/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "../clcmacro.h" #include "config.h" #include "math.h" _CLC_DEF _CLC_OVERLOAD float __clc_remquo(float x, float y, __private int *quo) { x = __clc_flush_denormal_if_not_supported(x); y = __clc_flush_denormal_if_not_supported(y); int ux = as_int(x); int ax = ux & EXSIGNBIT_SP32; float xa = as_float(ax); int sx = ux ^ ax; int ex = ax >> EXPSHIFTBITS_SP32; int uy = as_int(y); int ay = uy & EXSIGNBIT_SP32; float ya = as_float(ay); int sy = uy ^ ay; int ey = ay >> EXPSHIFTBITS_SP32; float xr = as_float(0x3f800000 | (ax & 0x007fffff)); float yr = as_float(0x3f800000 | (ay & 0x007fffff)); int c; int k = ex - ey; uint q = 0; while (k > 0) { c = xr >= yr; q = (q << 1) | c; xr -= c ? yr : 0.0f; xr += xr; --k; } c = xr > yr; q = (q << 1) | c; xr -= c ? yr : 0.0f; int lt = ex < ey; q = lt ? 0 : q; xr = lt ? xa : xr; yr = lt ? ya : yr; c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1)); xr -= c ? yr : 0.0f; q += c; float s = as_float(ey << EXPSHIFTBITS_SP32); xr *= lt ? 1.0f : s; int qsgn = sx == sy ? 1 : -1; int quot = (q & 0x7f) * qsgn; c = ax == ay; quot = c ? qsgn : quot; xr = c ? 0.0f : xr; xr = as_float(sx ^ as_int(xr)); c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0; quot = c ? 0 : quot; xr = c ? as_float(QNANBITPATT_SP32) : xr; *quo = quot; return xr; } // remquo singature is special, we don't have macro for this #define __VEC_REMQUO(TYPE, VEC_SIZE, HALF_VEC_SIZE) \ _CLC_DEF _CLC_OVERLOAD TYPE##VEC_SIZE __clc_remquo(TYPE##VEC_SIZE x, TYPE##VEC_SIZE y, __private int##VEC_SIZE *quo) \ { \ int##HALF_VEC_SIZE lo, hi; \ TYPE##VEC_SIZE ret; \ ret.lo = __clc_remquo(x.lo, y.lo, &lo); \ ret.hi = __clc_remquo(x.hi, y.hi, &hi); \ (*quo).lo = lo; \ (*quo).hi = hi; \ return ret; \ } __VEC_REMQUO(float, 2,) __VEC_REMQUO(float, 3, 2) __VEC_REMQUO(float, 4, 2) __VEC_REMQUO(float, 8, 4) __VEC_REMQUO(float, 16, 8) #ifdef cl_khr_fp64 _CLC_DEF _CLC_OVERLOAD double __clc_remquo(double x, double y, __private int *pquo) { ulong ux = as_ulong(x); ulong ax = ux & ~SIGNBIT_DP64; ulong xsgn = ux ^ ax; double dx = as_double(ax); int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64); xexp1 = xexp < 1 ? xexp1 : xexp; ulong uy = as_ulong(y); ulong ay = uy & ~SIGNBIT_DP64; double dy = as_double(ay); int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64); yexp1 = yexp < 1 ? yexp1 : yexp; int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1; // First assume |x| > |y| // Set ntimes to the number of times we need to do a // partial remainder. If the exponent of x is an exact multiple // of 53 larger than the exponent of y, and the mantissa of x is // less than the mantissa of y, ntimes will be one too large // but it doesn't matter - it just means that we'll go round // the loop below one extra time. int ntimes = max(0, (xexp1 - yexp1) / 53); double w = ldexp(dy, ntimes * 53); w = ntimes == 0 ? dy : w; double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; // Each time round the loop we compute a partial remainder. // This is done by subtracting a large multiple of w // from x each time, where w is a scaled up version of y. // The subtraction must be performed exactly in quad // precision, though the result at each stage can // fit exactly in a double precision number. int i; double t, v, p, pp; for (i = 0; i < ntimes; i++) { // Compute integral multiplier t = trunc(dx / w); // Compute w * t in quad precision p = w * t; pp = fma(w, t, -p); // Subtract w * t from dx v = dx - p; dx = v + (((dx - v) - p) - pp); // If t was one too large, dx will be negative. Add back one w. dx += dx < 0.0 ? w : 0.0; // Scale w down by 2^(-53) for the next iteration w *= scale; } // One more time // Variable todd says whether the integer t is odd or not t = floor(dx / w); long lt = (long)t; int todd = lt & 1; p = w * t; pp = fma(w, t, -p); v = dx - p; dx = v + (((dx - v) - p) - pp); i = dx < 0.0; todd ^= i; dx += i ? w : 0.0; lt -= i; // At this point, dx lies in the range [0,dy) // For the remainder function, we need to adjust dx // so that it lies in the range (-y/2, y/2] by carefully // subtracting w (== dy == y) if necessary. The rigmarole // with todd is to get the correct sign of the result // when x/y lies exactly half way between two integers, // when we need to choose the even integer. int al = (2.0*dx > w) | (todd & (2.0*dx == w)); double dxl = dx - (al ? w : 0.0); int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w)); double dxg = dx - (ag ? w : 0.0); dx = dy < 0x1.0p+1022 ? dxl : dxg; lt += dy < 0x1.0p+1022 ? al : ag; int quo = ((int)lt & 0x7f) * qsgn; double ret = as_double(xsgn ^ as_ulong(dx)); dx = as_double(ax); // Now handle |x| == |y| int c = dx == dy; t = as_double(xsgn); quo = c ? qsgn : quo; ret = c ? t : ret; // Next, handle |x| < |y| c = dx < dy; quo = c ? 0 : quo; ret = c ? x : ret; c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy); quo = c ? qsgn : quo; // we could use a conversion here instead since qsgn = +-1 p = qsgn == 1 ? -1.0 : 1.0; t = fma(y, p, x); ret = c ? t : ret; // We don't need anything special for |x| == 0 // |y| is 0 c = dy == 0.0; quo = c ? 0 : quo; ret = c ? as_double(QNANBITPATT_DP64) : ret; // y is +-Inf, NaN c = yexp > BIASEDEMAX_DP64; quo = c ? 0 : quo; t = y == y ? x : y; ret = c ? t : ret; // x is +=Inf, NaN c = xexp > BIASEDEMAX_DP64; quo = c ? 0 : quo; ret = c ? as_double(QNANBITPATT_DP64) : ret; *pquo = quo; return ret; } __VEC_REMQUO(double, 2,) __VEC_REMQUO(double, 3, 2) __VEC_REMQUO(double, 4, 2) __VEC_REMQUO(double, 8, 4) __VEC_REMQUO(double, 16, 8) #endif