//===-- lib/Semantics/check-declarations.cpp ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Static declaration checking #include "check-declarations.h" #include "pointer-assignment.h" #include "flang/Evaluate/check-expression.h" #include "flang/Evaluate/fold.h" #include "flang/Evaluate/tools.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/semantics.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include "flang/Semantics/type.h" #include namespace Fortran::semantics { namespace characteristics = evaluate::characteristics; using characteristics::DummyArgument; using characteristics::DummyDataObject; using characteristics::DummyProcedure; using characteristics::FunctionResult; using characteristics::Procedure; class CheckHelper { public: explicit CheckHelper(SemanticsContext &c) : context_{c} {} CheckHelper(SemanticsContext &c, const Scope &s) : context_{c}, scope_{&s} {} SemanticsContext &context() { return context_; } void Check() { Check(context_.globalScope()); } void Check(const ParamValue &, bool canBeAssumed); void Check(const Bound &bound) { CheckSpecExpr(bound.GetExplicit()); } void Check(const ShapeSpec &spec) { Check(spec.lbound()); Check(spec.ubound()); } void Check(const ArraySpec &); void Check(const DeclTypeSpec &, bool canHaveAssumedTypeParameters); void Check(const Symbol &); void Check(const Scope &); const Procedure *Characterize(const Symbol &); private: template void CheckSpecExpr(const A &x) { evaluate::CheckSpecificationExpr(x, DEREF(scope_), foldingContext_); } void CheckValue(const Symbol &, const DerivedTypeSpec *); void CheckVolatile( const Symbol &, bool isAssociated, const DerivedTypeSpec *); void CheckPointer(const Symbol &); void CheckPassArg( const Symbol &proc, const Symbol *interface, const WithPassArg &); void CheckProcBinding(const Symbol &, const ProcBindingDetails &); void CheckObjectEntity(const Symbol &, const ObjectEntityDetails &); void CheckPointerInitialization(const Symbol &); void CheckArraySpec(const Symbol &, const ArraySpec &); void CheckProcEntity(const Symbol &, const ProcEntityDetails &); void CheckSubprogram(const Symbol &, const SubprogramDetails &); void CheckAssumedTypeEntity(const Symbol &, const ObjectEntityDetails &); void CheckDerivedType(const Symbol &, const DerivedTypeDetails &); bool CheckFinal( const Symbol &subroutine, SourceName, const Symbol &derivedType); bool CheckDistinguishableFinals(const Symbol &f1, SourceName f1name, const Symbol &f2, SourceName f2name, const Symbol &derivedType); void CheckGeneric(const Symbol &, const GenericDetails &); void CheckHostAssoc(const Symbol &, const HostAssocDetails &); bool CheckDefinedOperator( SourceName, GenericKind, const Symbol &, const Procedure &); std::optional CheckNumberOfArgs( const GenericKind &, std::size_t); bool CheckDefinedOperatorArg( const SourceName &, const Symbol &, const Procedure &, std::size_t); bool CheckDefinedAssignment(const Symbol &, const Procedure &); bool CheckDefinedAssignmentArg(const Symbol &, const DummyArgument &, int); void CheckSpecificsAreDistinguishable(const Symbol &, const GenericDetails &); void CheckEquivalenceSet(const EquivalenceSet &); void CheckBlockData(const Scope &); void CheckGenericOps(const Scope &); bool CheckConflicting(const Symbol &, Attr, Attr); void WarnMissingFinal(const Symbol &); bool InPure() const { return innermostSymbol_ && IsPureProcedure(*innermostSymbol_); } bool InFunction() const { return innermostSymbol_ && IsFunction(*innermostSymbol_); } template void SayWithDeclaration(const Symbol &symbol, A &&...x) { if (parser::Message * msg{messages_.Say(std::forward(x)...)}) { if (messages_.at().begin() != symbol.name().begin()) { evaluate::AttachDeclaration(*msg, symbol); } } } bool IsResultOkToDiffer(const FunctionResult &); SemanticsContext &context_; evaluate::FoldingContext &foldingContext_{context_.foldingContext()}; parser::ContextualMessages &messages_{foldingContext_.messages()}; const Scope *scope_{nullptr}; bool scopeIsUninstantiatedPDT_{false}; // This symbol is the one attached to the innermost enclosing scope // that has a symbol. const Symbol *innermostSymbol_{nullptr}; // Cache of calls to Procedure::Characterize(Symbol) std::map> characterizeCache_; }; class DistinguishabilityHelper { public: DistinguishabilityHelper(SemanticsContext &context) : context_{context} {} void Add(const Symbol &, GenericKind, const Symbol &, const Procedure &); void Check(const Scope &); private: void SayNotDistinguishable(const Scope &, const SourceName &, GenericKind, const Symbol &, const Symbol &); void AttachDeclaration(parser::Message &, const Scope &, const Symbol &); SemanticsContext &context_; struct ProcedureInfo { GenericKind kind; const Symbol &symbol; const Procedure &procedure; }; std::map> nameToInfo_; }; void CheckHelper::Check(const ParamValue &value, bool canBeAssumed) { if (value.isAssumed()) { if (!canBeAssumed) { // C795, C721, C726 messages_.Say( "An assumed (*) type parameter may be used only for a (non-statement" " function) dummy argument, associate name, named constant, or" " external function result"_err_en_US); } } else { CheckSpecExpr(value.GetExplicit()); } } void CheckHelper::Check(const ArraySpec &shape) { for (const auto &spec : shape) { Check(spec); } } void CheckHelper::Check( const DeclTypeSpec &type, bool canHaveAssumedTypeParameters) { if (type.category() == DeclTypeSpec::Character) { Check(type.characterTypeSpec().length(), canHaveAssumedTypeParameters); } else if (const DerivedTypeSpec * derived{type.AsDerived()}) { for (auto &parm : derived->parameters()) { Check(parm.second, canHaveAssumedTypeParameters); } } } void CheckHelper::Check(const Symbol &symbol) { if (context_.HasError(symbol)) { return; } auto restorer{messages_.SetLocation(symbol.name())}; context_.set_location(symbol.name()); const DeclTypeSpec *type{symbol.GetType()}; const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr}; bool isAssociated{symbol.has() || symbol.has()}; if (symbol.attrs().test(Attr::VOLATILE)) { CheckVolatile(symbol, isAssociated, derived); } if (isAssociated) { if (const auto *details{symbol.detailsIf()}) { CheckHostAssoc(symbol, *details); } return; // no other checks on associated symbols } if (IsPointer(symbol)) { CheckPointer(symbol); } std::visit( common::visitors{ [&](const ProcBindingDetails &x) { CheckProcBinding(symbol, x); }, [&](const ObjectEntityDetails &x) { CheckObjectEntity(symbol, x); }, [&](const ProcEntityDetails &x) { CheckProcEntity(symbol, x); }, [&](const SubprogramDetails &x) { CheckSubprogram(symbol, x); }, [&](const DerivedTypeDetails &x) { CheckDerivedType(symbol, x); }, [&](const GenericDetails &x) { CheckGeneric(symbol, x); }, [](const auto &) {}, }, symbol.details()); if (InPure()) { if (IsSaved(symbol)) { messages_.Say( "A pure subprogram may not have a variable with the SAVE attribute"_err_en_US); } if (symbol.attrs().test(Attr::VOLATILE)) { messages_.Say( "A pure subprogram may not have a variable with the VOLATILE attribute"_err_en_US); } if (IsProcedure(symbol) && !IsPureProcedure(symbol) && IsDummy(symbol)) { messages_.Say( "A dummy procedure of a pure subprogram must be pure"_err_en_US); } if (!IsDummy(symbol) && !IsFunctionResult(symbol)) { if (IsPolymorphicAllocatable(symbol)) { SayWithDeclaration(symbol, "Deallocation of polymorphic object '%s' is not permitted in a pure subprogram"_err_en_US, symbol.name()); } else if (derived) { if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) { SayWithDeclaration(*bad, "Deallocation of polymorphic object '%s%s' is not permitted in a pure subprogram"_err_en_US, symbol.name(), bad.BuildResultDesignatorName()); } } } } if (type) { // Section 7.2, paragraph 7 bool canHaveAssumedParameter{IsNamedConstant(symbol) || (IsAssumedLengthCharacter(symbol) && // C722 IsExternal(symbol)) || symbol.test(Symbol::Flag::ParentComp)}; if (!IsStmtFunctionDummy(symbol)) { // C726 if (const auto *object{symbol.detailsIf()}) { canHaveAssumedParameter |= object->isDummy() || (object->isFuncResult() && type->category() == DeclTypeSpec::Character) || IsStmtFunctionResult(symbol); // Avoids multiple messages } else { canHaveAssumedParameter |= symbol.has(); } } Check(*type, canHaveAssumedParameter); if (InPure() && InFunction() && IsFunctionResult(symbol)) { if (derived && HasImpureFinal(*derived)) { // C1584 messages_.Say( "Result of pure function may not have an impure FINAL subroutine"_err_en_US); } if (type->IsPolymorphic() && IsAllocatable(symbol)) { // C1585 messages_.Say( "Result of pure function may not be both polymorphic and ALLOCATABLE"_err_en_US); } if (derived) { if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) { SayWithDeclaration(*bad, "Result of pure function may not have polymorphic ALLOCATABLE ultimate component '%s'"_err_en_US, bad.BuildResultDesignatorName()); } } } } if (IsAssumedLengthCharacter(symbol) && IsExternal(symbol)) { // C723 if (symbol.attrs().test(Attr::RECURSIVE)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be RECURSIVE"_err_en_US); } if (symbol.Rank() > 0) { messages_.Say( "An assumed-length CHARACTER(*) function cannot return an array"_err_en_US); } if (symbol.attrs().test(Attr::PURE)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be PURE"_err_en_US); } if (symbol.attrs().test(Attr::ELEMENTAL)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be ELEMENTAL"_err_en_US); } if (const Symbol * result{FindFunctionResult(symbol)}) { if (IsPointer(*result)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot return a POINTER"_err_en_US); } } } if (symbol.attrs().test(Attr::VALUE)) { CheckValue(symbol, derived); } if (symbol.attrs().test(Attr::CONTIGUOUS) && IsPointer(symbol) && symbol.Rank() == 0) { // C830 messages_.Say("CONTIGUOUS POINTER must be an array"_err_en_US); } if (IsDummy(symbol)) { if (IsNamedConstant(symbol)) { messages_.Say( "A dummy argument may not also be a named constant"_err_en_US); } if (IsSaved(symbol)) { messages_.Say( "A dummy argument may not have the SAVE attribute"_err_en_US); } } else if (IsFunctionResult(symbol)) { if (IsSaved(symbol)) { messages_.Say( "A function result may not have the SAVE attribute"_err_en_US); } } if (symbol.owner().IsDerivedType() && (symbol.attrs().test(Attr::CONTIGUOUS) && !(IsPointer(symbol) && symbol.Rank() > 0))) { // C752 messages_.Say( "A CONTIGUOUS component must be an array with the POINTER attribute"_err_en_US); } if (symbol.owner().IsModule() && IsAutomatic(symbol)) { messages_.Say( "Automatic data object '%s' may not appear in the specification part" " of a module"_err_en_US, symbol.name()); } } void CheckHelper::CheckValue( const Symbol &symbol, const DerivedTypeSpec *derived) { // C863 - C865 if (!IsDummy(symbol)) { messages_.Say( "VALUE attribute may apply only to a dummy argument"_err_en_US); } if (IsProcedure(symbol)) { messages_.Say( "VALUE attribute may apply only to a dummy data object"_err_en_US); } if (IsAssumedSizeArray(symbol)) { messages_.Say( "VALUE attribute may not apply to an assumed-size array"_err_en_US); } if (IsCoarray(symbol)) { messages_.Say("VALUE attribute may not apply to a coarray"_err_en_US); } if (IsAllocatable(symbol)) { messages_.Say("VALUE attribute may not apply to an ALLOCATABLE"_err_en_US); } else if (IsPointer(symbol)) { messages_.Say("VALUE attribute may not apply to a POINTER"_err_en_US); } if (IsIntentInOut(symbol)) { messages_.Say( "VALUE attribute may not apply to an INTENT(IN OUT) argument"_err_en_US); } else if (IsIntentOut(symbol)) { messages_.Say( "VALUE attribute may not apply to an INTENT(OUT) argument"_err_en_US); } if (symbol.attrs().test(Attr::VOLATILE)) { messages_.Say("VALUE attribute may not apply to a VOLATILE"_err_en_US); } if (innermostSymbol_ && IsBindCProcedure(*innermostSymbol_) && IsOptional(symbol)) { messages_.Say( "VALUE attribute may not apply to an OPTIONAL in a BIND(C) procedure"_err_en_US); } if (derived) { if (FindCoarrayUltimateComponent(*derived)) { messages_.Say( "VALUE attribute may not apply to a type with a coarray ultimate component"_err_en_US); } } } void CheckHelper::CheckAssumedTypeEntity( // C709 const Symbol &symbol, const ObjectEntityDetails &details) { if (const DeclTypeSpec * type{symbol.GetType()}; type && type->category() == DeclTypeSpec::TypeStar) { if (!IsDummy(symbol)) { messages_.Say( "Assumed-type entity '%s' must be a dummy argument"_err_en_US, symbol.name()); } else { if (symbol.attrs().test(Attr::ALLOCATABLE)) { messages_.Say("Assumed-type argument '%s' cannot have the ALLOCATABLE" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::POINTER)) { messages_.Say("Assumed-type argument '%s' cannot have the POINTER" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::VALUE)) { messages_.Say("Assumed-type argument '%s' cannot have the VALUE" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::INTENT_OUT)) { messages_.Say( "Assumed-type argument '%s' cannot be INTENT(OUT)"_err_en_US, symbol.name()); } if (IsCoarray(symbol)) { messages_.Say( "Assumed-type argument '%s' cannot be a coarray"_err_en_US, symbol.name()); } if (details.IsArray() && details.shape().IsExplicitShape()) { messages_.Say( "Assumed-type array argument 'arg8' must be assumed shape," " assumed size, or assumed rank"_err_en_US, symbol.name()); } } } } void CheckHelper::CheckObjectEntity( const Symbol &symbol, const ObjectEntityDetails &details) { CheckArraySpec(symbol, details.shape()); Check(details.shape()); Check(details.coshape()); CheckAssumedTypeEntity(symbol, details); WarnMissingFinal(symbol); if (!details.coshape().empty()) { bool isDeferredShape{details.coshape().IsDeferredShape()}; if (IsAllocatable(symbol)) { if (!isDeferredShape) { // C827 messages_.Say("'%s' is an ALLOCATABLE coarray and must have a deferred" " coshape"_err_en_US, symbol.name()); } } else if (symbol.owner().IsDerivedType()) { // C746 std::string deferredMsg{ isDeferredShape ? "" : " and have a deferred coshape"}; messages_.Say("Component '%s' is a coarray and must have the ALLOCATABLE" " attribute%s"_err_en_US, symbol.name(), deferredMsg); } else { if (!details.coshape().IsAssumedSize()) { // C828 messages_.Say( "Component '%s' is a non-ALLOCATABLE coarray and must have" " an explicit coshape"_err_en_US, symbol.name()); } } } if (details.isDummy()) { if (symbol.attrs().test(Attr::INTENT_OUT)) { if (FindUltimateComponent(symbol, [](const Symbol &x) { return IsCoarray(x) && IsAllocatable(x); })) { // C846 messages_.Say( "An INTENT(OUT) dummy argument may not be, or contain, an ALLOCATABLE coarray"_err_en_US); } if (IsOrContainsEventOrLockComponent(symbol)) { // C847 messages_.Say( "An INTENT(OUT) dummy argument may not be, or contain, EVENT_TYPE or LOCK_TYPE"_err_en_US); } } if (InPure() && !IsStmtFunction(DEREF(innermostSymbol_)) && !IsPointer(symbol) && !IsIntentIn(symbol) && !symbol.attrs().test(Attr::VALUE)) { if (InFunction()) { // C1583 messages_.Say( "non-POINTER dummy argument of pure function must be INTENT(IN) or VALUE"_err_en_US); } else if (IsIntentOut(symbol)) { if (const DeclTypeSpec * type{details.type()}) { if (type && type->IsPolymorphic()) { // C1588 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not be polymorphic"_err_en_US); } else if (const DerivedTypeSpec * derived{type->AsDerived()}) { if (FindUltimateComponent(*derived, [](const Symbol &x) { const DeclTypeSpec *type{x.GetType()}; return type && type->IsPolymorphic(); })) { // C1588 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not have a polymorphic ultimate component"_err_en_US); } if (HasImpureFinal(*derived)) { // C1587 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not have an impure FINAL subroutine"_err_en_US); } } } } else if (!IsIntentInOut(symbol)) { // C1586 messages_.Say( "non-POINTER dummy argument of pure subroutine must have INTENT() or VALUE attribute"_err_en_US); } } } if (IsInitialized(symbol, true /* ignore DATA inits */)) { // C808 CheckPointerInitialization(symbol); if (IsAutomatic(symbol)) { messages_.Say( "An automatic variable or component must not be initialized"_err_en_US); } else if (IsDummy(symbol)) { messages_.Say("A dummy argument must not be initialized"_err_en_US); } else if (IsFunctionResult(symbol)) { messages_.Say("A function result must not be initialized"_err_en_US); } else if (IsInBlankCommon(symbol)) { messages_.Say( "A variable in blank COMMON should not be initialized"_en_US); } } if (symbol.owner().kind() == Scope::Kind::BlockData) { if (IsAllocatable(symbol)) { messages_.Say( "An ALLOCATABLE variable may not appear in a BLOCK DATA subprogram"_err_en_US); } else if (IsInitialized(symbol) && !FindCommonBlockContaining(symbol)) { messages_.Say( "An initialized variable in BLOCK DATA must be in a COMMON block"_err_en_US); } } if (const DeclTypeSpec * type{details.type()}) { // C708 if (type->IsPolymorphic() && !(type->IsAssumedType() || IsAllocatableOrPointer(symbol) || IsDummy(symbol))) { messages_.Say("CLASS entity '%s' must be a dummy argument or have " "ALLOCATABLE or POINTER attribute"_err_en_US, symbol.name()); } } } void CheckHelper::CheckPointerInitialization(const Symbol &symbol) { if (IsPointer(symbol) && !context_.HasError(symbol) && !scopeIsUninstantiatedPDT_) { if (const auto *object{symbol.detailsIf()}) { if (object->init()) { // C764, C765; C808 if (auto dyType{evaluate::DynamicType::From(symbol)}) { if (auto designator{evaluate::TypedWrapper( *dyType, evaluate::DataRef{symbol})}) { auto restorer{messages_.SetLocation(symbol.name())}; context_.set_location(symbol.name()); CheckInitialTarget(foldingContext_, *designator, *object->init()); } } } } else if (const auto *proc{symbol.detailsIf()}) { if (proc->init() && *proc->init()) { // C1519 - must be nonelemental external or module procedure, // or an unrestricted specific intrinsic function. const Symbol &ultimate{(*proc->init())->GetUltimate()}; if (ultimate.attrs().test(Attr::INTRINSIC)) { } else if (!ultimate.attrs().test(Attr::EXTERNAL) && ultimate.owner().kind() != Scope::Kind::Module) { context_.Say("Procedure pointer '%s' initializer '%s' is neither " "an external nor a module procedure"_err_en_US, symbol.name(), ultimate.name()); } else if (ultimate.attrs().test(Attr::ELEMENTAL)) { context_.Say("Procedure pointer '%s' cannot be initialized with the " "elemental procedure '%s"_err_en_US, symbol.name(), ultimate.name()); } else { // TODO: Check the "shalls" in the 15.4.3.6 paragraphs 7-10. } } } } } // The six different kinds of array-specs: // array-spec -> explicit-shape-list | deferred-shape-list // | assumed-shape-list | implied-shape-list // | assumed-size | assumed-rank // explicit-shape -> [ lb : ] ub // deferred-shape -> : // assumed-shape -> [ lb ] : // implied-shape -> [ lb : ] * // assumed-size -> [ explicit-shape-list , ] [ lb : ] * // assumed-rank -> .. // Note: // - deferred-shape is also an assumed-shape // - A single "*" or "lb:*" might be assumed-size or implied-shape-list void CheckHelper::CheckArraySpec( const Symbol &symbol, const ArraySpec &arraySpec) { if (arraySpec.Rank() == 0) { return; } bool isExplicit{arraySpec.IsExplicitShape()}; bool isDeferred{arraySpec.IsDeferredShape()}; bool isImplied{arraySpec.IsImpliedShape()}; bool isAssumedShape{arraySpec.IsAssumedShape()}; bool isAssumedSize{arraySpec.IsAssumedSize()}; bool isAssumedRank{arraySpec.IsAssumedRank()}; std::optional msg; if (symbol.test(Symbol::Flag::CrayPointee) && !isExplicit && !isAssumedSize) { msg = "Cray pointee '%s' must have must have explicit shape or" " assumed size"_err_en_US; } else if (IsAllocatableOrPointer(symbol) && !isDeferred && !isAssumedRank) { if (symbol.owner().IsDerivedType()) { // C745 if (IsAllocatable(symbol)) { msg = "Allocatable array component '%s' must have" " deferred shape"_err_en_US; } else { msg = "Array pointer component '%s' must have deferred shape"_err_en_US; } } else { if (IsAllocatable(symbol)) { // C832 msg = "Allocatable array '%s' must have deferred shape or" " assumed rank"_err_en_US; } else { msg = "Array pointer '%s' must have deferred shape or" " assumed rank"_err_en_US; } } } else if (IsDummy(symbol)) { if (isImplied && !isAssumedSize) { // C836 msg = "Dummy array argument '%s' may not have implied shape"_err_en_US; } } else if (isAssumedShape && !isDeferred) { msg = "Assumed-shape array '%s' must be a dummy argument"_err_en_US; } else if (isAssumedSize && !isImplied) { // C833 msg = "Assumed-size array '%s' must be a dummy argument"_err_en_US; } else if (isAssumedRank) { // C837 msg = "Assumed-rank array '%s' must be a dummy argument"_err_en_US; } else if (isImplied) { if (!IsNamedConstant(symbol)) { // C836 msg = "Implied-shape array '%s' must be a named constant"_err_en_US; } } else if (IsNamedConstant(symbol)) { if (!isExplicit && !isImplied) { msg = "Named constant '%s' array must have constant or" " implied shape"_err_en_US; } } else if (!IsAllocatableOrPointer(symbol) && !isExplicit) { if (symbol.owner().IsDerivedType()) { // C749 msg = "Component array '%s' without ALLOCATABLE or POINTER attribute must" " have explicit shape"_err_en_US; } else { // C816 msg = "Array '%s' without ALLOCATABLE or POINTER attribute must have" " explicit shape"_err_en_US; } } if (msg) { context_.Say(std::move(*msg), symbol.name()); } } void CheckHelper::CheckProcEntity( const Symbol &symbol, const ProcEntityDetails &details) { if (details.isDummy()) { const Symbol *interface{details.interface().symbol()}; if (!symbol.attrs().test(Attr::INTRINSIC) && (symbol.attrs().test(Attr::ELEMENTAL) || (interface && !interface->attrs().test(Attr::INTRINSIC) && interface->attrs().test(Attr::ELEMENTAL)))) { // There's no explicit constraint or "shall" that we can find in the // standard for this check, but it seems to be implied in multiple // sites, and ELEMENTAL non-intrinsic actual arguments *are* // explicitly forbidden. But we allow "PROCEDURE(SIN)::dummy" // because it is explicitly legal to *pass* the specific intrinsic // function SIN as an actual argument. messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US); } } else if (symbol.owner().IsDerivedType()) { if (!symbol.attrs().test(Attr::POINTER)) { // C756 const auto &name{symbol.name()}; messages_.Say(name, "Procedure component '%s' must have POINTER attribute"_err_en_US, name); } CheckPassArg(symbol, details.interface().symbol(), details); } if (symbol.attrs().test(Attr::POINTER)) { CheckPointerInitialization(symbol); if (const Symbol * interface{details.interface().symbol()}) { if (interface->attrs().test(Attr::ELEMENTAL) && !interface->attrs().test(Attr::INTRINSIC)) { messages_.Say("Procedure pointer '%s' may not be ELEMENTAL"_err_en_US, symbol.name()); // C1517 } } } else if (symbol.attrs().test(Attr::SAVE)) { messages_.Say( "Procedure '%s' with SAVE attribute must also have POINTER attribute"_err_en_US, symbol.name()); } } // When a module subprogram has the MODULE prefix the following must match // with the corresponding separate module procedure interface body: // - C1549: characteristics and dummy argument names // - C1550: binding label // - C1551: NON_RECURSIVE prefix class SubprogramMatchHelper { public: explicit SubprogramMatchHelper(CheckHelper &checkHelper) : checkHelper{checkHelper} {} void Check(const Symbol &, const Symbol &); private: SemanticsContext &context() { return checkHelper.context(); } void CheckDummyArg(const Symbol &, const Symbol &, const DummyArgument &, const DummyArgument &); void CheckDummyDataObject(const Symbol &, const Symbol &, const DummyDataObject &, const DummyDataObject &); void CheckDummyProcedure(const Symbol &, const Symbol &, const DummyProcedure &, const DummyProcedure &); bool CheckSameIntent( const Symbol &, const Symbol &, common::Intent, common::Intent); template void Say( const Symbol &, const Symbol &, parser::MessageFixedText &&, A &&...); template bool CheckSameAttrs(const Symbol &, const Symbol &, ATTRS, ATTRS); bool ShapesAreCompatible(const DummyDataObject &, const DummyDataObject &); evaluate::Shape FoldShape(const evaluate::Shape &); std::string AsFortran(DummyDataObject::Attr attr) { return parser::ToUpperCaseLetters(DummyDataObject::EnumToString(attr)); } std::string AsFortran(DummyProcedure::Attr attr) { return parser::ToUpperCaseLetters(DummyProcedure::EnumToString(attr)); } CheckHelper &checkHelper; }; // 15.6.2.6 para 3 - can the result of an ENTRY differ from its function? bool CheckHelper::IsResultOkToDiffer(const FunctionResult &result) { if (result.attrs.test(FunctionResult::Attr::Allocatable) || result.attrs.test(FunctionResult::Attr::Pointer)) { return false; } const auto *typeAndShape{result.GetTypeAndShape()}; if (!typeAndShape || typeAndShape->Rank() != 0) { return false; } auto category{typeAndShape->type().category()}; if (category == TypeCategory::Character || category == TypeCategory::Derived) { return false; } int kind{typeAndShape->type().kind()}; return kind == context_.GetDefaultKind(category) || (category == TypeCategory::Real && kind == context_.doublePrecisionKind()); } void CheckHelper::CheckSubprogram( const Symbol &symbol, const SubprogramDetails &details) { if (const Symbol * iface{FindSeparateModuleSubprogramInterface(&symbol)}) { SubprogramMatchHelper{*this}.Check(symbol, *iface); } if (const Scope * entryScope{details.entryScope()}) { // ENTRY 15.6.2.6, esp. C1571 std::optional error; const Symbol *subprogram{entryScope->symbol()}; const SubprogramDetails *subprogramDetails{nullptr}; if (subprogram) { subprogramDetails = subprogram->detailsIf(); } if (entryScope->kind() != Scope::Kind::Subprogram) { error = "ENTRY may appear only in a subroutine or function"_err_en_US; } else if (!(entryScope->parent().IsGlobal() || entryScope->parent().IsModule() || entryScope->parent().IsSubmodule())) { error = "ENTRY may not appear in an internal subprogram"_err_en_US; } else if (FindSeparateModuleSubprogramInterface(subprogram)) { error = "ENTRY may not appear in a separate module procedure"_err_en_US; } else if (subprogramDetails && details.isFunction() && subprogramDetails->isFunction()) { auto result{FunctionResult::Characterize( details.result(), context_.foldingContext())}; auto subpResult{FunctionResult::Characterize( subprogramDetails->result(), context_.foldingContext())}; if (result && subpResult && *result != *subpResult && (!IsResultOkToDiffer(*result) || !IsResultOkToDiffer(*subpResult))) { error = "Result of ENTRY is not compatible with result of containing function"_err_en_US; } } if (error) { if (auto *msg{messages_.Say(symbol.name(), *error)}) { if (subprogram) { msg->Attach(subprogram->name(), "Containing subprogram"_en_US); } } } } } void CheckHelper::CheckDerivedType( const Symbol &derivedType, const DerivedTypeDetails &details) { const Scope *scope{derivedType.scope()}; if (!scope) { CHECK(details.isForwardReferenced()); return; } CHECK(scope->symbol() == &derivedType); CHECK(scope->IsDerivedType()); if (derivedType.attrs().test(Attr::ABSTRACT) && // C734 (derivedType.attrs().test(Attr::BIND_C) || details.sequence())) { messages_.Say("An ABSTRACT derived type must be extensible"_err_en_US); } if (const DeclTypeSpec * parent{FindParentTypeSpec(derivedType)}) { const DerivedTypeSpec *parentDerived{parent->AsDerived()}; if (!IsExtensibleType(parentDerived)) { // C705 messages_.Say("The parent type is not extensible"_err_en_US); } if (!derivedType.attrs().test(Attr::ABSTRACT) && parentDerived && parentDerived->typeSymbol().attrs().test(Attr::ABSTRACT)) { ScopeComponentIterator components{*parentDerived}; for (const Symbol &component : components) { if (component.attrs().test(Attr::DEFERRED)) { if (scope->FindComponent(component.name()) == &component) { SayWithDeclaration(component, "Non-ABSTRACT extension of ABSTRACT derived type '%s' lacks a binding for DEFERRED procedure '%s'"_err_en_US, parentDerived->typeSymbol().name(), component.name()); } } } } DerivedTypeSpec derived{derivedType.name(), derivedType}; derived.set_scope(*scope); if (FindCoarrayUltimateComponent(derived) && // C736 !(parentDerived && FindCoarrayUltimateComponent(*parentDerived))) { messages_.Say( "Type '%s' has a coarray ultimate component so the type at the base " "of its type extension chain ('%s') must be a type that has a " "coarray ultimate component"_err_en_US, derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name()); } if (FindEventOrLockPotentialComponent(derived) && // C737 !(FindEventOrLockPotentialComponent(*parentDerived) || IsEventTypeOrLockType(parentDerived))) { messages_.Say( "Type '%s' has an EVENT_TYPE or LOCK_TYPE component, so the type " "at the base of its type extension chain ('%s') must either have an " "EVENT_TYPE or LOCK_TYPE component, or be EVENT_TYPE or " "LOCK_TYPE"_err_en_US, derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name()); } } if (HasIntrinsicTypeName(derivedType)) { // C729 messages_.Say("A derived type name cannot be the name of an intrinsic" " type"_err_en_US); } std::map previous; for (const auto &pair : details.finals()) { SourceName source{pair.first}; const Symbol &ref{*pair.second}; if (CheckFinal(ref, source, derivedType) && std::all_of(previous.begin(), previous.end(), [&](std::pair prev) { return CheckDistinguishableFinals( ref, source, *prev.second, prev.first, derivedType); })) { previous.emplace(source, ref); } } } // C786 bool CheckHelper::CheckFinal( const Symbol &subroutine, SourceName finalName, const Symbol &derivedType) { if (!IsModuleProcedure(subroutine)) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must be a module procedure"_err_en_US, subroutine.name(), derivedType.name()); return false; } const Procedure *proc{Characterize(subroutine)}; if (!proc) { return false; // error recovery } if (!proc->IsSubroutine()) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must be a subroutine"_err_en_US, subroutine.name(), derivedType.name()); return false; } if (proc->dummyArguments.size() != 1) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must have a single dummy argument"_err_en_US, subroutine.name(), derivedType.name()); return false; } const auto &arg{proc->dummyArguments[0]}; const Symbol *errSym{&subroutine}; if (const auto *details{subroutine.detailsIf()}) { if (!details->dummyArgs().empty()) { if (const Symbol * argSym{details->dummyArgs()[0]}) { errSym = argSym; } } } const auto *ddo{std::get_if(&arg.u)}; if (!ddo) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must have a single dummy argument that is a data object"_err_en_US, subroutine.name(), derivedType.name()); return false; } bool ok{true}; if (arg.IsOptional()) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have an OPTIONAL dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->attrs.test(DummyDataObject::Attr::Allocatable)) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have an ALLOCATABLE dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->attrs.test(DummyDataObject::Attr::Pointer)) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a POINTER dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->intent == common::Intent::Out) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with INTENT(OUT)"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->attrs.test(DummyDataObject::Attr::Value)) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with the VALUE attribute"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->type.corank() > 0) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a coarray dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->type.type().IsPolymorphic()) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a polymorphic dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } else if (ddo->type.type().category() != TypeCategory::Derived || &ddo->type.type().GetDerivedTypeSpec().typeSymbol() != &derivedType) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must have a TYPE(%s) dummy argument"_err_en_US, subroutine.name(), derivedType.name(), derivedType.name()); ok = false; } else { // check that all LEN type parameters are assumed for (auto ref : OrderParameterDeclarations(derivedType)) { if (IsLenTypeParameter(*ref)) { const auto *value{ ddo->type.type().GetDerivedTypeSpec().FindParameter(ref->name())}; if (!value || !value->isAssumed()) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must have a dummy argument with an assumed LEN type parameter '%s=*'"_err_en_US, subroutine.name(), derivedType.name(), ref->name()); ok = false; } } } } return ok; } bool CheckHelper::CheckDistinguishableFinals(const Symbol &f1, SourceName f1Name, const Symbol &f2, SourceName f2Name, const Symbol &derivedType) { const Procedure *p1{Characterize(f1)}; const Procedure *p2{Characterize(f2)}; if (p1 && p2) { if (characteristics::Distinguishable(*p1, *p2)) { return true; } if (auto *msg{messages_.Say(f1Name, "FINAL subroutines '%s' and '%s' of derived type '%s' cannot be distinguished by rank or KIND type parameter value"_err_en_US, f1Name, f2Name, derivedType.name())}) { msg->Attach(f2Name, "FINAL declaration of '%s'"_en_US, f2.name()) .Attach(f1.name(), "Definition of '%s'"_en_US, f1Name) .Attach(f2.name(), "Definition of '%s'"_en_US, f2Name); } } return false; } void CheckHelper::CheckHostAssoc( const Symbol &symbol, const HostAssocDetails &details) { const Symbol &hostSymbol{details.symbol()}; if (hostSymbol.test(Symbol::Flag::ImplicitOrError)) { if (details.implicitOrSpecExprError) { messages_.Say("Implicitly typed local entity '%s' not allowed in" " specification expression"_err_en_US, symbol.name()); } else if (details.implicitOrExplicitTypeError) { messages_.Say( "No explicit type declared for '%s'"_err_en_US, symbol.name()); } } } void CheckHelper::CheckGeneric( const Symbol &symbol, const GenericDetails &details) { CheckSpecificsAreDistinguishable(symbol, details); } // Check that the specifics of this generic are distinguishable from each other void CheckHelper::CheckSpecificsAreDistinguishable( const Symbol &generic, const GenericDetails &details) { GenericKind kind{details.kind()}; const SymbolVector &specifics{details.specificProcs()}; std::size_t count{specifics.size()}; if (count < 2 || !kind.IsName()) { return; } DistinguishabilityHelper helper{context_}; for (const Symbol &specific : specifics) { if (const Procedure * procedure{Characterize(specific)}) { helper.Add(generic, kind, specific, *procedure); } } helper.Check(generic.owner()); } static bool ConflictsWithIntrinsicAssignment(const Procedure &proc) { auto lhs{std::get(proc.dummyArguments[0].u).type}; auto rhs{std::get(proc.dummyArguments[1].u).type}; return Tristate::No == IsDefinedAssignment(lhs.type(), lhs.Rank(), rhs.type(), rhs.Rank()); } static bool ConflictsWithIntrinsicOperator( const GenericKind &kind, const Procedure &proc) { if (!kind.IsIntrinsicOperator()) { return false; } auto arg0{std::get(proc.dummyArguments[0].u).type}; auto type0{arg0.type()}; if (proc.dummyArguments.size() == 1) { // unary return std::visit( common::visitors{ [&](common::NumericOperator) { return IsIntrinsicNumeric(type0); }, [&](common::LogicalOperator) { return IsIntrinsicLogical(type0); }, [](const auto &) -> bool { DIE("bad generic kind"); }, }, kind.u); } else { // binary int rank0{arg0.Rank()}; auto arg1{std::get(proc.dummyArguments[1].u).type}; auto type1{arg1.type()}; int rank1{arg1.Rank()}; return std::visit( common::visitors{ [&](common::NumericOperator) { return IsIntrinsicNumeric(type0, rank0, type1, rank1); }, [&](common::LogicalOperator) { return IsIntrinsicLogical(type0, rank0, type1, rank1); }, [&](common::RelationalOperator opr) { return IsIntrinsicRelational(opr, type0, rank0, type1, rank1); }, [&](GenericKind::OtherKind x) { CHECK(x == GenericKind::OtherKind::Concat); return IsIntrinsicConcat(type0, rank0, type1, rank1); }, [](const auto &) -> bool { DIE("bad generic kind"); }, }, kind.u); } } // Check if this procedure can be used for defined operators (see 15.4.3.4.2). bool CheckHelper::CheckDefinedOperator(SourceName opName, GenericKind kind, const Symbol &specific, const Procedure &proc) { if (context_.HasError(specific)) { return false; } std::optional msg; if (specific.attrs().test(Attr::NOPASS)) { // C774 msg = "%s procedure '%s' may not have NOPASS attribute"_err_en_US; } else if (!proc.functionResult.has_value()) { msg = "%s procedure '%s' must be a function"_err_en_US; } else if (proc.functionResult->IsAssumedLengthCharacter()) { msg = "%s function '%s' may not have assumed-length CHARACTER(*)" " result"_err_en_US; } else if (auto m{CheckNumberOfArgs(kind, proc.dummyArguments.size())}) { msg = std::move(m); } else if (!CheckDefinedOperatorArg(opName, specific, proc, 0) | !CheckDefinedOperatorArg(opName, specific, proc, 1)) { return false; // error was reported } else if (ConflictsWithIntrinsicOperator(kind, proc)) { msg = "%s function '%s' conflicts with intrinsic operator"_err_en_US; } else { return true; // OK } SayWithDeclaration( specific, std::move(*msg), MakeOpName(opName), specific.name()); context_.SetError(specific); return false; } // If the number of arguments is wrong for this intrinsic operator, return // false and return the error message in msg. std::optional CheckHelper::CheckNumberOfArgs( const GenericKind &kind, std::size_t nargs) { if (!kind.IsIntrinsicOperator()) { return std::nullopt; } std::size_t min{2}, max{2}; // allowed number of args; default is binary std::visit(common::visitors{ [&](const common::NumericOperator &x) { if (x == common::NumericOperator::Add || x == common::NumericOperator::Subtract) { min = 1; // + and - are unary or binary } }, [&](const common::LogicalOperator &x) { if (x == common::LogicalOperator::Not) { min = 1; // .NOT. is unary max = 1; } }, [](const common::RelationalOperator &) { // all are binary }, [](const GenericKind::OtherKind &x) { CHECK(x == GenericKind::OtherKind::Concat); }, [](const auto &) { DIE("expected intrinsic operator"); }, }, kind.u); if (nargs >= min && nargs <= max) { return std::nullopt; } else if (max == 1) { return "%s function '%s' must have one dummy argument"_err_en_US; } else if (min == 2) { return "%s function '%s' must have two dummy arguments"_err_en_US; } else { return "%s function '%s' must have one or two dummy arguments"_err_en_US; } } bool CheckHelper::CheckDefinedOperatorArg(const SourceName &opName, const Symbol &symbol, const Procedure &proc, std::size_t pos) { if (pos >= proc.dummyArguments.size()) { return true; } auto &arg{proc.dummyArguments.at(pos)}; std::optional msg; if (arg.IsOptional()) { msg = "In %s function '%s', dummy argument '%s' may not be" " OPTIONAL"_err_en_US; } else if (const auto *dataObject{std::get_if(&arg.u)}; dataObject == nullptr) { msg = "In %s function '%s', dummy argument '%s' must be a" " data object"_err_en_US; } else if (dataObject->intent != common::Intent::In && !dataObject->attrs.test(DummyDataObject::Attr::Value)) { msg = "In %s function '%s', dummy argument '%s' must have INTENT(IN)" " or VALUE attribute"_err_en_US; } if (msg) { SayWithDeclaration(symbol, std::move(*msg), parser::ToUpperCaseLetters(opName.ToString()), symbol.name(), arg.name); return false; } return true; } // Check if this procedure can be used for defined assignment (see 15.4.3.4.3). bool CheckHelper::CheckDefinedAssignment( const Symbol &specific, const Procedure &proc) { if (context_.HasError(specific)) { return false; } std::optional msg; if (specific.attrs().test(Attr::NOPASS)) { // C774 msg = "Defined assignment procedure '%s' may not have" " NOPASS attribute"_err_en_US; } else if (!proc.IsSubroutine()) { msg = "Defined assignment procedure '%s' must be a subroutine"_err_en_US; } else if (proc.dummyArguments.size() != 2) { msg = "Defined assignment subroutine '%s' must have" " two dummy arguments"_err_en_US; } else if (!CheckDefinedAssignmentArg(specific, proc.dummyArguments[0], 0) | !CheckDefinedAssignmentArg(specific, proc.dummyArguments[1], 1)) { return false; // error was reported } else if (ConflictsWithIntrinsicAssignment(proc)) { msg = "Defined assignment subroutine '%s' conflicts with" " intrinsic assignment"_err_en_US; } else { return true; // OK } SayWithDeclaration(specific, std::move(msg.value()), specific.name()); context_.SetError(specific); return false; } bool CheckHelper::CheckDefinedAssignmentArg( const Symbol &symbol, const DummyArgument &arg, int pos) { std::optional msg; if (arg.IsOptional()) { msg = "In defined assignment subroutine '%s', dummy argument '%s'" " may not be OPTIONAL"_err_en_US; } else if (const auto *dataObject{std::get_if(&arg.u)}) { if (pos == 0) { if (dataObject->intent != common::Intent::Out && dataObject->intent != common::Intent::InOut) { msg = "In defined assignment subroutine '%s', first dummy argument '%s'" " must have INTENT(OUT) or INTENT(INOUT)"_err_en_US; } } else if (pos == 1) { if (dataObject->intent != common::Intent::In && !dataObject->attrs.test(DummyDataObject::Attr::Value)) { msg = "In defined assignment subroutine '%s', second dummy" " argument '%s' must have INTENT(IN) or VALUE attribute"_err_en_US; } } else { DIE("pos must be 0 or 1"); } } else { msg = "In defined assignment subroutine '%s', dummy argument '%s'" " must be a data object"_err_en_US; } if (msg) { SayWithDeclaration(symbol, std::move(*msg), symbol.name(), arg.name); context_.SetError(symbol); return false; } return true; } // Report a conflicting attribute error if symbol has both of these attributes bool CheckHelper::CheckConflicting(const Symbol &symbol, Attr a1, Attr a2) { if (symbol.attrs().test(a1) && symbol.attrs().test(a2)) { messages_.Say("'%s' may not have both the %s and %s attributes"_err_en_US, symbol.name(), EnumToString(a1), EnumToString(a2)); return true; } else { return false; } } void CheckHelper::WarnMissingFinal(const Symbol &symbol) { const auto *object{symbol.detailsIf()}; if (!object || IsPointer(symbol)) { return; } const DeclTypeSpec *type{object->type()}; const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr}; const Symbol *derivedSym{derived ? &derived->typeSymbol() : nullptr}; int rank{object->shape().Rank()}; const Symbol *initialDerivedSym{derivedSym}; while (const auto *derivedDetails{ derivedSym ? derivedSym->detailsIf() : nullptr}) { if (!derivedDetails->finals().empty() && !derivedDetails->GetFinalForRank(rank)) { if (auto *msg{derivedSym == initialDerivedSym ? messages_.Say(symbol.name(), "'%s' of derived type '%s' does not have a FINAL subroutine for its rank (%d)"_en_US, symbol.name(), derivedSym->name(), rank) : messages_.Say(symbol.name(), "'%s' of derived type '%s' extended from '%s' does not have a FINAL subroutine for its rank (%d)"_en_US, symbol.name(), initialDerivedSym->name(), derivedSym->name(), rank)}) { msg->Attach(derivedSym->name(), "Declaration of derived type '%s'"_en_US, derivedSym->name()); } return; } derived = derivedSym->GetParentTypeSpec(); derivedSym = derived ? &derived->typeSymbol() : nullptr; } } const Procedure *CheckHelper::Characterize(const Symbol &symbol) { auto it{characterizeCache_.find(symbol)}; if (it == characterizeCache_.end()) { auto pair{characterizeCache_.emplace(SymbolRef{symbol}, Procedure::Characterize(symbol, context_.foldingContext()))}; it = pair.first; } return common::GetPtrFromOptional(it->second); } void CheckHelper::CheckVolatile(const Symbol &symbol, bool isAssociated, const DerivedTypeSpec *derived) { // C866 - C868 if (IsIntentIn(symbol)) { messages_.Say( "VOLATILE attribute may not apply to an INTENT(IN) argument"_err_en_US); } if (IsProcedure(symbol)) { messages_.Say("VOLATILE attribute may apply only to a variable"_err_en_US); } if (isAssociated) { const Symbol &ultimate{symbol.GetUltimate()}; if (IsCoarray(ultimate)) { messages_.Say( "VOLATILE attribute may not apply to a coarray accessed by USE or host association"_err_en_US); } if (derived) { if (FindCoarrayUltimateComponent(*derived)) { messages_.Say( "VOLATILE attribute may not apply to a type with a coarray ultimate component accessed by USE or host association"_err_en_US); } } } } void CheckHelper::CheckPointer(const Symbol &symbol) { // C852 CheckConflicting(symbol, Attr::POINTER, Attr::TARGET); CheckConflicting(symbol, Attr::POINTER, Attr::ALLOCATABLE); // C751 CheckConflicting(symbol, Attr::POINTER, Attr::INTRINSIC); // Prohibit constant pointers. The standard does not explicitly prohibit // them, but the PARAMETER attribute requires a entity-decl to have an // initialization that is a constant-expr, and the only form of // initialization that allows a constant-expr is the one that's not a "=>" // pointer initialization. See C811, C807, and section 8.5.13. CheckConflicting(symbol, Attr::POINTER, Attr::PARAMETER); if (symbol.Corank() > 0) { messages_.Say( "'%s' may not have the POINTER attribute because it is a coarray"_err_en_US, symbol.name()); } } // C760 constraints on the passed-object dummy argument // C757 constraints on procedure pointer components void CheckHelper::CheckPassArg( const Symbol &proc, const Symbol *interface, const WithPassArg &details) { if (proc.attrs().test(Attr::NOPASS)) { return; } const auto &name{proc.name()}; if (!interface) { messages_.Say(name, "Procedure component '%s' must have NOPASS attribute or explicit interface"_err_en_US, name); return; } const auto *subprogram{interface->detailsIf()}; if (!subprogram) { messages_.Say(name, "Procedure component '%s' has invalid interface '%s'"_err_en_US, name, interface->name()); return; } std::optional passName{details.passName()}; const auto &dummyArgs{subprogram->dummyArgs()}; if (!passName) { if (dummyArgs.empty()) { messages_.Say(name, proc.has() ? "Procedure component '%s' with no dummy arguments" " must have NOPASS attribute"_err_en_US : "Procedure binding '%s' with no dummy arguments" " must have NOPASS attribute"_err_en_US, name); return; } passName = dummyArgs[0]->name(); } std::optional passArgIndex{}; for (std::size_t i{0}; i < dummyArgs.size(); ++i) { if (dummyArgs[i] && dummyArgs[i]->name() == *passName) { passArgIndex = i; break; } } if (!passArgIndex) { // C758 messages_.Say(*passName, "'%s' is not a dummy argument of procedure interface '%s'"_err_en_US, *passName, interface->name()); return; } const Symbol &passArg{*dummyArgs[*passArgIndex]}; std::optional msg; if (!passArg.has()) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " must be a data object"_err_en_US; } else if (passArg.attrs().test(Attr::POINTER)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the POINTER attribute"_err_en_US; } else if (passArg.attrs().test(Attr::ALLOCATABLE)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the ALLOCATABLE attribute"_err_en_US; } else if (passArg.attrs().test(Attr::VALUE)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the VALUE attribute"_err_en_US; } else if (passArg.Rank() > 0) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " must be scalar"_err_en_US; } if (msg) { messages_.Say(name, std::move(*msg), passName.value(), name); return; } const DeclTypeSpec *type{passArg.GetType()}; if (!type) { return; // an error already occurred } const Symbol &typeSymbol{*proc.owner().GetSymbol()}; const DerivedTypeSpec *derived{type->AsDerived()}; if (!derived || derived->typeSymbol() != typeSymbol) { messages_.Say(name, "Passed-object dummy argument '%s' of procedure '%s'" " must be of type '%s' but is '%s'"_err_en_US, passName.value(), name, typeSymbol.name(), type->AsFortran()); return; } if (IsExtensibleType(derived) != type->IsPolymorphic()) { messages_.Say(name, type->IsPolymorphic() ? "Passed-object dummy argument '%s' of procedure '%s'" " may not be polymorphic because '%s' is not extensible"_err_en_US : "Passed-object dummy argument '%s' of procedure '%s'" " must be polymorphic because '%s' is extensible"_err_en_US, passName.value(), name, typeSymbol.name()); return; } for (const auto &[paramName, paramValue] : derived->parameters()) { if (paramValue.isLen() && !paramValue.isAssumed()) { messages_.Say(name, "Passed-object dummy argument '%s' of procedure '%s'" " has non-assumed length parameter '%s'"_err_en_US, passName.value(), name, paramName); } } } void CheckHelper::CheckProcBinding( const Symbol &symbol, const ProcBindingDetails &binding) { const Scope &dtScope{symbol.owner()}; CHECK(dtScope.kind() == Scope::Kind::DerivedType); if (const Symbol * dtSymbol{dtScope.symbol()}) { if (symbol.attrs().test(Attr::DEFERRED)) { if (!dtSymbol->attrs().test(Attr::ABSTRACT)) { // C733 SayWithDeclaration(*dtSymbol, "Procedure bound to non-ABSTRACT derived type '%s' may not be DEFERRED"_err_en_US, dtSymbol->name()); } if (symbol.attrs().test(Attr::NON_OVERRIDABLE)) { messages_.Say( "Type-bound procedure '%s' may not be both DEFERRED and NON_OVERRIDABLE"_err_en_US, symbol.name()); } } } if (const Symbol * overridden{FindOverriddenBinding(symbol)}) { if (overridden->attrs().test(Attr::NON_OVERRIDABLE)) { SayWithDeclaration(*overridden, "Override of NON_OVERRIDABLE '%s' is not permitted"_err_en_US, symbol.name()); } if (const auto *overriddenBinding{ overridden->detailsIf()}) { if (!IsPureProcedure(symbol) && IsPureProcedure(*overridden)) { SayWithDeclaration(*overridden, "An overridden pure type-bound procedure binding must also be pure"_err_en_US); return; } if (!binding.symbol().attrs().test(Attr::ELEMENTAL) && overriddenBinding->symbol().attrs().test(Attr::ELEMENTAL)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must both, or neither, be ELEMENTAL"_err_en_US); return; } bool isNopass{symbol.attrs().test(Attr::NOPASS)}; if (isNopass != overridden->attrs().test(Attr::NOPASS)) { SayWithDeclaration(*overridden, isNopass ? "A NOPASS type-bound procedure may not override a passed-argument procedure"_err_en_US : "A passed-argument type-bound procedure may not override a NOPASS procedure"_err_en_US); } else { const auto *bindingChars{Characterize(binding.symbol())}; const auto *overriddenChars{Characterize(overriddenBinding->symbol())}; if (bindingChars && overriddenChars) { if (isNopass) { if (!bindingChars->CanOverride(*overriddenChars, std::nullopt)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must have compatible interfaces"_err_en_US); } } else { int passIndex{bindingChars->FindPassIndex(binding.passName())}; int overriddenPassIndex{ overriddenChars->FindPassIndex(overriddenBinding->passName())}; if (passIndex != overriddenPassIndex) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must use the same PASS argument"_err_en_US); } else if (!bindingChars->CanOverride( *overriddenChars, passIndex)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must have compatible interfaces apart from their passed argument"_err_en_US); } } } } if (symbol.attrs().test(Attr::PRIVATE) && overridden->attrs().test(Attr::PUBLIC)) { SayWithDeclaration(*overridden, "A PRIVATE procedure may not override a PUBLIC procedure"_err_en_US); } } else { SayWithDeclaration(*overridden, "A type-bound procedure binding may not have the same name as a parent component"_err_en_US); } } CheckPassArg(symbol, &binding.symbol(), binding); } void CheckHelper::Check(const Scope &scope) { scope_ = &scope; common::Restorer restorer{innermostSymbol_}; if (const Symbol * symbol{scope.symbol()}) { innermostSymbol_ = symbol; } if (scope.IsParameterizedDerivedTypeInstantiation()) { auto restorer{common::ScopedSet(scopeIsUninstantiatedPDT_, false)}; auto restorer2{context_.foldingContext().messages().SetContext( scope.instantiationContext().get())}; for (const auto &pair : scope) { CheckPointerInitialization(*pair.second); } } else { auto restorer{common::ScopedSet( scopeIsUninstantiatedPDT_, scope.IsParameterizedDerivedType())}; for (const auto &set : scope.equivalenceSets()) { CheckEquivalenceSet(set); } for (const auto &pair : scope) { Check(*pair.second); } for (const Scope &child : scope.children()) { Check(child); } if (scope.kind() == Scope::Kind::BlockData) { CheckBlockData(scope); } CheckGenericOps(scope); } } void CheckHelper::CheckEquivalenceSet(const EquivalenceSet &set) { auto iter{ std::find_if(set.begin(), set.end(), [](const EquivalenceObject &object) { return FindCommonBlockContaining(object.symbol) != nullptr; })}; if (iter != set.end()) { const Symbol &commonBlock{DEREF(FindCommonBlockContaining(iter->symbol))}; for (auto &object : set) { if (&object != &*iter) { if (auto *details{object.symbol.detailsIf()}) { if (details->commonBlock()) { if (details->commonBlock() != &commonBlock) { // 8.10.3 paragraph 1 if (auto *msg{messages_.Say(object.symbol.name(), "Two objects in the same EQUIVALENCE set may not be members of distinct COMMON blocks"_err_en_US)}) { msg->Attach(iter->symbol.name(), "Other object in EQUIVALENCE set"_en_US) .Attach(details->commonBlock()->name(), "COMMON block containing '%s'"_en_US, object.symbol.name()) .Attach(commonBlock.name(), "COMMON block containing '%s'"_en_US, iter->symbol.name()); } } } else { // Mark all symbols in the equivalence set with the same COMMON // block to prevent spurious error messages about initialization // in BLOCK DATA outside COMMON details->set_commonBlock(commonBlock); } } } } } // TODO: Move C8106 (&al.) checks here from resolve-names-utils.cpp } void CheckHelper::CheckBlockData(const Scope &scope) { // BLOCK DATA subprograms should contain only named common blocks. // C1415 presents a list of statements that shouldn't appear in // BLOCK DATA, but so long as the subprogram contains no executable // code and allocates no storage outside named COMMON, we're happy // (e.g., an ENUM is strictly not allowed). for (const auto &pair : scope) { const Symbol &symbol{*pair.second}; if (!(symbol.has() || symbol.has() || symbol.has() || symbol.has() || symbol.has() || symbol.has() || (symbol.has() && !symbol.attrs().test(Attr::POINTER)))) { messages_.Say(symbol.name(), "'%s' may not appear in a BLOCK DATA subprogram"_err_en_US, symbol.name()); } } } // Check distinguishability of generic assignment and operators. // For these, generics and generic bindings must be considered together. void CheckHelper::CheckGenericOps(const Scope &scope) { DistinguishabilityHelper helper{context_}; auto addSpecifics{[&](const Symbol &generic) { const auto *details{generic.GetUltimate().detailsIf()}; if (!details) { return; } GenericKind kind{details->kind()}; if (!kind.IsAssignment() && !kind.IsOperator()) { return; } const SymbolVector &specifics{details->specificProcs()}; const std::vector &bindingNames{details->bindingNames()}; for (std::size_t i{0}; i < specifics.size(); ++i) { const Symbol &specific{*specifics[i]}; if (const Procedure * proc{Characterize(specific)}) { auto restorer{messages_.SetLocation(bindingNames[i])}; if (kind.IsAssignment()) { if (!CheckDefinedAssignment(specific, *proc)) { continue; } } else { if (!CheckDefinedOperator(generic.name(), kind, specific, *proc)) { continue; } } helper.Add(generic, kind, specific, *proc); } } }}; for (const auto &pair : scope) { const Symbol &symbol{*pair.second}; addSpecifics(symbol); const Symbol &ultimate{symbol.GetUltimate()}; if (ultimate.has()) { if (const Scope * typeScope{ultimate.scope()}) { for (const auto &pair2 : *typeScope) { addSpecifics(*pair2.second); } } } } helper.Check(scope); } void SubprogramMatchHelper::Check( const Symbol &symbol1, const Symbol &symbol2) { const auto details1{symbol1.get()}; const auto details2{symbol2.get()}; if (details1.isFunction() != details2.isFunction()) { Say(symbol1, symbol2, details1.isFunction() ? "Module function '%s' was declared as a subroutine in the" " corresponding interface body"_err_en_US : "Module subroutine '%s' was declared as a function in the" " corresponding interface body"_err_en_US); return; } const auto &args1{details1.dummyArgs()}; const auto &args2{details2.dummyArgs()}; int nargs1{static_cast(args1.size())}; int nargs2{static_cast(args2.size())}; if (nargs1 != nargs2) { Say(symbol1, symbol2, "Module subprogram '%s' has %d args but the corresponding interface" " body has %d"_err_en_US, nargs1, nargs2); return; } bool nonRecursive1{symbol1.attrs().test(Attr::NON_RECURSIVE)}; if (nonRecursive1 != symbol2.attrs().test(Attr::NON_RECURSIVE)) { // C1551 Say(symbol1, symbol2, nonRecursive1 ? "Module subprogram '%s' has NON_RECURSIVE prefix but" " the corresponding interface body does not"_err_en_US : "Module subprogram '%s' does not have NON_RECURSIVE prefix but " "the corresponding interface body does"_err_en_US); } MaybeExpr bindName1{details1.bindName()}; MaybeExpr bindName2{details2.bindName()}; if (bindName1.has_value() != bindName2.has_value()) { Say(symbol1, symbol2, bindName1.has_value() ? "Module subprogram '%s' has a binding label but the corresponding" " interface body does not"_err_en_US : "Module subprogram '%s' does not have a binding label but the" " corresponding interface body does"_err_en_US); } else if (bindName1) { std::string string1{bindName1->AsFortran()}; std::string string2{bindName2->AsFortran()}; if (string1 != string2) { Say(symbol1, symbol2, "Module subprogram '%s' has binding label %s but the corresponding" " interface body has %s"_err_en_US, string1, string2); } } const Procedure *proc1{checkHelper.Characterize(symbol1)}; const Procedure *proc2{checkHelper.Characterize(symbol2)}; if (!proc1 || !proc2) { return; } if (proc1->functionResult && proc2->functionResult && *proc1->functionResult != *proc2->functionResult) { Say(symbol1, symbol2, "Return type of function '%s' does not match return type of" " the corresponding interface body"_err_en_US); } for (int i{0}; i < nargs1; ++i) { const Symbol *arg1{args1[i]}; const Symbol *arg2{args2[i]}; if (arg1 && !arg2) { Say(symbol1, symbol2, "Dummy argument %2$d of '%1$s' is not an alternate return indicator" " but the corresponding argument in the interface body is"_err_en_US, i + 1); } else if (!arg1 && arg2) { Say(symbol1, symbol2, "Dummy argument %2$d of '%1$s' is an alternate return indicator but" " the corresponding argument in the interface body is not"_err_en_US, i + 1); } else if (arg1 && arg2) { SourceName name1{arg1->name()}; SourceName name2{arg2->name()}; if (name1 != name2) { Say(*arg1, *arg2, "Dummy argument name '%s' does not match corresponding name '%s'" " in interface body"_err_en_US, name2); } else { CheckDummyArg( *arg1, *arg2, proc1->dummyArguments[i], proc2->dummyArguments[i]); } } } } void SubprogramMatchHelper::CheckDummyArg(const Symbol &symbol1, const Symbol &symbol2, const DummyArgument &arg1, const DummyArgument &arg2) { std::visit(common::visitors{ [&](const DummyDataObject &obj1, const DummyDataObject &obj2) { CheckDummyDataObject(symbol1, symbol2, obj1, obj2); }, [&](const DummyProcedure &proc1, const DummyProcedure &proc2) { CheckDummyProcedure(symbol1, symbol2, proc1, proc2); }, [&](const DummyDataObject &, const auto &) { Say(symbol1, symbol2, "Dummy argument '%s' is a data object; the corresponding" " argument in the interface body is not"_err_en_US); }, [&](const DummyProcedure &, const auto &) { Say(symbol1, symbol2, "Dummy argument '%s' is a procedure; the corresponding" " argument in the interface body is not"_err_en_US); }, [&](const auto &, const auto &) { llvm_unreachable("Dummy arguments are not data objects or" "procedures"); }, }, arg1.u, arg2.u); } void SubprogramMatchHelper::CheckDummyDataObject(const Symbol &symbol1, const Symbol &symbol2, const DummyDataObject &obj1, const DummyDataObject &obj2) { if (!CheckSameIntent(symbol1, symbol2, obj1.intent, obj2.intent)) { } else if (!CheckSameAttrs(symbol1, symbol2, obj1.attrs, obj2.attrs)) { } else if (obj1.type.type() != obj2.type.type()) { Say(symbol1, symbol2, "Dummy argument '%s' has type %s; the corresponding argument in the" " interface body has type %s"_err_en_US, obj1.type.type().AsFortran(), obj2.type.type().AsFortran()); } else if (!ShapesAreCompatible(obj1, obj2)) { Say(symbol1, symbol2, "The shape of dummy argument '%s' does not match the shape of the" " corresponding argument in the interface body"_err_en_US); } // TODO: coshape } void SubprogramMatchHelper::CheckDummyProcedure(const Symbol &symbol1, const Symbol &symbol2, const DummyProcedure &proc1, const DummyProcedure &proc2) { if (!CheckSameIntent(symbol1, symbol2, proc1.intent, proc2.intent)) { } else if (!CheckSameAttrs(symbol1, symbol2, proc1.attrs, proc2.attrs)) { } else if (proc1 != proc2) { Say(symbol1, symbol2, "Dummy procedure '%s' does not match the corresponding argument in" " the interface body"_err_en_US); } } bool SubprogramMatchHelper::CheckSameIntent(const Symbol &symbol1, const Symbol &symbol2, common::Intent intent1, common::Intent intent2) { if (intent1 == intent2) { return true; } else { Say(symbol1, symbol2, "The intent of dummy argument '%s' does not match the intent" " of the corresponding argument in the interface body"_err_en_US); return false; } } // Report an error referring to first symbol with declaration of second symbol template void SubprogramMatchHelper::Say(const Symbol &symbol1, const Symbol &symbol2, parser::MessageFixedText &&text, A &&...args) { auto &message{context().Say(symbol1.name(), std::move(text), symbol1.name(), std::forward(args)...)}; evaluate::AttachDeclaration(message, symbol2); } template bool SubprogramMatchHelper::CheckSameAttrs( const Symbol &symbol1, const Symbol &symbol2, ATTRS attrs1, ATTRS attrs2) { if (attrs1 == attrs2) { return true; } attrs1.IterateOverMembers([&](auto attr) { if (!attrs2.test(attr)) { Say(symbol1, symbol2, "Dummy argument '%s' has the %s attribute; the corresponding" " argument in the interface body does not"_err_en_US, AsFortran(attr)); } }); attrs2.IterateOverMembers([&](auto attr) { if (!attrs1.test(attr)) { Say(symbol1, symbol2, "Dummy argument '%s' does not have the %s attribute; the" " corresponding argument in the interface body does"_err_en_US, AsFortran(attr)); } }); return false; } bool SubprogramMatchHelper::ShapesAreCompatible( const DummyDataObject &obj1, const DummyDataObject &obj2) { return characteristics::ShapesAreCompatible( FoldShape(obj1.type.shape()), FoldShape(obj2.type.shape())); } evaluate::Shape SubprogramMatchHelper::FoldShape(const evaluate::Shape &shape) { evaluate::Shape result; for (const auto &extent : shape) { result.emplace_back( evaluate::Fold(context().foldingContext(), common::Clone(extent))); } return result; } void DistinguishabilityHelper::Add(const Symbol &generic, GenericKind kind, const Symbol &specific, const Procedure &procedure) { if (!context_.HasError(specific)) { nameToInfo_[generic.name()].emplace_back( ProcedureInfo{kind, specific, procedure}); } } void DistinguishabilityHelper::Check(const Scope &scope) { for (const auto &[name, info] : nameToInfo_) { auto count{info.size()}; for (std::size_t i1{0}; i1 < count - 1; ++i1) { const auto &[kind1, symbol1, proc1] = info[i1]; for (std::size_t i2{i1 + 1}; i2 < count; ++i2) { const auto &[kind2, symbol2, proc2] = info[i2]; auto distinguishable{kind1.IsName() ? evaluate::characteristics::Distinguishable : evaluate::characteristics::DistinguishableOpOrAssign}; if (!distinguishable(proc1, proc2)) { SayNotDistinguishable( GetTopLevelUnitContaining(scope), name, kind1, symbol1, symbol2); } } } } } void DistinguishabilityHelper::SayNotDistinguishable(const Scope &scope, const SourceName &name, GenericKind kind, const Symbol &proc1, const Symbol &proc2) { std::string name1{proc1.name().ToString()}; std::string name2{proc2.name().ToString()}; if (kind.IsOperator() || kind.IsAssignment()) { // proc1 and proc2 may come from different scopes so qualify their names if (proc1.owner().IsDerivedType()) { name1 = proc1.owner().GetName()->ToString() + '%' + name1; } if (proc2.owner().IsDerivedType()) { name2 = proc2.owner().GetName()->ToString() + '%' + name2; } } parser::Message *msg; if (scope.sourceRange().Contains(name)) { msg = &context_.Say(name, "Generic '%s' may not have specific procedures '%s' and" " '%s' as their interfaces are not distinguishable"_err_en_US, MakeOpName(name), name1, name2); } else { msg = &context_.Say(*GetTopLevelUnitContaining(proc1).GetName(), "USE-associated generic '%s' may not have specific procedures '%s' and" " '%s' as their interfaces are not distinguishable"_err_en_US, MakeOpName(name), name1, name2); } AttachDeclaration(*msg, scope, proc1); AttachDeclaration(*msg, scope, proc2); } // `evaluate::AttachDeclaration` doesn't handle the generic case where `proc` // comes from a different module but is not necessarily use-associated. void DistinguishabilityHelper::AttachDeclaration( parser::Message &msg, const Scope &scope, const Symbol &proc) { const Scope &unit{GetTopLevelUnitContaining(proc)}; if (unit == scope) { evaluate::AttachDeclaration(msg, proc); } else { msg.Attach(unit.GetName().value(), "'%s' is USE-associated from module '%s'"_en_US, proc.name(), unit.GetName().value()); } } void CheckDeclarations(SemanticsContext &context) { CheckHelper{context}.Check(); } } // namespace Fortran::semantics