source order. /// For example, given: /// /// \code /// namespace N { /// int x; /// } /// namespace N { /// int y; /// } /// \endcode /// /// The \c Contexts parameter will contain both definitions of N. /// /// \param Contexts Will be cleared and set to the set of declaration /// contexts that are semanticaly connected to this declaration context, /// in source order, including this context (which may be the only result, /// for non-namespace contexts). void collectAllContexts(SmallVectorImpl &Contexts); /// decl_iterator - Iterates through the declarations stored /// within this context. class decl_iterator { /// Current - The current declaration. Decl *Current = nullptr; public: using value_type = Decl *; using reference = const value_type &; using pointer = const value_type *; using iterator_category = std::forward_iterator_tag; using difference_type = std::ptrdiff_t; decl_iterator() = default; explicit decl_iterator(Decl *C) : Current(C) {} reference operator*() const { return Current; } // This doesn't meet the iterator requirements, but it's convenient value_type operator->() const { return Current; } decl_iterator& operator++() { Current = Current->getNextDeclInContext(); return *this; } decl_iterator operator++(int) { decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(decl_iterator x, decl_iterator y) { return x.Current == y.Current; } friend bool operator!=(decl_iterator x, decl_iterator y) { return x.Current != y.Current; } }; using decl_range = llvm::iterator_range; /// decls_begin/decls_end - Iterate over the declarations stored in /// this context. decl_range decls() const { return decl_range(decls_begin(), decls_end()); } decl_iterator decls_begin() const; decl_iterator decls_end() const { return decl_iterator(); } bool decls_empty() const; /// noload_decls_begin/end - Iterate over the declarations stored in this /// context that are currently loaded; don't attempt to retrieve anything /// from an external source. decl_range noload_decls() const { return decl_range(noload_decls_begin(), noload_decls_end()); } decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); } decl_iterator noload_decls_end() const { return decl_iterator(); } /// specific_decl_iterator - Iterates over a subrange of /// declarations stored in a DeclContext, providing only those that /// are of type SpecificDecl (or a class derived from it). This /// iterator is used, for example, to provide iteration over just /// the fields within a RecordDecl (with SpecificDecl = FieldDecl). template class specific_decl_iterator { /// Current - The current, underlying declaration iterator, which /// will either be NULL or will point to a declaration of /// type SpecificDecl. DeclContext::decl_iterator Current; /// SkipToNextDecl - Advances the current position up to the next /// declaration of type SpecificDecl that also meets the criteria /// required by Acceptable. void SkipToNextDecl() { while (*Current && !isa(*Current)) ++Current; } public: using value_type = SpecificDecl *; // TODO: Add reference and pointer types (with some appropriate proxy type) // if we ever have a need for them. using reference = void; using pointer = void; using difference_type = std::iterator_traits::difference_type; using iterator_category = std::forward_iterator_tag; specific_decl_iterator() = default; /// specific_decl_iterator - Construct a new iterator over a /// subset of the declarations the range [C, /// end-of-declarations). If A is non-NULL, it is a pointer to a /// member function of SpecificDecl that should return true for /// all of the SpecificDecl instances that will be in the subset /// of iterators. For example, if you want Objective-C instance /// methods, SpecificDecl will be ObjCMethodDecl and A will be /// &ObjCMethodDecl::isInstanceMethod. explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) { SkipToNextDecl(); } value_type operator*() const { return cast(*Current); } // This doesn't meet the iterator requirements, but it's convenient value_type operator->() const { return **this; } specific_decl_iterator& operator++() { ++Current; SkipToNextDecl(); return *this; } specific_decl_iterator operator++(int) { specific_decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(const specific_decl_iterator& x, const specific_decl_iterator& y) { return x.Current == y.Current; } friend bool operator!=(const specific_decl_iterator& x, const specific_decl_iterator& y) { return x.Current != y.Current; } }; /// Iterates over a filtered subrange of declarations stored /// in a DeclContext. /// /// This iterator visits only those declarations that are of type /// SpecificDecl (or a class derived from it) and that meet some /// additional run-time criteria. This iterator is used, for /// example, to provide access to the instance methods within an /// Objective-C interface (with SpecificDecl = ObjCMethodDecl and /// Acceptable = ObjCMethodDecl::isInstanceMethod). template class filtered_decl_iterator { /// Current - The current, underlying declaration iterator, which /// will either be NULL or will point to a declaration of /// type SpecificDecl. DeclContext::decl_iterator Current; /// SkipToNextDecl - Advances the current position up to the next /// declaration of type SpecificDecl that also meets the criteria /// required by Acceptable. void SkipToNextDecl() { while (*Current && (!isa(*Current) || (Acceptable && !(cast(*Current)->*Acceptable)()))) ++Current; } public: using value_type = SpecificDecl *; // TODO: Add reference and pointer types (with some appropriate proxy type) // if we ever have a need for them. using reference = void; using pointer = void; using difference_type = std::iterator_traits::difference_type; using iterator_category = std::forward_iterator_tag; filtered_decl_iterator() = default; /// filtered_decl_iterator - Construct a new iterator over a /// subset of the declarations the range [C, /// end-of-declarations). If A is non-NULL, it is a pointer to a /// member function of SpecificDecl that should return true for /// all of the SpecificDecl instances that will be in the subset /// of iterators. For example, if you want Objective-C instance /// methods, SpecificDecl will be ObjCMethodDecl and A will be /// &ObjCMethodDecl::isInstanceMethod. explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) { SkipToNextDecl(); } value_type operator*() const { return cast(*Current); } value_type operator->() const { return cast(*Current); } filtered_decl_iterator& operator++() { ++Current; SkipToNextDecl(); return *this; } filtered_decl_iterator operator++(int) { filtered_decl_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(const filtered_decl_iterator& x, const filtered_decl_iterator& y) { return x.Current == y.Current; } friend bool operator!=(const filtered_decl_iterator& x, const filtered_decl_iterator& y) { return x.Current != y.Current; } }; /// Add the declaration D into this context. /// /// This routine should be invoked when the declaration D has first /// been declared, to place D into the context where it was /// (lexically) defined. Every declaration must be added to one /// (and only one!) context, where it can be visited via /// [decls_begin(), decls_end()). Once a declaration has been added /// to its lexical context, the corresponding DeclContext owns the /// declaration. /// /// If D is also a NamedDecl, it will be made visible within its /// semantic context via makeDeclVisibleInContext. void addDecl(Decl *D); /// Add the declaration D into this context, but suppress /// searches for external declarations with the same name. /// /// Although analogous in function to addDecl, this removes an /// important check. This is only useful if the Decl is being /// added in response to an external search; in all other cases, /// addDecl() is the right function to use. /// See the ASTImporter for use cases. void addDeclInternal(Decl *D); /// Add the declaration D to this context without modifying /// any lookup tables. /// /// This is useful for some operations in dependent contexts where /// the semantic context might not be dependent; this basically /// only happens with friends. void addHiddenDecl(Decl *D); /// Removes a declaration from this context. void removeDecl(Decl *D); /// Checks whether a declaration is in this context. bool containsDecl(Decl *D) const; /// Checks whether a declaration is in this context. /// This also loads the Decls from the external source before the check. bool containsDeclAndLoad(Decl *D) const; using lookup_result = DeclContextLookupResult; using lookup_iterator = lookup_result::iterator; /// lookup - Find the declarations (if any) with the given Name in /// this context. Returns a range of iterators that contains all of /// the declarations with this name, with object, function, member, /// and enumerator names preceding any tag name. Note that this /// routine will not look into parent contexts. lookup_result lookup(DeclarationName Name) const; /// Find the declarations with the given name that are visible /// within this context; don't attempt to retrieve anything from an /// external source. lookup_result noload_lookup(DeclarationName Name); /// A simplistic name lookup mechanism that performs name lookup /// into this declaration context without consulting the external source. /// /// This function should almost never be used, because it subverts the /// usual relationship between a DeclContext and the external source. /// See the ASTImporter for the (few, but important) use cases. /// /// FIXME: This is very inefficient; replace uses of it with uses of /// noload_lookup. void localUncachedLookup(DeclarationName Name, SmallVectorImpl &Results); /// Makes a declaration visible within this context. /// /// This routine makes the declaration D visible to name lookup /// within this context and, if this is a transparent context, /// within its parent contexts up to the first enclosing /// non-transparent context. Making a declaration visible within a /// context does not transfer ownership of a declaration, and a /// declaration can be visible in many contexts that aren't its /// lexical context. /// /// If D is a redeclaration of an existing declaration that is /// visible from this context, as determined by /// NamedDecl::declarationReplaces, the previous declaration will be /// replaced with D. void makeDeclVisibleInContext(NamedDecl *D); /// all_lookups_iterator - An iterator that provides a view over the results /// of looking up every possible name. class all_lookups_iterator; using lookups_range = llvm::iterator_range; lookups_range lookups() const; // Like lookups(), but avoids loading external declarations. // If PreserveInternalState, avoids building lookup data structures too. lookups_range noload_lookups(bool PreserveInternalState) const; /// Iterators over all possible lookups within this context. all_lookups_iterator lookups_begin() const; all_lookups_iterator lookups_end() const; /// Iterators over all possible lookups within this context that are /// currently loaded; don't attempt to retrieve anything from an external /// source. all_lookups_iterator noload_lookups_begin() const; all_lookups_iterator noload_lookups_end() const; struct udir_iterator; using udir_iterator_base = llvm::iterator_adaptor_base; struct udir_iterator : udir_iterator_base { udir_iterator(lookup_iterator I) : udir_iterator_base(I) {} UsingDirectiveDecl *operator*() const; }; using udir_range = llvm::iterator_range; udir_range using_directives() const; // These are all defined in DependentDiagnostic.h. class ddiag_iterator; using ddiag_range = llvm::iterator_range; inline ddiag_range ddiags() const; // Low-level accessors /// Mark that there are external lexical declarations that we need /// to include in our lookup table (and that are not available as external /// visible lookups). These extra lookup results will be found by walking /// the lexical declarations of this context. This should be used only if /// setHasExternalLexicalStorage() has been called on any decl context for /// which this is the primary context. void setMustBuildLookupTable() { assert(this == getPrimaryContext() && "should only be called on primary context"); DeclContextBits.HasLazyExternalLexicalLookups = true; } /// Retrieve the internal representation of the lookup structure. /// This may omit some names if we are lazily building the structure. StoredDeclsMap *getLookupPtr() const { return LookupPtr; } /// Ensure the lookup structure is fully-built and return it. StoredDeclsMap *buildLookup(); /// Whether this DeclContext has external storage containing /// additional declarations that are lexically in this context. bool hasExternalLexicalStorage() const { return DeclContextBits.ExternalLexicalStorage; } /// State whether this DeclContext has external storage for /// declarations lexically in this context. void setHasExternalLexicalStorage(bool ES = true) const { DeclContextBits.ExternalLexicalStorage = ES; } /// Whether this DeclContext has external storage containing /// additional declarations that are visible in this context. bool hasExternalVisibleStorage() const { return DeclContextBits.ExternalVisibleStorage; } /// State whether this DeclContext has external storage for /// declarations visible in this context. void setHasExternalVisibleStorage(bool ES = true) const { DeclContextBits.ExternalVisibleStorage = ES; if (ES && LookupPtr) DeclContextBits.NeedToReconcileExternalVisibleStorage = true; } /// Determine whether the given declaration is stored in the list of /// declarations lexically within this context. bool isDeclInLexicalTraversal(const Decl *D) const { return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl || D == LastDecl); } bool setUseQualifiedLookup(bool use = true) const { bool old_value = DeclContextBits.UseQualifiedLookup; DeclContextBits.UseQualifiedLookup = use; return old_value; } bool shouldUseQualifiedLookup() const { return DeclContextBits.UseQualifiedLookup; } static bool classof(const Decl *D); static bool classof(const DeclContext *D) { return true; } void dumpDeclContext() const; void dumpLookups() const; void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false, bool Deserialize = false) const; private: /// Whether this declaration context has had externally visible /// storage added since the last lookup. In this case, \c LookupPtr's /// invariant may not hold and needs to be fixed before we perform /// another lookup. bool hasNeedToReconcileExternalVisibleStorage() const { return DeclContextBits.NeedToReconcileExternalVisibleStorage; } /// State that this declaration context has had externally visible /// storage added since the last lookup. In this case, \c LookupPtr's /// invariant may not hold and needs to be fixed before we perform /// another lookup. void setNeedToReconcileExternalVisibleStorage(bool Need = true) const { DeclContextBits.NeedToReconcileExternalVisibleStorage = Need; } /// If \c true, this context may have local lexical declarations /// that are missing from the lookup table. bool hasLazyLocalLexicalLookups() const { return DeclContextBits.HasLazyLocalLexicalLookups; } /// If \c true, this context may have local lexical declarations /// that are missing from the lookup table. void setHasLazyLocalLexicalLookups(bool HasLLLL = true) const { DeclContextBits.HasLazyLocalLexicalLookups = HasLLLL; } /// If \c true, the external source may have lexical declarations /// that are missing from the lookup table. bool hasLazyExternalLexicalLookups() const { return DeclContextBits.HasLazyExternalLexicalLookups; } /// If \c true, the external source may have lexical declarations /// that are missing from the lookup table. void setHasLazyExternalLexicalLookups(bool HasLELL = true) const { DeclContextBits.HasLazyExternalLexicalLookups = HasLELL; } void reconcileExternalVisibleStorage() const; bool LoadLexicalDeclsFromExternalStorage() const; /// Makes a declaration visible within this context, but /// suppresses searches for external declarations with the same /// name. /// /// Analogous to makeDeclVisibleInContext, but for the exclusive /// use of addDeclInternal(). void makeDeclVisibleInContextInternal(NamedDecl *D); StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const; void loadLazyLocalLexicalLookups(); void buildLookupImpl(DeclContext *DCtx, bool Internal); void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal, bool Rediscoverable); void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal); }; inline bool Decl::isTemplateParameter() const { return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm || getKind() == TemplateTemplateParm; } // Specialization selected when ToTy is not a known subclass of DeclContext. template ::value> struct cast_convert_decl_context { static const ToTy *doit(const DeclContext *Val) { return static_cast(Decl::castFromDeclContext(Val)); } static ToTy *doit(DeclContext *Val) { return static_cast(Decl::castFromDeclContext(Val)); } }; // Specialization selected when ToTy is a known subclass of DeclContext. template struct cast_convert_decl_context { static const ToTy *doit(const DeclContext *Val) { return static_cast(Val); } static ToTy *doit(DeclContext *Val) { return static_cast(Val); } }; } // namespace clang namespace llvm { /// isa(DeclContext*) template struct isa_impl { static bool doit(const ::clang::DeclContext &Val) { return To::classofKind(Val.getDeclKind()); } }; /// cast(DeclContext*) template struct cast_convert_val { static const ToTy &doit(const ::clang::DeclContext &Val) { return *::clang::cast_convert_decl_context::doit(&Val); } }; template struct cast_convert_val { static ToTy &doit(::clang::DeclContext &Val) { return *::clang::cast_convert_decl_context::doit(&Val); } }; template struct cast_convert_val { static const ToTy *doit(const ::clang::DeclContext *Val) { return ::clang::cast_convert_decl_context::doit(Val); } }; template struct cast_convert_val { static ToTy *doit(::clang::DeclContext *Val) { return ::clang::cast_convert_decl_context::doit(Val); } }; /// Implement cast_convert_val for Decl -> DeclContext conversions. template struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> { static ::clang::DeclContext &doit(const FromTy &Val) { return *FromTy::castToDeclContext(&Val); } }; template struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> { static ::clang::DeclContext *doit(const FromTy *Val) { return FromTy::castToDeclContext(Val); } }; template struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> { static const ::clang::DeclContext &doit(const FromTy &Val) { return *FromTy::castToDeclContext(&Val); } }; template struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> { static const ::clang::DeclContext *doit(const FromTy *Val) { return FromTy::castToDeclContext(Val); } }; } // namespace llvm #endif // LLVM_CLANG_AST_DECLBASE_H