//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Config.h" #include "InputChunks.h" #include "InputEvent.h" #include "InputGlobal.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "lld/Common/Reproduce.h" #include "llvm/Object/Binary.h" #include "llvm/Object/Wasm.h" #include "llvm/Support/TarWriter.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "lld" using namespace llvm; using namespace llvm::object; using namespace llvm::wasm; namespace lld { // Returns a string in the format of "foo.o" or "foo.a(bar.o)". std::string toString(const wasm::InputFile *file) { if (!file) return ""; if (file->archiveName.empty()) return std::string(file->getName()); return (file->archiveName + "(" + file->getName() + ")").str(); } namespace wasm { void InputFile::checkArch(Triple::ArchType arch) const { bool is64 = arch == Triple::wasm64; if (is64 && !config->is64.hasValue()) { fatal(toString(this) + ": must specify -mwasm64 to process wasm64 object files"); } else if (config->is64.getValueOr(false) != is64) { fatal(toString(this) + ": wasm32 object file can't be linked in wasm64 mode"); } } std::unique_ptr tar; Optional readFile(StringRef path) { log("Loading: " + path); auto mbOrErr = MemoryBuffer::getFile(path); if (auto ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return None; } std::unique_ptr &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make>(std::move(mb)); // take MB ownership if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return mbref; } InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName) { file_magic magic = identify_magic(mb.getBuffer()); if (magic == file_magic::wasm_object) { std::unique_ptr bin = CHECK(createBinary(mb), mb.getBufferIdentifier()); auto *obj = cast(bin.get()); if (obj->isSharedObject()) return make(mb); return make(mb, archiveName); } if (magic == file_magic::bitcode) return make(mb, archiveName); fatal("unknown file type: " + mb.getBufferIdentifier()); } void ObjFile::dumpInfo() const { log("info for: " + toString(this) + "\n Symbols : " + Twine(symbols.size()) + "\n Function Imports : " + Twine(wasmObj->getNumImportedFunctions()) + "\n Global Imports : " + Twine(wasmObj->getNumImportedGlobals()) + "\n Event Imports : " + Twine(wasmObj->getNumImportedEvents())); } // Relocations contain either symbol or type indices. This function takes a // relocation and returns relocated index (i.e. translates from the input // symbol/type space to the output symbol/type space). uint32_t ObjFile::calcNewIndex(const WasmRelocation &reloc) const { if (reloc.Type == R_WASM_TYPE_INDEX_LEB) { assert(typeIsUsed[reloc.Index]); return typeMap[reloc.Index]; } const Symbol *sym = symbols[reloc.Index]; if (auto *ss = dyn_cast(sym)) sym = ss->getOutputSectionSymbol(); return sym->getOutputSymbolIndex(); } // Relocations can contain addend for combined sections. This function takes a // relocation and returns updated addend by offset in the output section. uint64_t ObjFile::calcNewAddend(const WasmRelocation &reloc) const { switch (reloc.Type) { case R_WASM_MEMORY_ADDR_LEB: case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_MEMORY_ADDR_SLEB64: case R_WASM_MEMORY_ADDR_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB64: case R_WASM_MEMORY_ADDR_I32: case R_WASM_MEMORY_ADDR_I64: case R_WASM_FUNCTION_OFFSET_I32: case R_WASM_FUNCTION_OFFSET_I64: return reloc.Addend; case R_WASM_SECTION_OFFSET_I32: return getSectionSymbol(reloc.Index)->section->outputOffset + reloc.Addend; default: llvm_unreachable("unexpected relocation type"); } } // Calculate the value we expect to find at the relocation location. // This is used as a sanity check before applying a relocation to a given // location. It is useful for catching bugs in the compiler and linker. uint64_t ObjFile::calcExpectedValue(const WasmRelocation &reloc) const { switch (reloc.Type) { case R_WASM_TABLE_INDEX_I32: case R_WASM_TABLE_INDEX_I64: case R_WASM_TABLE_INDEX_SLEB: case R_WASM_TABLE_INDEX_SLEB64: { const WasmSymbol &sym = wasmObj->syms()[reloc.Index]; return tableEntries[sym.Info.ElementIndex]; } case R_WASM_TABLE_INDEX_REL_SLEB: { const WasmSymbol &sym = wasmObj->syms()[reloc.Index]; return tableEntriesRel[sym.Info.ElementIndex]; } case R_WASM_MEMORY_ADDR_LEB: case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_MEMORY_ADDR_SLEB: case R_WASM_MEMORY_ADDR_SLEB64: case R_WASM_MEMORY_ADDR_REL_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB64: case R_WASM_MEMORY_ADDR_I32: case R_WASM_MEMORY_ADDR_I64: case R_WASM_MEMORY_ADDR_TLS_SLEB: { const WasmSymbol &sym = wasmObj->syms()[reloc.Index]; if (sym.isUndefined()) return 0; const WasmSegment &segment = wasmObj->dataSegments()[sym.Info.DataRef.Segment]; if (segment.Data.Offset.Opcode == WASM_OPCODE_I32_CONST) return segment.Data.Offset.Value.Int32 + sym.Info.DataRef.Offset + reloc.Addend; else if (segment.Data.Offset.Opcode == WASM_OPCODE_I64_CONST) return segment.Data.Offset.Value.Int64 + sym.Info.DataRef.Offset + reloc.Addend; else llvm_unreachable("unknown init expr opcode"); } case R_WASM_FUNCTION_OFFSET_I32: case R_WASM_FUNCTION_OFFSET_I64: { const WasmSymbol &sym = wasmObj->syms()[reloc.Index]; InputFunction *f = functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()]; return f->getFunctionInputOffset() + f->getFunctionCodeOffset() + reloc.Addend; } case R_WASM_SECTION_OFFSET_I32: return reloc.Addend; case R_WASM_TYPE_INDEX_LEB: return reloc.Index; case R_WASM_FUNCTION_INDEX_LEB: case R_WASM_GLOBAL_INDEX_LEB: case R_WASM_GLOBAL_INDEX_I32: case R_WASM_EVENT_INDEX_LEB: { const WasmSymbol &sym = wasmObj->syms()[reloc.Index]; return sym.Info.ElementIndex; } default: llvm_unreachable("unknown relocation type"); } } // Translate from the relocation's index into the final linked output value. uint64_t ObjFile::calcNewValue(const WasmRelocation &reloc, uint64_t tombstone) const { const Symbol* sym = nullptr; if (reloc.Type != R_WASM_TYPE_INDEX_LEB) { sym = symbols[reloc.Index]; // We can end up with relocations against non-live symbols. For example // in debug sections. We return a tombstone value in debug symbol sections // so this will not produce a valid range conflicting with ranges of actual // code. In other sections we return reloc.Addend. if ((isa(sym) || isa(sym)) && !sym->isLive()) return tombstone ? tombstone : reloc.Addend; } switch (reloc.Type) { case R_WASM_TABLE_INDEX_I32: case R_WASM_TABLE_INDEX_I64: case R_WASM_TABLE_INDEX_SLEB: case R_WASM_TABLE_INDEX_SLEB64: case R_WASM_TABLE_INDEX_REL_SLEB: { if (!getFunctionSymbol(reloc.Index)->hasTableIndex()) return 0; uint32_t index = getFunctionSymbol(reloc.Index)->getTableIndex(); if (reloc.Type == R_WASM_TABLE_INDEX_REL_SLEB) index -= config->tableBase; return index; } case R_WASM_MEMORY_ADDR_LEB: case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_MEMORY_ADDR_SLEB: case R_WASM_MEMORY_ADDR_SLEB64: case R_WASM_MEMORY_ADDR_REL_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB64: case R_WASM_MEMORY_ADDR_I32: case R_WASM_MEMORY_ADDR_I64: { if (isa(sym) || sym->isUndefWeak()) return 0; auto D = cast(sym); // Treat non-TLS relocation against symbols that live in the TLS segment // like TLS relocations. This beaviour exists to support older object // files created before we introduced TLS relocations. // TODO(sbc): Remove this legacy behaviour one day. This will break // backward compat with old object files built with `-fPIC`. if (D->segment && D->segment->outputSeg->name == ".tdata") return D->getOutputSegmentOffset() + reloc.Addend; return D->getVirtualAddress() + reloc.Addend; } case R_WASM_MEMORY_ADDR_TLS_SLEB: if (isa(sym) || sym->isUndefWeak()) return 0; // TLS relocations are relative to the start of the TLS output segment return cast(sym)->getOutputSegmentOffset() + reloc.Addend; case R_WASM_TYPE_INDEX_LEB: return typeMap[reloc.Index]; case R_WASM_FUNCTION_INDEX_LEB: return getFunctionSymbol(reloc.Index)->getFunctionIndex(); case R_WASM_GLOBAL_INDEX_LEB: case R_WASM_GLOBAL_INDEX_I32: if (auto gs = dyn_cast(sym)) return gs->getGlobalIndex(); return sym->getGOTIndex(); case R_WASM_EVENT_INDEX_LEB: return getEventSymbol(reloc.Index)->getEventIndex(); case R_WASM_FUNCTION_OFFSET_I32: case R_WASM_FUNCTION_OFFSET_I64: { auto *f = cast(sym); return f->function->outputOffset + (f->function->getFunctionCodeOffset() + reloc.Addend); } case R_WASM_SECTION_OFFSET_I32: return getSectionSymbol(reloc.Index)->section->outputOffset + reloc.Addend; default: llvm_unreachable("unknown relocation type"); } } template static void setRelocs(const std::vector &chunks, const WasmSection *section) { if (!section) return; ArrayRef relocs = section->Relocations; assert(llvm::is_sorted( relocs, [](const WasmRelocation &r1, const WasmRelocation &r2) { return r1.Offset < r2.Offset; })); assert(llvm::is_sorted(chunks, [](InputChunk *c1, InputChunk *c2) { return c1->getInputSectionOffset() < c2->getInputSectionOffset(); })); auto relocsNext = relocs.begin(); auto relocsEnd = relocs.end(); auto relocLess = [](const WasmRelocation &r, uint32_t val) { return r.Offset < val; }; for (InputChunk *c : chunks) { auto relocsStart = std::lower_bound(relocsNext, relocsEnd, c->getInputSectionOffset(), relocLess); relocsNext = std::lower_bound( relocsStart, relocsEnd, c->getInputSectionOffset() + c->getInputSize(), relocLess); c->setRelocations(ArrayRef(relocsStart, relocsNext)); } } void ObjFile::parse(bool ignoreComdats) { // Parse a memory buffer as a wasm file. LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n"); std::unique_ptr bin = CHECK(createBinary(mb), toString(this)); auto *obj = dyn_cast(bin.get()); if (!obj) fatal(toString(this) + ": not a wasm file"); if (!obj->isRelocatableObject()) fatal(toString(this) + ": not a relocatable wasm file"); bin.release(); wasmObj.reset(obj); checkArch(obj->getArch()); // Build up a map of function indices to table indices for use when // verifying the existing table index relocations uint32_t totalFunctions = wasmObj->getNumImportedFunctions() + wasmObj->functions().size(); tableEntriesRel.resize(totalFunctions); tableEntries.resize(totalFunctions); for (const WasmElemSegment &seg : wasmObj->elements()) { int64_t offset; if (seg.Offset.Opcode == WASM_OPCODE_I32_CONST) offset = seg.Offset.Value.Int32; else if (seg.Offset.Opcode == WASM_OPCODE_I64_CONST) offset = seg.Offset.Value.Int64; else fatal(toString(this) + ": invalid table elements"); for (size_t index = 0; index < seg.Functions.size(); index++) { auto functionIndex = seg.Functions[index]; tableEntriesRel[functionIndex] = index; tableEntries[functionIndex] = offset + index; } } uint32_t sectionIndex = 0; // Bool for each symbol, true if called directly. This allows us to implement // a weaker form of signature checking where undefined functions that are not // called directly (i.e. only address taken) don't have to match the defined // function's signature. We cannot do this for directly called functions // because those signatures are checked at validation times. // See https://bugs.llvm.org/show_bug.cgi?id=40412 std::vector isCalledDirectly(wasmObj->getNumberOfSymbols(), false); for (const SectionRef &sec : wasmObj->sections()) { const WasmSection §ion = wasmObj->getWasmSection(sec); // Wasm objects can have at most one code and one data section. if (section.Type == WASM_SEC_CODE) { assert(!codeSection); codeSection = §ion; } else if (section.Type == WASM_SEC_DATA) { assert(!dataSection); dataSection = §ion; } else if (section.Type == WASM_SEC_CUSTOM) { customSections.emplace_back(make(section, this)); customSections.back()->setRelocations(section.Relocations); customSectionsByIndex[sectionIndex] = customSections.back(); } sectionIndex++; // Scans relocations to determine if a function symbol is called directly. for (const WasmRelocation &reloc : section.Relocations) if (reloc.Type == R_WASM_FUNCTION_INDEX_LEB) isCalledDirectly[reloc.Index] = true; } typeMap.resize(getWasmObj()->types().size()); typeIsUsed.resize(getWasmObj()->types().size(), false); ArrayRef comdats = wasmObj->linkingData().Comdats; for (StringRef comdat : comdats) { bool isNew = ignoreComdats || symtab->addComdat(comdat); keptComdats.push_back(isNew); } // Populate `Segments`. for (const WasmSegment &s : wasmObj->dataSegments()) { auto* seg = make(s, this); seg->discarded = isExcludedByComdat(seg); segments.emplace_back(seg); } setRelocs(segments, dataSection); // Populate `Functions`. ArrayRef funcs = wasmObj->functions(); ArrayRef funcTypes = wasmObj->functionTypes(); ArrayRef types = wasmObj->types(); functions.reserve(funcs.size()); for (size_t i = 0, e = funcs.size(); i != e; ++i) { auto* func = make(types[funcTypes[i]], &funcs[i], this); func->discarded = isExcludedByComdat(func); functions.emplace_back(func); } setRelocs(functions, codeSection); // Populate `Globals`. for (const WasmGlobal &g : wasmObj->globals()) globals.emplace_back(make(g, this)); // Populate `Events`. for (const WasmEvent &e : wasmObj->events()) events.emplace_back(make(types[e.Type.SigIndex], e, this)); // Populate `Symbols` based on the symbols in the object. symbols.reserve(wasmObj->getNumberOfSymbols()); for (const SymbolRef &sym : wasmObj->symbols()) { const WasmSymbol &wasmSym = wasmObj->getWasmSymbol(sym.getRawDataRefImpl()); if (wasmSym.isDefined()) { // createDefined may fail if the symbol is comdat excluded in which case // we fall back to creating an undefined symbol if (Symbol *d = createDefined(wasmSym)) { symbols.push_back(d); continue; } } size_t idx = symbols.size(); symbols.push_back(createUndefined(wasmSym, isCalledDirectly[idx])); } } bool ObjFile::isExcludedByComdat(InputChunk *chunk) const { uint32_t c = chunk->getComdat(); if (c == UINT32_MAX) return false; return !keptComdats[c]; } FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t index) const { return cast(symbols[index]); } GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t index) const { return cast(symbols[index]); } EventSymbol *ObjFile::getEventSymbol(uint32_t index) const { return cast(symbols[index]); } SectionSymbol *ObjFile::getSectionSymbol(uint32_t index) const { return cast(symbols[index]); } DataSymbol *ObjFile::getDataSymbol(uint32_t index) const { return cast(symbols[index]); } Symbol *ObjFile::createDefined(const WasmSymbol &sym) { StringRef name = sym.Info.Name; uint32_t flags = sym.Info.Flags; switch (sym.Info.Kind) { case WASM_SYMBOL_TYPE_FUNCTION: { InputFunction *func = functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()]; if (sym.isBindingLocal()) return make(name, flags, this, func); if (func->discarded) return nullptr; return symtab->addDefinedFunction(name, flags, this, func); } case WASM_SYMBOL_TYPE_DATA: { InputSegment *seg = segments[sym.Info.DataRef.Segment]; auto offset = sym.Info.DataRef.Offset; auto size = sym.Info.DataRef.Size; if (sym.isBindingLocal()) return make(name, flags, this, seg, offset, size); if (seg->discarded) return nullptr; return symtab->addDefinedData(name, flags, this, seg, offset, size); } case WASM_SYMBOL_TYPE_GLOBAL: { InputGlobal *global = globals[sym.Info.ElementIndex - wasmObj->getNumImportedGlobals()]; if (sym.isBindingLocal()) return make(name, flags, this, global); return symtab->addDefinedGlobal(name, flags, this, global); } case WASM_SYMBOL_TYPE_SECTION: { InputSection *section = customSectionsByIndex[sym.Info.ElementIndex]; assert(sym.isBindingLocal()); return make(flags, section, this); } case WASM_SYMBOL_TYPE_EVENT: { InputEvent *event = events[sym.Info.ElementIndex - wasmObj->getNumImportedEvents()]; if (sym.isBindingLocal()) return make(name, flags, this, event); return symtab->addDefinedEvent(name, flags, this, event); } } llvm_unreachable("unknown symbol kind"); } Symbol *ObjFile::createUndefined(const WasmSymbol &sym, bool isCalledDirectly) { StringRef name = sym.Info.Name; uint32_t flags = sym.Info.Flags | WASM_SYMBOL_UNDEFINED; switch (sym.Info.Kind) { case WASM_SYMBOL_TYPE_FUNCTION: if (sym.isBindingLocal()) return make(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.Signature, isCalledDirectly); return symtab->addUndefinedFunction(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.Signature, isCalledDirectly); case WASM_SYMBOL_TYPE_DATA: if (sym.isBindingLocal()) return make(name, flags, this); return symtab->addUndefinedData(name, flags, this); case WASM_SYMBOL_TYPE_GLOBAL: if (sym.isBindingLocal()) return make(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.GlobalType); return symtab->addUndefinedGlobal(name, sym.Info.ImportName, sym.Info.ImportModule, flags, this, sym.GlobalType); case WASM_SYMBOL_TYPE_SECTION: llvm_unreachable("section symbols cannot be undefined"); } llvm_unreachable("unknown symbol kind"); } void ArchiveFile::parse() { // Parse a MemoryBufferRef as an archive file. LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n"); file = CHECK(Archive::create(mb), toString(this)); // Read the symbol table to construct Lazy symbols. int count = 0; for (const Archive::Symbol &sym : file->symbols()) { symtab->addLazy(this, &sym); ++count; } LLVM_DEBUG(dbgs() << "Read " << count << " symbols\n"); } void ArchiveFile::addMember(const Archive::Symbol *sym) { const Archive::Child &c = CHECK(sym->getMember(), "could not get the member for symbol " + sym->getName()); // Don't try to load the same member twice (this can happen when members // mutually reference each other). if (!seen.insert(c.getChildOffset()).second) return; LLVM_DEBUG(dbgs() << "loading lazy: " << sym->getName() << "\n"); LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n"); MemoryBufferRef mb = CHECK(c.getMemoryBufferRef(), "could not get the buffer for the member defining symbol " + sym->getName()); InputFile *obj = createObjectFile(mb, getName()); symtab->addFile(obj); } static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { switch (gvVisibility) { case GlobalValue::DefaultVisibility: return WASM_SYMBOL_VISIBILITY_DEFAULT; case GlobalValue::HiddenVisibility: case GlobalValue::ProtectedVisibility: return WASM_SYMBOL_VISIBILITY_HIDDEN; } llvm_unreachable("unknown visibility"); } static Symbol *createBitcodeSymbol(const std::vector &keptComdats, const lto::InputFile::Symbol &objSym, BitcodeFile &f) { StringRef name = saver.save(objSym.getName()); uint32_t flags = objSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0; flags |= mapVisibility(objSym.getVisibility()); int c = objSym.getComdatIndex(); bool excludedByComdat = c != -1 && !keptComdats[c]; if (objSym.isUndefined() || excludedByComdat) { flags |= WASM_SYMBOL_UNDEFINED; if (objSym.isExecutable()) return symtab->addUndefinedFunction(name, None, None, flags, &f, nullptr, true); return symtab->addUndefinedData(name, flags, &f); } if (objSym.isExecutable()) return symtab->addDefinedFunction(name, flags, &f, nullptr); return symtab->addDefinedData(name, flags, &f, nullptr, 0, 0); } bool BitcodeFile::doneLTO = false; void BitcodeFile::parse() { if (doneLTO) { error(toString(this) + ": attempt to add bitcode file after LTO."); return; } obj = check(lto::InputFile::create(MemoryBufferRef( mb.getBuffer(), saver.save(archiveName + mb.getBufferIdentifier())))); Triple t(obj->getTargetTriple()); if (!t.isWasm()) { error(toString(this) + ": machine type must be wasm32 or wasm64"); return; } checkArch(t.getArch()); std::vector keptComdats; for (StringRef s : obj->getComdatTable()) keptComdats.push_back(symtab->addComdat(s)); for (const lto::InputFile::Symbol &objSym : obj->symbols()) symbols.push_back(createBitcodeSymbol(keptComdats, objSym, *this)); } } // namespace wasm } // namespace lld