/* * semi.c: test implementations of mathlib seminumerical functions * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception */ #include #include "semi.h" static void test_rint(uint32 *in, uint32 *out, int isfloor, int isceil) { int sign = in[0] & 0x80000000; int roundup = (isfloor && sign) || (isceil && !sign); uint32 xh, xl, roundword; int ex = (in[0] >> 20) & 0x7FF; /* exponent */ int i; if ((ex > 0x3ff + 52 - 1) || /* things this big can't be fractional */ ((in[0] & 0x7FFFFFFF) == 0 && in[1] == 0)) { /* zero */ /* NaN, Inf, a large integer, or zero: just return the input */ out[0] = in[0]; out[1] = in[1]; return; } /* * Special case: ex < 0x3ff, ie our number is in (0,1). Return * 1 or 0 according to roundup. */ if (ex < 0x3ff) { out[0] = sign | (roundup ? 0x3FF00000 : 0); out[1] = 0; return; } /* * We're not short of time here, so we'll do this the hideously * inefficient way. Shift bit by bit so that the units place is * somewhere predictable, round, and shift back again. */ xh = in[0]; xl = in[1]; roundword = 0; for (i = ex; i < 0x3ff + 52; i++) { if (roundword & 1) roundword |= 2; /* preserve sticky bit */ roundword = (roundword >> 1) | ((xl & 1) << 31); xl = (xl >> 1) | ((xh & 1) << 31); xh = xh >> 1; } if (roundword && roundup) { xl++; xh += (xl==0); } for (i = ex; i < 0x3ff + 52; i++) { xh = (xh << 1) | ((xl >> 31) & 1); xl = (xl & 0x7FFFFFFF) << 1; } out[0] = xh; out[1] = xl; } char *test_ceil(uint32 *in, uint32 *out) { test_rint(in, out, 0, 1); return NULL; } char *test_floor(uint32 *in, uint32 *out) { test_rint(in, out, 1, 0); return NULL; } static void test_rintf(uint32 *in, uint32 *out, int isfloor, int isceil) { int sign = *in & 0x80000000; int roundup = (isfloor && sign) || (isceil && !sign); uint32 x, roundword; int ex = (*in >> 23) & 0xFF; /* exponent */ int i; if ((ex > 0x7f + 23 - 1) || /* things this big can't be fractional */ (*in & 0x7FFFFFFF) == 0) { /* zero */ /* NaN, Inf, a large integer, or zero: just return the input */ *out = *in; return; } /* * Special case: ex < 0x7f, ie our number is in (0,1). Return * 1 or 0 according to roundup. */ if (ex < 0x7f) { *out = sign | (roundup ? 0x3F800000 : 0); return; } /* * We're not short of time here, so we'll do this the hideously * inefficient way. Shift bit by bit so that the units place is * somewhere predictable, round, and shift back again. */ x = *in; roundword = 0; for (i = ex; i < 0x7F + 23; i++) { if (roundword & 1) roundword |= 2; /* preserve sticky bit */ roundword = (roundword >> 1) | ((x & 1) << 31); x = x >> 1; } if (roundword && roundup) { x++; } for (i = ex; i < 0x7F + 23; i++) { x = x << 1; } *out = x; } char *test_ceilf(uint32 *in, uint32 *out) { test_rintf(in, out, 0, 1); return NULL; } char *test_floorf(uint32 *in, uint32 *out) { test_rintf(in, out, 1, 0); return NULL; } char *test_fmod(uint32 *a, uint32 *b, uint32 *out) { int sign; int32 aex, bex; uint32 am[2], bm[2]; if (((a[0] & 0x7FFFFFFF) << 1) + !!a[1] > 0xFFE00000 || ((b[0] & 0x7FFFFFFF) << 1) + !!b[1] > 0xFFE00000) { /* a or b is NaN: return QNaN, optionally with IVO */ uint32 an, bn; out[0] = 0x7ff80000; out[1] = 1; an = ((a[0] & 0x7FFFFFFF) << 1) + !!a[1]; bn = ((b[0] & 0x7FFFFFFF) << 1) + !!b[1]; if ((an > 0xFFE00000 && an < 0xFFF00000) || (bn > 0xFFE00000 && bn < 0xFFF00000)) return "i"; /* at least one SNaN: IVO */ else return NULL; /* no SNaNs, but at least 1 QNaN */ } if ((b[0] & 0x7FFFFFFF) == 0 && b[1] == 0) { /* b==0: EDOM */ out[0] = 0x7ff80000; out[1] = 1; return "EDOM status=i"; } if ((a[0] & 0x7FF00000) == 0x7FF00000) { /* a==Inf: EDOM */ out[0] = 0x7ff80000; out[1] = 1; return "EDOM status=i"; } if ((b[0] & 0x7FF00000) == 0x7FF00000) { /* b==Inf: return a */ out[0] = a[0]; out[1] = a[1]; return NULL; } if ((a[0] & 0x7FFFFFFF) == 0 && a[1] == 0) { /* a==0: return a */ out[0] = a[0]; out[1] = a[1]; return NULL; } /* * OK. That's the special cases cleared out of the way. Now we * have finite (though not necessarily normal) a and b. */ sign = a[0] & 0x80000000; /* we discard sign of b */ test_frexp(a, am, (uint32 *)&aex); test_frexp(b, bm, (uint32 *)&bex); am[0] &= 0xFFFFF, am[0] |= 0x100000; bm[0] &= 0xFFFFF, bm[0] |= 0x100000; while (aex >= bex) { if (am[0] > bm[0] || (am[0] == bm[0] && am[1] >= bm[1])) { am[1] -= bm[1]; am[0] = am[0] - bm[0] - (am[1] > ~bm[1]); } if (aex > bex) { am[0] = (am[0] << 1) | ((am[1] & 0x80000000) >> 31); am[1] <<= 1; aex--; } else break; } /* * Renormalise final result; this can be cunningly done by * passing a denormal to ldexp. */ aex += 0x3fd; am[0] |= sign; test_ldexp(am, (uint32 *)&aex, out); return NULL; /* FIXME */ } char *test_fmodf(uint32 *a, uint32 *b, uint32 *out) { int sign; int32 aex, bex; uint32 am, bm; if ((*a & 0x7FFFFFFF) > 0x7F800000 || (*b & 0x7FFFFFFF) > 0x7F800000) { /* a or b is NaN: return QNaN, optionally with IVO */ uint32 an, bn; *out = 0x7fc00001; an = *a & 0x7FFFFFFF; bn = *b & 0x7FFFFFFF; if ((an > 0x7f800000 && an < 0x7fc00000) || (bn > 0x7f800000 && bn < 0x7fc00000)) return "i"; /* at least one SNaN: IVO */ else return NULL; /* no SNaNs, but at least 1 QNaN */ } if ((*b & 0x7FFFFFFF) == 0) { /* b==0: EDOM */ *out = 0x7fc00001; return "EDOM status=i"; } if ((*a & 0x7F800000) == 0x7F800000) { /* a==Inf: EDOM */ *out = 0x7fc00001; return "EDOM status=i"; } if ((*b & 0x7F800000) == 0x7F800000) { /* b==Inf: return a */ *out = *a; return NULL; } if ((*a & 0x7FFFFFFF) == 0) { /* a==0: return a */ *out = *a; return NULL; } /* * OK. That's the special cases cleared out of the way. Now we * have finite (though not necessarily normal) a and b. */ sign = a[0] & 0x80000000; /* we discard sign of b */ test_frexpf(a, &am, (uint32 *)&aex); test_frexpf(b, &bm, (uint32 *)&bex); am &= 0x7FFFFF, am |= 0x800000; bm &= 0x7FFFFF, bm |= 0x800000; while (aex >= bex) { if (am >= bm) { am -= bm; } if (aex > bex) { am <<= 1; aex--; } else break; } /* * Renormalise final result; this can be cunningly done by * passing a denormal to ldexp. */ aex += 0x7d; am |= sign; test_ldexpf(&am, (uint32 *)&aex, out); return NULL; /* FIXME */ } char *test_ldexp(uint32 *x, uint32 *np, uint32 *out) { int n = *np; int32 n2; uint32 y[2]; int ex = (x[0] >> 20) & 0x7FF; /* exponent */ int sign = x[0] & 0x80000000; if (ex == 0x7FF) { /* inf/NaN; just return x */ out[0] = x[0]; out[1] = x[1]; return NULL; } if ((x[0] & 0x7FFFFFFF) == 0 && x[1] == 0) { /* zero: return x */ out[0] = x[0]; out[1] = x[1]; return NULL; } test_frexp(x, y, (uint32 *)&n2); ex = n + n2; if (ex > 0x400) { /* overflow */ out[0] = sign | 0x7FF00000; out[1] = 0; return "overflow"; } /* * Underflow. 2^-1074 is 00000000.00000001; so if ex == -1074 * then we have something [2^-1075,2^-1074). Under round-to- * nearest-even, this whole interval rounds up to 2^-1074, * except for the bottom endpoint which rounds to even and is * an underflow condition. * * So, ex < -1074 is definite underflow, and ex == -1074 is * underflow iff all mantissa bits are zero. */ if (ex < -1074 || (ex == -1074 && (y[0] & 0xFFFFF) == 0 && y[1] == 0)) { out[0] = sign; /* underflow: correctly signed zero */ out[1] = 0; return "underflow"; } /* * No overflow or underflow; should be nice and simple, unless * we have to denormalise and round the result. */ if (ex < -1021) { /* denormalise and round */ uint32 roundword; y[0] &= 0x000FFFFF; y[0] |= 0x00100000; /* set leading bit */ roundword = 0; while (ex < -1021) { if (roundword & 1) roundword |= 2; /* preserve sticky bit */ roundword = (roundword >> 1) | ((y[1] & 1) << 31); y[1] = (y[1] >> 1) | ((y[0] & 1) << 31); y[0] = y[0] >> 1; ex++; } if (roundword > 0x80000000 || /* round up */ (roundword == 0x80000000 && (y[1] & 1))) { /* round up to even */ y[1]++; y[0] += (y[1] == 0); } out[0] = sign | y[0]; out[1] = y[1]; /* Proper ERANGE underflow was handled earlier, but we still * expect an IEEE Underflow exception if this partially * underflowed result is not exact. */ if (roundword) return "u"; return NULL; /* underflow was handled earlier */ } else { out[0] = y[0] + (ex << 20); out[1] = y[1]; return NULL; } } char *test_ldexpf(uint32 *x, uint32 *np, uint32 *out) { int n = *np; int32 n2; uint32 y; int ex = (*x >> 23) & 0xFF; /* exponent */ int sign = *x & 0x80000000; if (ex == 0xFF) { /* inf/NaN; just return x */ *out = *x; return NULL; } if ((*x & 0x7FFFFFFF) == 0) { /* zero: return x */ *out = *x; return NULL; } test_frexpf(x, &y, (uint32 *)&n2); ex = n + n2; if (ex > 0x80) { /* overflow */ *out = sign | 0x7F800000; return "overflow"; } /* * Underflow. 2^-149 is 00000001; so if ex == -149 then we have * something [2^-150,2^-149). Under round-to- nearest-even, * this whole interval rounds up to 2^-149, except for the * bottom endpoint which rounds to even and is an underflow * condition. * * So, ex < -149 is definite underflow, and ex == -149 is * underflow iff all mantissa bits are zero. */ if (ex < -149 || (ex == -149 && (y & 0x7FFFFF) == 0)) { *out = sign; /* underflow: correctly signed zero */ return "underflow"; } /* * No overflow or underflow; should be nice and simple, unless * we have to denormalise and round the result. */ if (ex < -125) { /* denormalise and round */ uint32 roundword; y &= 0x007FFFFF; y |= 0x00800000; /* set leading bit */ roundword = 0; while (ex < -125) { if (roundword & 1) roundword |= 2; /* preserve sticky bit */ roundword = (roundword >> 1) | ((y & 1) << 31); y = y >> 1; ex++; } if (roundword > 0x80000000 || /* round up */ (roundword == 0x80000000 && (y & 1))) { /* round up to even */ y++; } *out = sign | y; /* Proper ERANGE underflow was handled earlier, but we still * expect an IEEE Underflow exception if this partially * underflowed result is not exact. */ if (roundword) return "u"; return NULL; /* underflow was handled earlier */ } else { *out = y + (ex << 23); return NULL; } } char *test_frexp(uint32 *x, uint32 *out, uint32 *nout) { int ex = (x[0] >> 20) & 0x7FF; /* exponent */ if (ex == 0x7FF) { /* inf/NaN; return x/0 */ out[0] = x[0]; out[1] = x[1]; nout[0] = 0; return NULL; } if (ex == 0) { /* denormals/zeros */ int sign; uint32 xh, xl; if ((x[0] & 0x7FFFFFFF) == 0 && x[1] == 0) { /* zero: return x/0 */ out[0] = x[0]; out[1] = x[1]; nout[0] = 0; return NULL; } sign = x[0] & 0x80000000; xh = x[0] & 0x7FFFFFFF; xl = x[1]; ex = 1; while (!(xh & 0x100000)) { ex--; xh = (xh << 1) | ((xl >> 31) & 1); xl = (xl & 0x7FFFFFFF) << 1; } out[0] = sign | 0x3FE00000 | (xh & 0xFFFFF); out[1] = xl; nout[0] = ex - 0x3FE; return NULL; } out[0] = 0x3FE00000 | (x[0] & 0x800FFFFF); out[1] = x[1]; nout[0] = ex - 0x3FE; return NULL; /* ordinary number; no error */ } char *test_frexpf(uint32 *x, uint32 *out, uint32 *nout) { int ex = (*x >> 23) & 0xFF; /* exponent */ if (ex == 0xFF) { /* inf/NaN; return x/0 */ *out = *x; nout[0] = 0; return NULL; } if (ex == 0) { /* denormals/zeros */ int sign; uint32 xv; if ((*x & 0x7FFFFFFF) == 0) { /* zero: return x/0 */ *out = *x; nout[0] = 0; return NULL; } sign = *x & 0x80000000; xv = *x & 0x7FFFFFFF; ex = 1; while (!(xv & 0x800000)) { ex--; xv = xv << 1; } *out = sign | 0x3F000000 | (xv & 0x7FFFFF); nout[0] = ex - 0x7E; return NULL; } *out = 0x3F000000 | (*x & 0x807FFFFF); nout[0] = ex - 0x7E; return NULL; /* ordinary number; no error */ } char *test_modf(uint32 *x, uint32 *fout, uint32 *iout) { int ex = (x[0] >> 20) & 0x7FF; /* exponent */ int sign = x[0] & 0x80000000; uint32 fh, fl; if (((x[0] & 0x7FFFFFFF) | (!!x[1])) > 0x7FF00000) { /* * NaN input: return the same in _both_ outputs. */ fout[0] = iout[0] = x[0]; fout[1] = iout[1] = x[1]; return NULL; } test_rint(x, iout, 0, 0); fh = x[0] - iout[0]; fl = x[1] - iout[1]; if (!fh && !fl) { /* no fraction part */ fout[0] = sign; fout[1] = 0; return NULL; } if (!(iout[0] & 0x7FFFFFFF) && !iout[1]) { /* no integer part */ fout[0] = x[0]; fout[1] = x[1]; return NULL; } while (!(fh & 0x100000)) { ex--; fh = (fh << 1) | ((fl >> 31) & 1); fl = (fl & 0x7FFFFFFF) << 1; } fout[0] = sign | (ex << 20) | (fh & 0xFFFFF); fout[1] = fl; return NULL; } char *test_modff(uint32 *x, uint32 *fout, uint32 *iout) { int ex = (*x >> 23) & 0xFF; /* exponent */ int sign = *x & 0x80000000; uint32 f; if ((*x & 0x7FFFFFFF) > 0x7F800000) { /* * NaN input: return the same in _both_ outputs. */ *fout = *iout = *x; return NULL; } test_rintf(x, iout, 0, 0); f = *x - *iout; if (!f) { /* no fraction part */ *fout = sign; return NULL; } if (!(*iout & 0x7FFFFFFF)) { /* no integer part */ *fout = *x; return NULL; } while (!(f & 0x800000)) { ex--; f = f << 1; } *fout = sign | (ex << 23) | (f & 0x7FFFFF); return NULL; } char *test_copysign(uint32 *x, uint32 *y, uint32 *out) { int ysign = y[0] & 0x80000000; int xhigh = x[0] & 0x7fffffff; out[0] = ysign | xhigh; out[1] = x[1]; /* There can be no error */ return NULL; } char *test_copysignf(uint32 *x, uint32 *y, uint32 *out) { int ysign = y[0] & 0x80000000; int xhigh = x[0] & 0x7fffffff; out[0] = ysign | xhigh; /* There can be no error */ return NULL; } char *test_isfinite(uint32 *x, uint32 *out) { int xhigh = x[0]; /* Being finite means that the exponent is not 0x7ff */ if ((xhigh & 0x7ff00000) == 0x7ff00000) out[0] = 0; else out[0] = 1; return NULL; } char *test_isfinitef(uint32 *x, uint32 *out) { /* Being finite means that the exponent is not 0xff */ if ((x[0] & 0x7f800000) == 0x7f800000) out[0] = 0; else out[0] = 1; return NULL; } char *test_isinff(uint32 *x, uint32 *out) { /* Being infinite means that our bottom 30 bits equate to 0x7f800000 */ if ((x[0] & 0x7fffffff) == 0x7f800000) out[0] = 1; else out[0] = 0; return NULL; } char *test_isinf(uint32 *x, uint32 *out) { int xhigh = x[0]; int xlow = x[1]; /* Being infinite means that our fraction is zero and exponent is 0x7ff */ if (((xhigh & 0x7fffffff) == 0x7ff00000) && (xlow == 0)) out[0] = 1; else out[0] = 0; return NULL; } char *test_isnanf(uint32 *x, uint32 *out) { /* Being NaN means that our exponent is 0xff and non-0 fraction */ int exponent = x[0] & 0x7f800000; int fraction = x[0] & 0x007fffff; if ((exponent == 0x7f800000) && (fraction != 0)) out[0] = 1; else out[0] = 0; return NULL; } char *test_isnan(uint32 *x, uint32 *out) { /* Being NaN means that our exponent is 0x7ff and non-0 fraction */ int exponent = x[0] & 0x7ff00000; int fractionhigh = x[0] & 0x000fffff; if ((exponent == 0x7ff00000) && ((fractionhigh != 0) || x[1] != 0)) out[0] = 1; else out[0] = 0; return NULL; } char *test_isnormalf(uint32 *x, uint32 *out) { /* Being normal means exponent is not 0 and is not 0xff */ int exponent = x[0] & 0x7f800000; if (exponent == 0x7f800000) out[0] = 0; else if (exponent == 0) out[0] = 0; else out[0] = 1; return NULL; } char *test_isnormal(uint32 *x, uint32 *out) { /* Being normal means exponent is not 0 and is not 0x7ff */ int exponent = x[0] & 0x7ff00000; if (exponent == 0x7ff00000) out[0] = 0; else if (exponent == 0) out[0] = 0; else out[0] = 1; return NULL; } char *test_signbitf(uint32 *x, uint32 *out) { /* Sign bit is bit 31 */ out[0] = (x[0] >> 31) & 1; return NULL; } char *test_signbit(uint32 *x, uint32 *out) { /* Sign bit is bit 31 */ out[0] = (x[0] >> 31) & 1; return NULL; } char *test_fpclassify(uint32 *x, uint32 *out) { int exponent = (x[0] & 0x7ff00000) >> 20; int fraction = (x[0] & 0x000fffff) | x[1]; if ((exponent == 0x00) && (fraction == 0)) out[0] = 0; else if ((exponent == 0x00) && (fraction != 0)) out[0] = 4; else if ((exponent == 0x7ff) && (fraction == 0)) out[0] = 3; else if ((exponent == 0x7ff) && (fraction != 0)) out[0] = 7; else out[0] = 5; return NULL; } char *test_fpclassifyf(uint32 *x, uint32 *out) { int exponent = (x[0] & 0x7f800000) >> 23; int fraction = x[0] & 0x007fffff; if ((exponent == 0x000) && (fraction == 0)) out[0] = 0; else if ((exponent == 0x000) && (fraction != 0)) out[0] = 4; else if ((exponent == 0xff) && (fraction == 0)) out[0] = 3; else if ((exponent == 0xff) && (fraction != 0)) out[0] = 7; else out[0] = 5; return NULL; } /* * Internal function that compares doubles in x & y and returns -3, -2, -1, 0, * 1 if they compare to be signaling, unordered, less than, equal or greater * than. */ static int fpcmp4(uint32 *x, uint32 *y) { int result = 0; /* * Sort out whether results are ordered or not to begin with * NaNs have exponent 0x7ff, and non-zero fraction. Signaling NaNs take * higher priority than quiet ones. */ if ((x[0] & 0x7fffffff) >= 0x7ff80000) result = -2; else if ((x[0] & 0x7fffffff) > 0x7ff00000) result = -3; else if (((x[0] & 0x7fffffff) == 0x7ff00000) && (x[1] != 0)) result = -3; if ((y[0] & 0x7fffffff) >= 0x7ff80000 && result != -3) result = -2; else if ((y[0] & 0x7fffffff) > 0x7ff00000) result = -3; else if (((y[0] & 0x7fffffff) == 0x7ff00000) && (y[1] != 0)) result = -3; if (result != 0) return result; /* * The two forms of zero are equal */ if (((x[0] & 0x7fffffff) == 0) && x[1] == 0 && ((y[0] & 0x7fffffff) == 0) && y[1] == 0) return 0; /* * If x and y have different signs we can tell that they're not equal * If x is +ve we have x > y return 1 - otherwise y is +ve return -1 */ if ((x[0] >> 31) != (y[0] >> 31)) return ((x[0] >> 31) == 0) - ((y[0] >> 31) == 0); /* * Now we have both signs the same, let's do an initial compare of the * values. * * Whoever designed IEEE754's floating point formats is very clever and * earns my undying admiration. Once you remove the sign-bit, the * floating point numbers can be ordered using the standard <, ==, > * operators will treating the fp-numbers as integers with that bit- * pattern. */ if ((x[0] & 0x7fffffff) < (y[0] & 0x7fffffff)) result = -1; else if ((x[0] & 0x7fffffff) > (y[0] & 0x7fffffff)) result = 1; else if (x[1] < y[1]) result = -1; else if (x[1] > y[1]) result = 1; else result = 0; /* * Now we return the result - is x is positive (and therefore so is y) we * return the plain result - otherwise we negate it and return. */ if ((x[0] >> 31) == 0) return result; else return -result; } /* * Internal function that compares floats in x & y and returns -3, -2, -1, 0, * 1 if they compare to be signaling, unordered, less than, equal or greater * than. */ static int fpcmp4f(uint32 *x, uint32 *y) { int result = 0; /* * Sort out whether results are ordered or not to begin with * NaNs have exponent 0xff, and non-zero fraction - we have to handle all * signaling cases over the quiet ones */ if ((x[0] & 0x7fffffff) >= 0x7fc00000) result = -2; else if ((x[0] & 0x7fffffff) > 0x7f800000) result = -3; if ((y[0] & 0x7fffffff) >= 0x7fc00000 && result != -3) result = -2; else if ((y[0] & 0x7fffffff) > 0x7f800000) result = -3; if (result != 0) return result; /* * The two forms of zero are equal */ if (((x[0] & 0x7fffffff) == 0) && ((y[0] & 0x7fffffff) == 0)) return 0; /* * If x and y have different signs we can tell that they're not equal * If x is +ve we have x > y return 1 - otherwise y is +ve return -1 */ if ((x[0] >> 31) != (y[0] >> 31)) return ((x[0] >> 31) == 0) - ((y[0] >> 31) == 0); /* * Now we have both signs the same, let's do an initial compare of the * values. * * Whoever designed IEEE754's floating point formats is very clever and * earns my undying admiration. Once you remove the sign-bit, the * floating point numbers can be ordered using the standard <, ==, > * operators will treating the fp-numbers as integers with that bit- * pattern. */ if ((x[0] & 0x7fffffff) < (y[0] & 0x7fffffff)) result = -1; else if ((x[0] & 0x7fffffff) > (y[0] & 0x7fffffff)) result = 1; else result = 0; /* * Now we return the result - is x is positive (and therefore so is y) we * return the plain result - otherwise we negate it and return. */ if ((x[0] >> 31) == 0) return result; else return -result; } char *test_isgreater(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4(x, y); *out = (result == 1); return result == -3 ? "i" : NULL; } char *test_isgreaterequal(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4(x, y); *out = (result >= 0); return result == -3 ? "i" : NULL; } char *test_isless(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4(x, y); *out = (result == -1); return result == -3 ? "i" : NULL; } char *test_islessequal(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4(x, y); *out = (result == -1) || (result == 0); return result == -3 ? "i" : NULL; } char *test_islessgreater(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4(x, y); *out = (result == -1) || (result == 1); return result == -3 ? "i" : NULL; } char *test_isunordered(uint32 *x, uint32 *y, uint32 *out) { int normal = 0; int result = fpcmp4(x, y); test_isnormal(x, out); normal |= *out; test_isnormal(y, out); normal |= *out; *out = (result == -2) || (result == -3); return result == -3 ? "i" : NULL; } char *test_isgreaterf(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4f(x, y); *out = (result == 1); return result == -3 ? "i" : NULL; } char *test_isgreaterequalf(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4f(x, y); *out = (result >= 0); return result == -3 ? "i" : NULL; } char *test_islessf(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4f(x, y); *out = (result == -1); return result == -3 ? "i" : NULL; } char *test_islessequalf(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4f(x, y); *out = (result == -1) || (result == 0); return result == -3 ? "i" : NULL; } char *test_islessgreaterf(uint32 *x, uint32 *y, uint32 *out) { int result = fpcmp4f(x, y); *out = (result == -1) || (result == 1); return result == -3 ? "i" : NULL; } char *test_isunorderedf(uint32 *x, uint32 *y, uint32 *out) { int normal = 0; int result = fpcmp4f(x, y); test_isnormalf(x, out); normal |= *out; test_isnormalf(y, out); normal |= *out; *out = (result == -2) || (result == -3); return result == -3 ? "i" : NULL; }