// polynomial for approximating log2(1+x) // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception deg = 7; // poly degree // interval ~= 1/(2*N), where N is the table entries a= -0x1.f45p-8; b= 0x1.f45p-8; ln2 = evaluate(log(2),0); invln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits invln2lo = double(1/ln2 - invln2hi); // find log2(1+x) polynomial with minimal absolute error f = log(1+x)/ln2; // return p that minimizes |f(x) - poly(x) - x^d*p(x)| approx = proc(poly,d) { return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = x*(invln2lo + invln2hi); for i from 2 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("invln2hi:", invln2hi); print("invln2lo:", invln2lo); print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30)); //// relative error computation fails if f(0)==0 //// g = f(x)/x = log2(1+x)/x; using taylor series //g = 0; //for i from 0 to 60 do { g = g + (-x)^i/(i+1)/ln2; }; //print("rel error:", accurateinfnorm(1-(poly(x)/x)/g(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i);