//===-- atomic.c - Implement support functions for atomic operations.------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // atomic.c defines a set of functions for performing atomic accesses on // arbitrary-sized memory locations. This design uses locks that should // be fast in the uncontended case, for two reasons: // // 1) This code must work with C programs that do not link to anything // (including pthreads) and so it should not depend on any pthread // functions. // 2) Atomic operations, rather than explicit mutexes, are most commonly used // on code where contended operations are rate. // // To avoid needing a per-object lock, this code allocates an array of // locks and hashes the object pointers to find the one that it should use. // For operations that must be atomic on two locations, the lower lock is // always acquired first, to avoid deadlock. // //===----------------------------------------------------------------------===// #include #include #include #include "assembly.h" // Clang objects if you redefine a builtin. This little hack allows us to // define a function with the same name as an intrinsic. #pragma redefine_extname __atomic_load_c SYMBOL_NAME(__atomic_load) #pragma redefine_extname __atomic_store_c SYMBOL_NAME(__atomic_store) #pragma redefine_extname __atomic_exchange_c SYMBOL_NAME(__atomic_exchange) #pragma redefine_extname __atomic_compare_exchange_c SYMBOL_NAME( \ __atomic_compare_exchange) /// Number of locks. This allocates one page on 32-bit platforms, two on /// 64-bit. This can be specified externally if a different trade between /// memory usage and contention probability is required for a given platform. #ifndef SPINLOCK_COUNT #define SPINLOCK_COUNT (1 << 10) #endif static const long SPINLOCK_MASK = SPINLOCK_COUNT - 1; //////////////////////////////////////////////////////////////////////////////// // Platform-specific lock implementation. Falls back to spinlocks if none is // defined. Each platform should define the Lock type, and corresponding // lock() and unlock() functions. //////////////////////////////////////////////////////////////////////////////// #ifdef __FreeBSD__ #include // clang-format off #include #include #include // clang-format on typedef struct _usem Lock; __inline static void unlock(Lock *l) { __c11_atomic_store((_Atomic(uint32_t) *)&l->_count, 1, __ATOMIC_RELEASE); __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); if (l->_has_waiters) _umtx_op(l, UMTX_OP_SEM_WAKE, 1, 0, 0); } __inline static void lock(Lock *l) { uint32_t old = 1; while (!__c11_atomic_compare_exchange_weak((_Atomic(uint32_t) *)&l->_count, &old, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { _umtx_op(l, UMTX_OP_SEM_WAIT, 0, 0, 0); old = 1; } } /// locks for atomic operations static Lock locks[SPINLOCK_COUNT] = {[0 ... SPINLOCK_COUNT - 1] = {0, 1, 0}}; #elif defined(__APPLE__) #include typedef OSSpinLock Lock; __inline static void unlock(Lock *l) { OSSpinLockUnlock(l); } /// Locks a lock. In the current implementation, this is potentially /// unbounded in the contended case. __inline static void lock(Lock *l) { OSSpinLockLock(l); } static Lock locks[SPINLOCK_COUNT]; // initialized to OS_SPINLOCK_INIT which is 0 #else typedef _Atomic(uintptr_t) Lock; /// Unlock a lock. This is a release operation. __inline static void unlock(Lock *l) { __c11_atomic_store(l, 0, __ATOMIC_RELEASE); } /// Locks a lock. In the current implementation, this is potentially /// unbounded in the contended case. __inline static void lock(Lock *l) { uintptr_t old = 0; while (!__c11_atomic_compare_exchange_weak(l, &old, 1, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) old = 0; } /// locks for atomic operations static Lock locks[SPINLOCK_COUNT]; #endif /// Returns a lock to use for a given pointer. static __inline Lock *lock_for_pointer(void *ptr) { intptr_t hash = (intptr_t)ptr; // Disregard the lowest 4 bits. We want all values that may be part of the // same memory operation to hash to the same value and therefore use the same // lock. hash >>= 4; // Use the next bits as the basis for the hash intptr_t low = hash & SPINLOCK_MASK; // Now use the high(er) set of bits to perturb the hash, so that we don't // get collisions from atomic fields in a single object hash >>= 16; hash ^= low; // Return a pointer to the word to use return locks + (hash & SPINLOCK_MASK); } /// Macros for determining whether a size is lock free. #define ATOMIC_ALWAYS_LOCK_FREE_OR_ALIGNED_LOCK_FREE(size, p) \ (__atomic_always_lock_free(size, p) || \ (__atomic_always_lock_free(size, 0) && ((uintptr_t)p % size) == 0)) #define IS_LOCK_FREE_1(p) ATOMIC_ALWAYS_LOCK_FREE_OR_ALIGNED_LOCK_FREE(1, p) #define IS_LOCK_FREE_2(p) ATOMIC_ALWAYS_LOCK_FREE_OR_ALIGNED_LOCK_FREE(2, p) #define IS_LOCK_FREE_4(p) ATOMIC_ALWAYS_LOCK_FREE_OR_ALIGNED_LOCK_FREE(4, p) #define IS_LOCK_FREE_8(p) ATOMIC_ALWAYS_LOCK_FREE_OR_ALIGNED_LOCK_FREE(8, p) #define IS_LOCK_FREE_16(p) ATOMIC_ALWAYS_LOCK_FREE_OR_ALIGNED_LOCK_FREE(16, p) /// Macro that calls the compiler-generated lock-free versions of functions /// when they exist. #define TRY_LOCK_FREE_CASE(n, type, ptr) \ case n: \ if (IS_LOCK_FREE_##n(ptr)) { \ LOCK_FREE_ACTION(type); \ } \ break; #ifdef __SIZEOF_INT128__ #define TRY_LOCK_FREE_CASE_16(p) TRY_LOCK_FREE_CASE(16, __uint128_t, p) #else #define TRY_LOCK_FREE_CASE_16(p) /* __uint128_t not available */ #endif #define LOCK_FREE_CASES(ptr) \ do { \ switch (size) { \ TRY_LOCK_FREE_CASE(1, uint8_t, ptr) \ TRY_LOCK_FREE_CASE(2, uint16_t, ptr) \ TRY_LOCK_FREE_CASE(4, uint32_t, ptr) \ TRY_LOCK_FREE_CASE(8, uint64_t, ptr) \ TRY_LOCK_FREE_CASE_16(ptr) /* __uint128_t may not be supported */ \ default: \ break; \ } \ } while (0) /// An atomic load operation. This is atomic with respect to the source /// pointer only. void __atomic_load_c(int size, void *src, void *dest, int model) { #define LOCK_FREE_ACTION(type) \ *((type *)dest) = __c11_atomic_load((_Atomic(type) *)src, model); \ return; LOCK_FREE_CASES(src); #undef LOCK_FREE_ACTION Lock *l = lock_for_pointer(src); lock(l); memcpy(dest, src, size); unlock(l); } /// An atomic store operation. This is atomic with respect to the destination /// pointer only. void __atomic_store_c(int size, void *dest, void *src, int model) { #define LOCK_FREE_ACTION(type) \ __c11_atomic_store((_Atomic(type) *)dest, *(type *)src, model); \ return; LOCK_FREE_CASES(dest); #undef LOCK_FREE_ACTION Lock *l = lock_for_pointer(dest); lock(l); memcpy(dest, src, size); unlock(l); } /// Atomic compare and exchange operation. If the value at *ptr is identical /// to the value at *expected, then this copies value at *desired to *ptr. If /// they are not, then this stores the current value from *ptr in *expected. /// /// This function returns 1 if the exchange takes place or 0 if it fails. int __atomic_compare_exchange_c(int size, void *ptr, void *expected, void *desired, int success, int failure) { #define LOCK_FREE_ACTION(type) \ return __c11_atomic_compare_exchange_strong( \ (_Atomic(type) *)ptr, (type *)expected, *(type *)desired, success, \ failure) LOCK_FREE_CASES(ptr); #undef LOCK_FREE_ACTION Lock *l = lock_for_pointer(ptr); lock(l); if (memcmp(ptr, expected, size) == 0) { memcpy(ptr, desired, size); unlock(l); return 1; } memcpy(expected, ptr, size); unlock(l); return 0; } /// Performs an atomic exchange operation between two pointers. This is atomic /// with respect to the target address. void __atomic_exchange_c(int size, void *ptr, void *val, void *old, int model) { #define LOCK_FREE_ACTION(type) \ *(type *)old = \ __c11_atomic_exchange((_Atomic(type) *)ptr, *(type *)val, model); \ return; LOCK_FREE_CASES(ptr); #undef LOCK_FREE_ACTION Lock *l = lock_for_pointer(ptr); lock(l); memcpy(old, ptr, size); memcpy(ptr, val, size); unlock(l); } //////////////////////////////////////////////////////////////////////////////// // Where the size is known at compile time, the compiler may emit calls to // specialised versions of the above functions. //////////////////////////////////////////////////////////////////////////////// #ifdef __SIZEOF_INT128__ #define OPTIMISED_CASES \ OPTIMISED_CASE(1, IS_LOCK_FREE_1, uint8_t) \ OPTIMISED_CASE(2, IS_LOCK_FREE_2, uint16_t) \ OPTIMISED_CASE(4, IS_LOCK_FREE_4, uint32_t) \ OPTIMISED_CASE(8, IS_LOCK_FREE_8, uint64_t) \ OPTIMISED_CASE(16, IS_LOCK_FREE_16, __uint128_t) #else #define OPTIMISED_CASES \ OPTIMISED_CASE(1, IS_LOCK_FREE_1, uint8_t) \ OPTIMISED_CASE(2, IS_LOCK_FREE_2, uint16_t) \ OPTIMISED_CASE(4, IS_LOCK_FREE_4, uint32_t) \ OPTIMISED_CASE(8, IS_LOCK_FREE_8, uint64_t) #endif #define OPTIMISED_CASE(n, lockfree, type) \ type __atomic_load_##n(type *src, int model) { \ if (lockfree(src)) \ return __c11_atomic_load((_Atomic(type) *)src, model); \ Lock *l = lock_for_pointer(src); \ lock(l); \ type val = *src; \ unlock(l); \ return val; \ } OPTIMISED_CASES #undef OPTIMISED_CASE #define OPTIMISED_CASE(n, lockfree, type) \ void __atomic_store_##n(type *dest, type val, int model) { \ if (lockfree(dest)) { \ __c11_atomic_store((_Atomic(type) *)dest, val, model); \ return; \ } \ Lock *l = lock_for_pointer(dest); \ lock(l); \ *dest = val; \ unlock(l); \ return; \ } OPTIMISED_CASES #undef OPTIMISED_CASE #define OPTIMISED_CASE(n, lockfree, type) \ type __atomic_exchange_##n(type *dest, type val, int model) { \ if (lockfree(dest)) \ return __c11_atomic_exchange((_Atomic(type) *)dest, val, model); \ Lock *l = lock_for_pointer(dest); \ lock(l); \ type tmp = *dest; \ *dest = val; \ unlock(l); \ return tmp; \ } OPTIMISED_CASES #undef OPTIMISED_CASE #define OPTIMISED_CASE(n, lockfree, type) \ bool __atomic_compare_exchange_##n(type *ptr, type *expected, type desired, \ int success, int failure) { \ if (lockfree(ptr)) \ return __c11_atomic_compare_exchange_strong( \ (_Atomic(type) *)ptr, expected, desired, success, failure); \ Lock *l = lock_for_pointer(ptr); \ lock(l); \ if (*ptr == *expected) { \ *ptr = desired; \ unlock(l); \ return true; \ } \ *expected = *ptr; \ unlock(l); \ return false; \ } OPTIMISED_CASES #undef OPTIMISED_CASE //////////////////////////////////////////////////////////////////////////////// // Atomic read-modify-write operations for integers of various sizes. //////////////////////////////////////////////////////////////////////////////// #define ATOMIC_RMW(n, lockfree, type, opname, op) \ type __atomic_fetch_##opname##_##n(type *ptr, type val, int model) { \ if (lockfree(ptr)) \ return __c11_atomic_fetch_##opname((_Atomic(type) *)ptr, val, model); \ Lock *l = lock_for_pointer(ptr); \ lock(l); \ type tmp = *ptr; \ *ptr = tmp op val; \ unlock(l); \ return tmp; \ } #define OPTIMISED_CASE(n, lockfree, type) ATOMIC_RMW(n, lockfree, type, add, +) OPTIMISED_CASES #undef OPTIMISED_CASE #define OPTIMISED_CASE(n, lockfree, type) ATOMIC_RMW(n, lockfree, type, sub, -) OPTIMISED_CASES #undef OPTIMISED_CASE #define OPTIMISED_CASE(n, lockfree, type) ATOMIC_RMW(n, lockfree, type, and, &) OPTIMISED_CASES #undef OPTIMISED_CASE #define OPTIMISED_CASE(n, lockfree, type) ATOMIC_RMW(n, lockfree, type, or, |) OPTIMISED_CASES #undef OPTIMISED_CASE #define OPTIMISED_CASE(n, lockfree, type) ATOMIC_RMW(n, lockfree, type, xor, ^) OPTIMISED_CASES #undef OPTIMISED_CASE