//===-- ProcessMonitor.cpp ------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include #include #include #include #include #include #include #include #include #include "lldb/Host/Host.h" #include "lldb/Host/PseudoTerminal.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/Thread.h" #include "lldb/Target/UnixSignals.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Scalar.h" #include "lldb/Utility/Status.h" #include "llvm/Support/Errno.h" #include "FreeBSDThread.h" #include "Plugins/Process/POSIX/CrashReason.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "ProcessFreeBSD.h" #include "ProcessMonitor.h" using namespace lldb; using namespace lldb_private; // Wrapper for ptrace to catch errors and log calls. const char *Get_PT_IO_OP(int op) { switch (op) { case PIOD_READ_D: return "READ_D"; case PIOD_WRITE_D: return "WRITE_D"; case PIOD_READ_I: return "READ_I"; case PIOD_WRITE_I: return "WRITE_I"; default: return "Unknown op"; } } // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets // errno on error because -1 is reserved as a valid result. extern long PtraceWrapper(int req, lldb::pid_t pid, void *addr, int data, const char *reqName, const char *file, int line) { long int result; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); if (log) { LLDB_LOGF(log, "ptrace(%s, %" PRIu64 ", %p, %x) called from file %s line %d", reqName, pid, addr, data, file, line); if (req == PT_IO) { struct ptrace_io_desc *pi = (struct ptrace_io_desc *)addr; LLDB_LOGF(log, "PT_IO: op=%s offs=%zx size=%zu", Get_PT_IO_OP(pi->piod_op), (size_t)pi->piod_offs, pi->piod_len); } } // PtraceDisplayBytes(req, data); errno = 0; result = ptrace(req, pid, (caddr_t)addr, data); // PtraceDisplayBytes(req, data); if (log && errno != 0) { const char *str; switch (errno) { case ESRCH: str = "ESRCH"; break; case EINVAL: str = "EINVAL"; break; case EBUSY: str = "EBUSY"; break; case EPERM: str = "EPERM"; break; default: str = ""; } LLDB_LOGF(log, "ptrace() failed; errno=%d (%s)", errno, str); } if (log) { #ifdef __amd64__ if (req == PT_GETREGS) { struct reg *r = (struct reg *)addr; LLDB_LOGF(log, "PT_GETREGS: rip=0x%lx rsp=0x%lx rbp=0x%lx rax=0x%lx", r->r_rip, r->r_rsp, r->r_rbp, r->r_rax); } if (req == PT_GETDBREGS || req == PT_SETDBREGS) { struct dbreg *r = (struct dbreg *)addr; char setget = (req == PT_GETDBREGS) ? 'G' : 'S'; for (int i = 0; i <= 7; i++) LLDB_LOGF(log, "PT_%cETDBREGS: dr[%d]=0x%lx", setget, i, r->dr[i]); } #endif } return result; } // Wrapper for ptrace when logging is not required. Sets errno to 0 prior to // calling ptrace. extern long PtraceWrapper(int req, lldb::pid_t pid, void *addr, int data) { long result = 0; errno = 0; result = ptrace(req, pid, (caddr_t)addr, data); return result; } #define PTRACE(req, pid, addr, data) \ PtraceWrapper((req), (pid), (addr), (data), #req, __FILE__, __LINE__) // Static implementations of ProcessMonitor::ReadMemory and // ProcessMonitor::WriteMemory. This enables mutual recursion between these // functions without needed to go thru the thread funnel. static size_t DoReadMemory(lldb::pid_t pid, lldb::addr_t vm_addr, void *buf, size_t size, Status &error) { struct ptrace_io_desc pi_desc; pi_desc.piod_op = PIOD_READ_D; pi_desc.piod_offs = (void *)vm_addr; pi_desc.piod_addr = buf; pi_desc.piod_len = size; if (PTRACE(PT_IO, pid, (caddr_t)&pi_desc, 0) < 0) { error.SetErrorToErrno(); return 0; } return pi_desc.piod_len; } static size_t DoWriteMemory(lldb::pid_t pid, lldb::addr_t vm_addr, const void *buf, size_t size, Status &error) { struct ptrace_io_desc pi_desc; pi_desc.piod_op = PIOD_WRITE_D; pi_desc.piod_offs = (void *)vm_addr; pi_desc.piod_addr = const_cast(buf); pi_desc.piod_len = size; if (PTRACE(PT_IO, pid, (caddr_t)&pi_desc, 0) < 0) { error.SetErrorToErrno(); return 0; } return pi_desc.piod_len; } // Simple helper function to ensure flags are enabled on the given file // descriptor. static bool EnsureFDFlags(int fd, int flags, Status &error) { int status; if ((status = fcntl(fd, F_GETFL)) == -1) { error.SetErrorToErrno(); return false; } if (fcntl(fd, F_SETFL, status | flags) == -1) { error.SetErrorToErrno(); return false; } return true; } /// \class Operation /// Represents a ProcessMonitor operation. /// /// Under FreeBSD, it is not possible to ptrace() from any other thread but /// the one that spawned or attached to the process from the start. /// Therefore, when a ProcessMonitor is asked to deliver or change the state /// of an inferior process the operation must be "funneled" to a specific /// thread to perform the task. The Operation class provides an abstract base /// for all services the ProcessMonitor must perform via the single virtual /// function Execute, thus encapsulating the code that needs to run in the /// privileged context. class Operation { public: virtual ~Operation() {} virtual void Execute(ProcessMonitor *monitor) = 0; }; /// \class ReadOperation /// Implements ProcessMonitor::ReadMemory. class ReadOperation : public Operation { public: ReadOperation(lldb::addr_t addr, void *buff, size_t size, Status &error, size_t &result) : m_addr(addr), m_buff(buff), m_size(size), m_error(error), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::addr_t m_addr; void *m_buff; size_t m_size; Status &m_error; size_t &m_result; }; void ReadOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); m_result = DoReadMemory(pid, m_addr, m_buff, m_size, m_error); } /// \class WriteOperation /// Implements ProcessMonitor::WriteMemory. class WriteOperation : public Operation { public: WriteOperation(lldb::addr_t addr, const void *buff, size_t size, Status &error, size_t &result) : m_addr(addr), m_buff(buff), m_size(size), m_error(error), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::addr_t m_addr; const void *m_buff; size_t m_size; Status &m_error; size_t &m_result; }; void WriteOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); m_result = DoWriteMemory(pid, m_addr, m_buff, m_size, m_error); } /// \class ReadRegOperation /// Implements ProcessMonitor::ReadRegisterValue. class ReadRegOperation : public Operation { public: ReadRegOperation(lldb::tid_t tid, unsigned offset, unsigned size, RegisterValue &value, bool &result) : m_tid(tid), m_offset(offset), m_size(size), m_value(value), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; unsigned m_offset; unsigned m_size; RegisterValue &m_value; bool &m_result; }; void ReadRegOperation::Execute(ProcessMonitor *monitor) { struct reg regs; int rc; if ((rc = PTRACE(PT_GETREGS, m_tid, (caddr_t)®s, 0)) < 0) { m_result = false; } else { // 'struct reg' contains only 32- or 64-bit register values. Punt on // others. Also, not all entries may be uintptr_t sized, such as 32-bit // processes on powerpc64 (probably the same for i386 on amd64) if (m_size == sizeof(uint32_t)) m_value = *(uint32_t *)(((caddr_t)®s) + m_offset); else if (m_size == sizeof(uint64_t)) m_value = *(uint64_t *)(((caddr_t)®s) + m_offset); else memcpy((void *)&m_value, (((caddr_t)®s) + m_offset), m_size); m_result = true; } } /// \class WriteRegOperation /// Implements ProcessMonitor::WriteRegisterValue. class WriteRegOperation : public Operation { public: WriteRegOperation(lldb::tid_t tid, unsigned offset, const RegisterValue &value, bool &result) : m_tid(tid), m_offset(offset), m_value(value), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; unsigned m_offset; const RegisterValue &m_value; bool &m_result; }; void WriteRegOperation::Execute(ProcessMonitor *monitor) { struct reg regs; if (PTRACE(PT_GETREGS, m_tid, (caddr_t)®s, 0) < 0) { m_result = false; return; } *(uintptr_t *)(((caddr_t)®s) + m_offset) = (uintptr_t)m_value.GetAsUInt64(); if (PTRACE(PT_SETREGS, m_tid, (caddr_t)®s, 0) < 0) m_result = false; else m_result = true; } /// \class ReadDebugRegOperation /// Implements ProcessMonitor::ReadDebugRegisterValue. class ReadDebugRegOperation : public Operation { public: ReadDebugRegOperation(lldb::tid_t tid, unsigned offset, unsigned size, RegisterValue &value, bool &result) : m_tid(tid), m_offset(offset), m_size(size), m_value(value), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; unsigned m_offset; unsigned m_size; RegisterValue &m_value; bool &m_result; }; void ReadDebugRegOperation::Execute(ProcessMonitor *monitor) { struct dbreg regs; int rc; if ((rc = PTRACE(PT_GETDBREGS, m_tid, (caddr_t)®s, 0)) < 0) { m_result = false; } else { if (m_size == sizeof(uintptr_t)) m_value = *(uintptr_t *)(((caddr_t)®s) + m_offset); else memcpy((void *)&m_value, (((caddr_t)®s) + m_offset), m_size); m_result = true; } } /// \class WriteDebugRegOperation /// Implements ProcessMonitor::WriteDebugRegisterValue. class WriteDebugRegOperation : public Operation { public: WriteDebugRegOperation(lldb::tid_t tid, unsigned offset, const RegisterValue &value, bool &result) : m_tid(tid), m_offset(offset), m_value(value), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; unsigned m_offset; const RegisterValue &m_value; bool &m_result; }; void WriteDebugRegOperation::Execute(ProcessMonitor *monitor) { struct dbreg regs; if (PTRACE(PT_GETDBREGS, m_tid, (caddr_t)®s, 0) < 0) { m_result = false; return; } *(uintptr_t *)(((caddr_t)®s) + m_offset) = (uintptr_t)m_value.GetAsUInt64(); if (PTRACE(PT_SETDBREGS, m_tid, (caddr_t)®s, 0) < 0) m_result = false; else m_result = true; } /// \class ReadGPROperation /// Implements ProcessMonitor::ReadGPR. class ReadGPROperation : public Operation { public: ReadGPROperation(lldb::tid_t tid, void *buf, bool &result) : m_tid(tid), m_buf(buf), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; void *m_buf; bool &m_result; }; void ReadGPROperation::Execute(ProcessMonitor *monitor) { int rc; errno = 0; rc = PTRACE(PT_GETREGS, m_tid, (caddr_t)m_buf, 0); if (errno != 0) m_result = false; else m_result = true; } /// \class ReadFPROperation /// Implements ProcessMonitor::ReadFPR. class ReadFPROperation : public Operation { public: ReadFPROperation(lldb::tid_t tid, void *buf, bool &result) : m_tid(tid), m_buf(buf), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; void *m_buf; bool &m_result; }; void ReadFPROperation::Execute(ProcessMonitor *monitor) { if (PTRACE(PT_GETFPREGS, m_tid, (caddr_t)m_buf, 0) < 0) m_result = false; else m_result = true; } /// \class WriteGPROperation /// Implements ProcessMonitor::WriteGPR. class WriteGPROperation : public Operation { public: WriteGPROperation(lldb::tid_t tid, void *buf, bool &result) : m_tid(tid), m_buf(buf), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; void *m_buf; bool &m_result; }; void WriteGPROperation::Execute(ProcessMonitor *monitor) { if (PTRACE(PT_SETREGS, m_tid, (caddr_t)m_buf, 0) < 0) m_result = false; else m_result = true; } /// \class WriteFPROperation /// Implements ProcessMonitor::WriteFPR. class WriteFPROperation : public Operation { public: WriteFPROperation(lldb::tid_t tid, void *buf, bool &result) : m_tid(tid), m_buf(buf), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; void *m_buf; bool &m_result; }; void WriteFPROperation::Execute(ProcessMonitor *monitor) { if (PTRACE(PT_SETFPREGS, m_tid, (caddr_t)m_buf, 0) < 0) m_result = false; else m_result = true; } /// \class ResumeOperation /// Implements ProcessMonitor::Resume. class ResumeOperation : public Operation { public: ResumeOperation(uint32_t signo, bool &result) : m_signo(signo), m_result(result) {} void Execute(ProcessMonitor *monitor); private: uint32_t m_signo; bool &m_result; }; void ResumeOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); int data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; if (PTRACE(PT_CONTINUE, pid, (caddr_t)1, data)) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "ResumeOperation ({0}) failed: {1}", pid, llvm::sys::StrError(errno)); m_result = false; } else m_result = true; } /// \class SingleStepOperation /// Implements ProcessMonitor::SingleStep. class SingleStepOperation : public Operation { public: SingleStepOperation(uint32_t signo, bool &result) : m_signo(signo), m_result(result) {} void Execute(ProcessMonitor *monitor); private: uint32_t m_signo; bool &m_result; }; void SingleStepOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); int data = 0; if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) data = m_signo; if (PTRACE(PT_STEP, pid, NULL, data)) m_result = false; else m_result = true; } /// \class LwpInfoOperation /// Implements ProcessMonitor::GetLwpInfo. class LwpInfoOperation : public Operation { public: LwpInfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err) : m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; void *m_info; bool &m_result; int &m_err; }; void LwpInfoOperation::Execute(ProcessMonitor *monitor) { struct ptrace_lwpinfo plwp; if (PTRACE(PT_LWPINFO, m_tid, (caddr_t)&plwp, sizeof(plwp))) { m_result = false; m_err = errno; } else { memcpy(m_info, &plwp, sizeof(plwp)); m_result = true; } } /// \class ThreadSuspendOperation /// Implements ProcessMonitor::ThreadSuspend. class ThreadSuspendOperation : public Operation { public: ThreadSuspendOperation(lldb::tid_t tid, bool suspend, bool &result) : m_tid(tid), m_suspend(suspend), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; bool m_suspend; bool &m_result; }; void ThreadSuspendOperation::Execute(ProcessMonitor *monitor) { m_result = !PTRACE(m_suspend ? PT_SUSPEND : PT_RESUME, m_tid, NULL, 0); } /// \class EventMessageOperation /// Implements ProcessMonitor::GetEventMessage. class EventMessageOperation : public Operation { public: EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result) : m_tid(tid), m_message(message), m_result(result) {} void Execute(ProcessMonitor *monitor); private: lldb::tid_t m_tid; unsigned long *m_message; bool &m_result; }; void EventMessageOperation::Execute(ProcessMonitor *monitor) { struct ptrace_lwpinfo plwp; if (PTRACE(PT_LWPINFO, m_tid, (caddr_t)&plwp, sizeof(plwp))) m_result = false; else { if (plwp.pl_flags & PL_FLAG_FORKED) { *m_message = plwp.pl_child_pid; m_result = true; } else m_result = false; } } /// \class KillOperation /// Implements ProcessMonitor::Kill. class KillOperation : public Operation { public: KillOperation(bool &result) : m_result(result) {} void Execute(ProcessMonitor *monitor); private: bool &m_result; }; void KillOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); if (PTRACE(PT_KILL, pid, NULL, 0)) m_result = false; else m_result = true; } /// \class DetachOperation /// Implements ProcessMonitor::Detach. class DetachOperation : public Operation { public: DetachOperation(Status &result) : m_error(result) {} void Execute(ProcessMonitor *monitor); private: Status &m_error; }; void DetachOperation::Execute(ProcessMonitor *monitor) { lldb::pid_t pid = monitor->GetPID(); if (PTRACE(PT_DETACH, pid, NULL, 0) < 0) m_error.SetErrorToErrno(); } ProcessMonitor::OperationArgs::OperationArgs(ProcessMonitor *monitor) : m_monitor(monitor) { sem_init(&m_semaphore, 0, 0); } ProcessMonitor::OperationArgs::~OperationArgs() { sem_destroy(&m_semaphore); } ProcessMonitor::LaunchArgs::LaunchArgs(ProcessMonitor *monitor, lldb_private::Module *module, char const **argv, Environment env, const FileSpec &stdin_file_spec, const FileSpec &stdout_file_spec, const FileSpec &stderr_file_spec, const FileSpec &working_dir) : OperationArgs(monitor), m_module(module), m_argv(argv), m_env(std::move(env)), m_stdin_file_spec(stdin_file_spec), m_stdout_file_spec(stdout_file_spec), m_stderr_file_spec(stderr_file_spec), m_working_dir(working_dir) {} ProcessMonitor::LaunchArgs::~LaunchArgs() {} ProcessMonitor::AttachArgs::AttachArgs(ProcessMonitor *monitor, lldb::pid_t pid) : OperationArgs(monitor), m_pid(pid) {} ProcessMonitor::AttachArgs::~AttachArgs() {} /// The basic design of the ProcessMonitor is built around two threads. /// /// One thread (@see SignalThread) simply blocks on a call to waitpid() /// looking for changes in the debugee state. When a change is detected a /// ProcessMessage is sent to the associated ProcessFreeBSD instance. This /// thread "drives" state changes in the debugger. /// /// The second thread (@see OperationThread) is responsible for two things 1) /// launching or attaching to the inferior process, and then 2) servicing /// operations such as register reads/writes, stepping, etc. See the comments /// on the Operation class for more info as to why this is needed. ProcessMonitor::ProcessMonitor( ProcessFreeBSD *process, Module *module, const char *argv[], Environment env, const FileSpec &stdin_file_spec, const FileSpec &stdout_file_spec, const FileSpec &stderr_file_spec, const FileSpec &working_dir, const lldb_private::ProcessLaunchInfo & /* launch_info */, lldb_private::Status &error) : m_process(static_cast(process)), m_operation_thread(), m_monitor_thread(), m_pid(LLDB_INVALID_PROCESS_ID), m_terminal_fd(-1), m_operation(0) { using namespace std::placeholders; std::unique_ptr args( new LaunchArgs(this, module, argv, std::move(env), stdin_file_spec, stdout_file_spec, stderr_file_spec, working_dir)); sem_init(&m_operation_pending, 0, 0); sem_init(&m_operation_done, 0, 0); StartLaunchOpThread(args.get(), error); if (!error.Success()) return; if (llvm::sys::RetryAfterSignal(-1, sem_wait, &args->m_semaphore) == -1) { error.SetErrorToErrno(); return; } // Check that the launch was a success. if (!args->m_error.Success()) { StopOpThread(); error = args->m_error; return; } // Finally, start monitoring the child process for change in state. llvm::Expected monitor_thread = Host::StartMonitoringChildProcess( std::bind(&ProcessMonitor::MonitorCallback, this, _1, _2, _3, _4), GetPID(), true); if (!monitor_thread || !monitor_thread->IsJoinable()) { error.SetErrorToGenericError(); error.SetErrorString("Process launch failed."); return; } m_monitor_thread = *monitor_thread; } ProcessMonitor::ProcessMonitor(ProcessFreeBSD *process, lldb::pid_t pid, lldb_private::Status &error) : m_process(static_cast(process)), m_operation_thread(), m_monitor_thread(), m_pid(pid), m_terminal_fd(-1), m_operation(0) { using namespace std::placeholders; sem_init(&m_operation_pending, 0, 0); sem_init(&m_operation_done, 0, 0); std::unique_ptr args(new AttachArgs(this, pid)); StartAttachOpThread(args.get(), error); if (!error.Success()) return; if (llvm::sys::RetryAfterSignal(-1, sem_wait, &args->m_semaphore) == -1) { error.SetErrorToErrno(); return; } // Check that the attach was a success. if (!args->m_error.Success()) { StopOpThread(); error = args->m_error; return; } // Finally, start monitoring the child process for change in state. llvm::Expected monitor_thread = Host::StartMonitoringChildProcess( std::bind(&ProcessMonitor::MonitorCallback, this, _1, _2, _3, _4), GetPID(), true); if (!monitor_thread || !monitor_thread->IsJoinable()) { error.SetErrorToGenericError(); error.SetErrorString("Process attach failed."); return; } m_monitor_thread = *monitor_thread; } ProcessMonitor::~ProcessMonitor() { StopMonitor(); } // Thread setup and tear down. void ProcessMonitor::StartLaunchOpThread(LaunchArgs *args, Status &error) { static const char *g_thread_name = "lldb.process.freebsd.operation"; if (m_operation_thread && m_operation_thread->IsJoinable()) return; llvm::Expected operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args); if (operation_thread) m_operation_thread = *operation_thread; else error = operation_thread.takeError(); } void *ProcessMonitor::LaunchOpThread(void *arg) { LaunchArgs *args = static_cast(arg); if (!Launch(args)) { sem_post(&args->m_semaphore); return NULL; } ServeOperation(args); return NULL; } bool ProcessMonitor::Launch(LaunchArgs *args) { ProcessMonitor *monitor = args->m_monitor; ProcessFreeBSD &process = monitor->GetProcess(); const char **argv = args->m_argv; const FileSpec &stdin_file_spec = args->m_stdin_file_spec; const FileSpec &stdout_file_spec = args->m_stdout_file_spec; const FileSpec &stderr_file_spec = args->m_stderr_file_spec; const FileSpec &working_dir = args->m_working_dir; PseudoTerminal terminal; // Propagate the environment if one is not supplied. Environment::Envp envp = (args->m_env.empty() ? Host::GetEnvironment() : args->m_env).getEnvp(); llvm::Expected pid = terminal.Fork(); if (!pid) { args->m_error = pid.takeError(); goto FINISH; } // Recognized child exit status codes. enum { ePtraceFailed = 1, eDupStdinFailed, eDupStdoutFailed, eDupStderrFailed, eChdirFailed, eExecFailed, eSetGidFailed }; // Child process. if (*pid == 0) { // Trace this process. if (PTRACE(PT_TRACE_ME, 0, NULL, 0) < 0) exit(ePtraceFailed); // terminal has already dupped the tty descriptors to stdin/out/err. This // closes original fd from which they were copied (and avoids leaking // descriptors to the debugged process. terminal.CloseSecondaryFileDescriptor(); // Do not inherit setgid powers. if (setgid(getgid()) != 0) exit(eSetGidFailed); // Let us have our own process group. setpgid(0, 0); // Dup file descriptors if needed. // // FIXME: If two or more of the paths are the same we needlessly open // the same file multiple times. if (stdin_file_spec) if (!DupDescriptor(stdin_file_spec, STDIN_FILENO, O_RDONLY)) exit(eDupStdinFailed); if (stdout_file_spec) if (!DupDescriptor(stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT)) exit(eDupStdoutFailed); if (stderr_file_spec) if (!DupDescriptor(stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT)) exit(eDupStderrFailed); // Change working directory if (working_dir && 0 != ::chdir(working_dir.GetCString())) exit(eChdirFailed); // Execute. We should never return. execve(argv[0], const_cast(argv), envp); exit(eExecFailed); } // Wait for the child process to to trap on its call to execve. ::pid_t wpid; int status; if ((wpid = waitpid(*pid, &status, 0)) < 0) { args->m_error.SetErrorToErrno(); goto FINISH; } else if (WIFEXITED(status)) { // open, dup or execve likely failed for some reason. args->m_error.SetErrorToGenericError(); switch (WEXITSTATUS(status)) { case ePtraceFailed: args->m_error.SetErrorString("Child ptrace failed."); break; case eDupStdinFailed: args->m_error.SetErrorString("Child open stdin failed."); break; case eDupStdoutFailed: args->m_error.SetErrorString("Child open stdout failed."); break; case eDupStderrFailed: args->m_error.SetErrorString("Child open stderr failed."); break; case eChdirFailed: args->m_error.SetErrorString("Child failed to set working directory."); break; case eExecFailed: args->m_error.SetErrorString("Child exec failed."); break; case eSetGidFailed: args->m_error.SetErrorString("Child setgid failed."); break; default: args->m_error.SetErrorString("Child returned unknown exit status."); break; } goto FINISH; } assert(WIFSTOPPED(status) && wpid == (::pid_t)*pid && "Could not sync with inferior process."); #ifdef notyet // Have the child raise an event on exit. This is used to keep the child in // limbo until it is destroyed. if (PTRACE(PTRACE_SETOPTIONS, *pid, NULL, PTRACE_O_TRACEEXIT) < 0) { args->m_error.SetErrorToErrno(); goto FINISH; } #endif // Release the master terminal descriptor and pass it off to the // ProcessMonitor instance. Similarly stash the inferior pid. monitor->m_terminal_fd = terminal.ReleasePrimaryFileDescriptor(); monitor->m_pid = *pid; // Set the terminal fd to be in non blocking mode (it simplifies the // implementation of ProcessFreeBSD::GetSTDOUT to have a non-blocking // descriptor to read from). if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) goto FINISH; process.SendMessage(ProcessMessage::Attach(*pid)); FINISH: return args->m_error.Success(); } void ProcessMonitor::StartAttachOpThread(AttachArgs *args, lldb_private::Status &error) { static const char *g_thread_name = "lldb.process.freebsd.operation"; if (m_operation_thread && m_operation_thread->IsJoinable()) return; llvm::Expected operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args); if (operation_thread) m_operation_thread = *operation_thread; else error = operation_thread.takeError(); } void *ProcessMonitor::AttachOpThread(void *arg) { AttachArgs *args = static_cast(arg); Attach(args); ServeOperation(args); return NULL; } void ProcessMonitor::Attach(AttachArgs *args) { lldb::pid_t pid = args->m_pid; ProcessMonitor *monitor = args->m_monitor; ProcessFreeBSD &process = monitor->GetProcess(); if (pid <= 1) { args->m_error.SetErrorToGenericError(); args->m_error.SetErrorString("Attaching to process 1 is not allowed."); return; } // Attach to the requested process. if (PTRACE(PT_ATTACH, pid, NULL, 0) < 0) { args->m_error.SetErrorToErrno(); return; } int status; if ((status = waitpid(pid, NULL, 0)) < 0) { args->m_error.SetErrorToErrno(); return; } process.SendMessage(ProcessMessage::Attach(pid)); } size_t ProcessMonitor::GetCurrentThreadIDs(std::vector &thread_ids) { lwpid_t *tids; int tdcnt; thread_ids.clear(); tdcnt = PTRACE(PT_GETNUMLWPS, m_pid, NULL, 0); if (tdcnt <= 0) return 0; tids = (lwpid_t *)malloc(tdcnt * sizeof(*tids)); if (tids == NULL) return 0; if (PTRACE(PT_GETLWPLIST, m_pid, (void *)tids, tdcnt) < 0) { free(tids); return 0; } thread_ids = std::vector(tids, tids + tdcnt); free(tids); return thread_ids.size(); } bool ProcessMonitor::MonitorCallback(ProcessMonitor *monitor, lldb::pid_t pid, bool exited, int signal, int status) { ProcessMessage message; ProcessFreeBSD *process = monitor->m_process; assert(process); bool stop_monitoring; struct ptrace_lwpinfo plwp; int ptrace_err; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); if (exited) { LLDB_LOGF(log, "ProcessMonitor::%s() got exit signal, tid = %" PRIu64, __FUNCTION__, pid); message = ProcessMessage::Exit(pid, status); process->SendMessage(message); return pid == process->GetID(); } if (!monitor->GetLwpInfo(pid, &plwp, ptrace_err)) stop_monitoring = true; // pid is gone. Bail. else { switch (plwp.pl_siginfo.si_signo) { case SIGTRAP: message = MonitorSIGTRAP(monitor, &plwp.pl_siginfo, plwp.pl_lwpid); break; default: message = MonitorSignal(monitor, &plwp.pl_siginfo, plwp.pl_lwpid); break; } process->SendMessage(message); stop_monitoring = message.GetKind() == ProcessMessage::eExitMessage; } return stop_monitoring; } ProcessMessage ProcessMonitor::MonitorSIGTRAP(ProcessMonitor *monitor, const siginfo_t *info, lldb::tid_t tid) { ProcessMessage message; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); assert(monitor); assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); switch (info->si_code) { default: assert(false && "Unexpected SIGTRAP code!"); break; case (SIGTRAP /* | (PTRACE_EVENT_EXIT << 8) */): { // The inferior process is about to exit. Maintain the process in a state // of "limbo" until we are explicitly commanded to detach, destroy, resume, // etc. unsigned long data = 0; if (!monitor->GetEventMessage(tid, &data)) data = -1; LLDB_LOGF(log, "ProcessMonitor::%s() received exit? event, data = %lx, tid " "= %" PRIu64, __FUNCTION__, data, tid); message = ProcessMessage::Limbo(tid, (data >> 8)); break; } case 0: case TRAP_TRACE: #ifdef TRAP_CAP // Map TRAP_CAP to a trace trap in the absense of a more specific handler. case TRAP_CAP: #endif LLDB_LOGF(log, "ProcessMonitor::%s() received trace event, tid = %" PRIu64 " : si_code = %d", __FUNCTION__, tid, info->si_code); message = ProcessMessage::Trace(tid); break; case SI_KERNEL: case TRAP_BRKPT: if (monitor->m_process->IsSoftwareStepBreakpoint(tid)) { LLDB_LOGF(log, "ProcessMonitor::%s() received sw single step breakpoint " "event, tid = %" PRIu64, __FUNCTION__, tid); message = ProcessMessage::Trace(tid); } else { LLDB_LOGF( log, "ProcessMonitor::%s() received breakpoint event, tid = %" PRIu64, __FUNCTION__, tid); message = ProcessMessage::Break(tid); } break; } return message; } ProcessMessage ProcessMonitor::MonitorSignal(ProcessMonitor *monitor, const siginfo_t *info, lldb::tid_t tid) { ProcessMessage message; int signo = info->si_signo; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); // POSIX says that process behaviour is undefined after it ignores a SIGFPE, // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) // or raise(3). Similarly for tgkill(2) on FreeBSD. // // IOW, user generated signals never generate what we consider to be a // "crash". // // Similarly, ACK signals generated by this monitor. if (info->si_code == SI_USER) { LLDB_LOGF(log, "ProcessMonitor::%s() received signal %s with code %s, pid = %d", __FUNCTION__, monitor->m_process->GetUnixSignals()->GetSignalAsCString(signo), "SI_USER", info->si_pid); if (info->si_pid == getpid()) return ProcessMessage::SignalDelivered(tid, signo); else return ProcessMessage::Signal(tid, signo); } LLDB_LOGF(log, "ProcessMonitor::%s() received signal %s", __FUNCTION__, monitor->m_process->GetUnixSignals()->GetSignalAsCString(signo)); switch (signo) { case SIGSEGV: case SIGILL: case SIGFPE: case SIGBUS: lldb::addr_t fault_addr = reinterpret_cast(info->si_addr); const auto reason = GetCrashReason(*info); if (reason != CrashReason::eInvalidCrashReason) { return ProcessMessage::Crash(tid, reason, signo, fault_addr); } // else; Use atleast si_signo info for other si_code } // Everything else is "normal" and does not require any special action on our // part. return ProcessMessage::Signal(tid, signo); } void ProcessMonitor::ServeOperation(OperationArgs *args) { ProcessMonitor *monitor = args->m_monitor; // We are finised with the arguments and are ready to go. Sync with the // parent thread and start serving operations on the inferior. sem_post(&args->m_semaphore); for (;;) { // wait for next pending operation sem_wait(&monitor->m_operation_pending); monitor->m_operation->Execute(monitor); // notify calling thread that operation is complete sem_post(&monitor->m_operation_done); } } void ProcessMonitor::DoOperation(Operation *op) { std::lock_guard guard(m_operation_mutex); m_operation = op; // notify operation thread that an operation is ready to be processed sem_post(&m_operation_pending); // wait for operation to complete sem_wait(&m_operation_done); } size_t ProcessMonitor::ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size, Status &error) { size_t result; ReadOperation op(vm_addr, buf, size, error, result); DoOperation(&op); return result; } size_t ProcessMonitor::WriteMemory(lldb::addr_t vm_addr, const void *buf, size_t size, lldb_private::Status &error) { size_t result; WriteOperation op(vm_addr, buf, size, error, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadRegisterValue(lldb::tid_t tid, unsigned offset, const char *reg_name, unsigned size, RegisterValue &value) { bool result; ReadRegOperation op(tid, offset, size, value, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteRegisterValue(lldb::tid_t tid, unsigned offset, const char *reg_name, const RegisterValue &value) { bool result; WriteRegOperation op(tid, offset, value, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadDebugRegisterValue( lldb::tid_t tid, unsigned offset, const char *reg_name, unsigned size, lldb_private::RegisterValue &value) { bool result; ReadDebugRegOperation op(tid, offset, size, value, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteDebugRegisterValue( lldb::tid_t tid, unsigned offset, const char *reg_name, const lldb_private::RegisterValue &value) { bool result; WriteDebugRegOperation op(tid, offset, value, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; ReadGPROperation op(tid, buf, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; ReadFPROperation op(tid, buf, result); DoOperation(&op); return result; } bool ProcessMonitor::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { return false; } bool ProcessMonitor::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; WriteGPROperation op(tid, buf, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) { bool result; WriteFPROperation op(tid, buf, result); DoOperation(&op); return result; } bool ProcessMonitor::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) { return false; } bool ProcessMonitor::ReadThreadPointer(lldb::tid_t tid, lldb::addr_t &value) { return false; } bool ProcessMonitor::Resume(lldb::tid_t unused, uint32_t signo) { bool result; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); if (log) { const char *signame = m_process->GetUnixSignals()->GetSignalAsCString(signo); if (signame == nullptr) signame = ""; LLDB_LOGF(log, "ProcessMonitor::%s() resuming pid %" PRIu64 " with signal %s", __FUNCTION__, GetPID(), signame); } ResumeOperation op(signo, result); DoOperation(&op); LLDB_LOGF(log, "ProcessMonitor::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false"); return result; } bool ProcessMonitor::SingleStep(lldb::tid_t unused, uint32_t signo) { bool result; SingleStepOperation op(signo, result); DoOperation(&op); return result; } bool ProcessMonitor::Kill() { bool result; KillOperation op(result); DoOperation(&op); return result; } bool ProcessMonitor::GetLwpInfo(lldb::tid_t tid, void *lwpinfo, int &ptrace_err) { bool result; LwpInfoOperation op(tid, lwpinfo, result, ptrace_err); DoOperation(&op); return result; } bool ProcessMonitor::ThreadSuspend(lldb::tid_t tid, bool suspend) { bool result; ThreadSuspendOperation op(tid, suspend, result); DoOperation(&op); return result; } bool ProcessMonitor::GetEventMessage(lldb::tid_t tid, unsigned long *message) { bool result; EventMessageOperation op(tid, message, result); DoOperation(&op); return result; } lldb_private::Status ProcessMonitor::Detach(lldb::tid_t tid) { lldb_private::Status error; if (tid != LLDB_INVALID_THREAD_ID) { DetachOperation op(error); DoOperation(&op); } return error; } bool ProcessMonitor::DupDescriptor(const FileSpec &file_spec, int fd, int flags) { int target_fd = llvm::sys::RetryAfterSignal(-1, open, file_spec.GetCString(), flags, 0666); if (target_fd == -1) return false; if (dup2(target_fd, fd) == -1) return false; return (close(target_fd) == -1) ? false : true; } void ProcessMonitor::StopMonitoringChildProcess() { if (m_monitor_thread && m_monitor_thread->IsJoinable()) { m_monitor_thread->Cancel(); m_monitor_thread->Join(nullptr); m_monitor_thread->Reset(); } } void ProcessMonitor::StopMonitor() { StopMonitoringChildProcess(); StopOpThread(); sem_destroy(&m_operation_pending); sem_destroy(&m_operation_done); if (m_terminal_fd >= 0) { close(m_terminal_fd); m_terminal_fd = -1; } } // FIXME: On Linux, when a new thread is created, we receive to notifications, // (1) a SIGTRAP|PTRACE_EVENT_CLONE from the main process thread with the child // thread id as additional information, and (2) a SIGSTOP|SI_USER from the new // child thread indicating that it has is stopped because we attached. We have // no guarantee of the order in which these arrive, but we need both before we // are ready to proceed. We currently keep a list of threads which have sent // the initial SIGSTOP|SI_USER event. Then when we receive the // SIGTRAP|PTRACE_EVENT_CLONE notification, if the initial stop has not // occurred we call ProcessMonitor::WaitForInitialTIDStop() to wait for it. // // Right now, the above logic is in ProcessPOSIX, so we need a definition of // this function in the FreeBSD ProcessMonitor implementation even if it isn't // logically needed. // // We really should figure out what actually happens on FreeBSD and move the // Linux-specific logic out of ProcessPOSIX as needed. bool ProcessMonitor::WaitForInitialTIDStop(lldb::tid_t tid) { return true; } void ProcessMonitor::StopOpThread() { if (m_operation_thread && m_operation_thread->IsJoinable()) { m_operation_thread->Cancel(); m_operation_thread->Join(nullptr); m_operation_thread->Reset(); } }