//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the AArch64TargetLowering class. // //===----------------------------------------------------------------------===// #include "AArch64ISelLowering.h" #include "AArch64CallingConvention.h" #include "AArch64ExpandImm.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64PerfectShuffle.h" #include "AArch64RegisterInfo.h" #include "AArch64Subtarget.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/Module.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "aarch64-lower" STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumShiftInserts, "Number of vector shift inserts"); STATISTIC(NumOptimizedImms, "Number of times immediates were optimized"); // FIXME: The necessary dtprel relocations don't seem to be supported // well in the GNU bfd and gold linkers at the moment. Therefore, by // default, for now, fall back to GeneralDynamic code generation. cl::opt EnableAArch64ELFLocalDynamicTLSGeneration( "aarch64-elf-ldtls-generation", cl::Hidden, cl::desc("Allow AArch64 Local Dynamic TLS code generation"), cl::init(false)); static cl::opt EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden, cl::desc("Enable AArch64 logical imm instruction " "optimization"), cl::init(true)); // Temporary option added for the purpose of testing functionality added // to DAGCombiner.cpp in D92230. It is expected that this can be removed // in future when both implementations will be based off MGATHER rather // than the GLD1 nodes added for the SVE gather load intrinsics. static cl::opt EnableCombineMGatherIntrinsics("aarch64-enable-mgather-combine", cl::Hidden, cl::desc("Combine extends of AArch64 masked " "gather intrinsics"), cl::init(true)); /// Value type used for condition codes. static const MVT MVT_CC = MVT::i32; static inline EVT getPackedSVEVectorVT(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unexpected element type for vector"); case MVT::i8: return MVT::nxv16i8; case MVT::i16: return MVT::nxv8i16; case MVT::i32: return MVT::nxv4i32; case MVT::i64: return MVT::nxv2i64; case MVT::f16: return MVT::nxv8f16; case MVT::f32: return MVT::nxv4f32; case MVT::f64: return MVT::nxv2f64; } } static inline MVT getPromotedVTForPredicate(MVT VT) { assert(VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) && "Expected scalable predicate vector type!"); switch (VT.getVectorMinNumElements()) { default: llvm_unreachable("unexpected element count for vector"); case 2: return MVT::nxv2i64; case 4: return MVT::nxv4i32; case 8: return MVT::nxv8i16; case 16: return MVT::nxv16i8; } } /// Returns true if VT's elements occupy the lowest bit positions of its /// associated register class without any intervening space. /// /// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the /// same register class, but only nxv8f16 can be treated as a packed vector. static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) { assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal vector type!"); return VT.isFixedLengthVector() || VT.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock; } // Returns true for ####_MERGE_PASSTHRU opcodes, whose operands have a leading // predicate and end with a passthru value matching the result type. static bool isMergePassthruOpcode(unsigned Opc) { switch (Opc) { default: return false; case AArch64ISD::DUP_MERGE_PASSTHRU: case AArch64ISD::FNEG_MERGE_PASSTHRU: case AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU: case AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU: case AArch64ISD::FCEIL_MERGE_PASSTHRU: case AArch64ISD::FFLOOR_MERGE_PASSTHRU: case AArch64ISD::FNEARBYINT_MERGE_PASSTHRU: case AArch64ISD::FRINT_MERGE_PASSTHRU: case AArch64ISD::FROUND_MERGE_PASSTHRU: case AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU: case AArch64ISD::FTRUNC_MERGE_PASSTHRU: case AArch64ISD::FP_ROUND_MERGE_PASSTHRU: case AArch64ISD::FP_EXTEND_MERGE_PASSTHRU: case AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU: case AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU: case AArch64ISD::FCVTZU_MERGE_PASSTHRU: case AArch64ISD::FCVTZS_MERGE_PASSTHRU: case AArch64ISD::FSQRT_MERGE_PASSTHRU: case AArch64ISD::FRECPX_MERGE_PASSTHRU: case AArch64ISD::FABS_MERGE_PASSTHRU: return true; } } AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, const AArch64Subtarget &STI) : TargetLowering(TM), Subtarget(&STI) { // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so // we have to make something up. Arbitrarily, choose ZeroOrOne. setBooleanContents(ZeroOrOneBooleanContent); // When comparing vectors the result sets the different elements in the // vector to all-one or all-zero. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // Set up the register classes. addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); if (Subtarget->hasFPARMv8()) { addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass); addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); } if (Subtarget->hasNEON()) { addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); // Someone set us up the NEON. addDRTypeForNEON(MVT::v2f32); addDRTypeForNEON(MVT::v8i8); addDRTypeForNEON(MVT::v4i16); addDRTypeForNEON(MVT::v2i32); addDRTypeForNEON(MVT::v1i64); addDRTypeForNEON(MVT::v1f64); addDRTypeForNEON(MVT::v4f16); if (Subtarget->hasBF16()) addDRTypeForNEON(MVT::v4bf16); addQRTypeForNEON(MVT::v4f32); addQRTypeForNEON(MVT::v2f64); addQRTypeForNEON(MVT::v16i8); addQRTypeForNEON(MVT::v8i16); addQRTypeForNEON(MVT::v4i32); addQRTypeForNEON(MVT::v2i64); addQRTypeForNEON(MVT::v8f16); if (Subtarget->hasBF16()) addQRTypeForNEON(MVT::v8bf16); } if (Subtarget->hasSVE()) { // Add legal sve predicate types addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass); addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass); addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass); addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass); // Add legal sve data types addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass); if (Subtarget->hasBF16()) { addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass); } if (Subtarget->useSVEForFixedLengthVectors()) { for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addRegisterClass(VT, &AArch64::ZPRRegClass); for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addRegisterClass(VT, &AArch64::ZPRRegClass); } for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) { setOperationAction(ISD::SADDSAT, VT, Legal); setOperationAction(ISD::UADDSAT, VT, Legal); setOperationAction(ISD::SSUBSAT, VT, Legal); setOperationAction(ISD::USUBSAT, VT, Legal); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); } for (auto VT : { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8, MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 }) setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal); for (auto VT : { MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv2f64 }) { setCondCodeAction(ISD::SETO, VT, Expand); setCondCodeAction(ISD::SETOLT, VT, Expand); setCondCodeAction(ISD::SETLT, VT, Expand); setCondCodeAction(ISD::SETOLE, VT, Expand); setCondCodeAction(ISD::SETLE, VT, Expand); setCondCodeAction(ISD::SETULT, VT, Expand); setCondCodeAction(ISD::SETULE, VT, Expand); setCondCodeAction(ISD::SETUGE, VT, Expand); setCondCodeAction(ISD::SETUGT, VT, Expand); setCondCodeAction(ISD::SETUEQ, VT, Expand); setCondCodeAction(ISD::SETUNE, VT, Expand); } } // Compute derived properties from the register classes computeRegisterProperties(Subtarget->getRegisterInfo()); // Provide all sorts of operation actions setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::SETCC, MVT::i32, Custom); setOperationAction(ISD::SETCC, MVT::i64, Custom); setOperationAction(ISD::SETCC, MVT::f16, Custom); setOperationAction(ISD::SETCC, MVT::f32, Custom); setOperationAction(ISD::SETCC, MVT::f64, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom); setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::BR_CC, MVT::f16, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f16, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); setOperationAction(ISD::FREM, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f80, Expand); setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // Custom lowering hooks are needed for XOR // to fold it into CSINC/CSINV. setOperationAction(ISD::XOR, MVT::i32, Custom); setOperationAction(ISD::XOR, MVT::i64, Custom); // Virtually no operation on f128 is legal, but LLVM can't expand them when // there's a valid register class, so we need custom operations in most cases. setOperationAction(ISD::FABS, MVT::f128, Expand); setOperationAction(ISD::FADD, MVT::f128, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); setOperationAction(ISD::FCOS, MVT::f128, Expand); setOperationAction(ISD::FDIV, MVT::f128, Custom); setOperationAction(ISD::FMA, MVT::f128, Expand); setOperationAction(ISD::FMUL, MVT::f128, Custom); setOperationAction(ISD::FNEG, MVT::f128, Expand); setOperationAction(ISD::FPOW, MVT::f128, Expand); setOperationAction(ISD::FREM, MVT::f128, Expand); setOperationAction(ISD::FRINT, MVT::f128, Expand); setOperationAction(ISD::FSIN, MVT::f128, Expand); setOperationAction(ISD::FSINCOS, MVT::f128, Expand); setOperationAction(ISD::FSQRT, MVT::f128, Expand); setOperationAction(ISD::FSUB, MVT::f128, Custom); setOperationAction(ISD::FTRUNC, MVT::f128, Expand); setOperationAction(ISD::SETCC, MVT::f128, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); setOperationAction(ISD::BR_CC, MVT::f128, Custom); setOperationAction(ISD::SELECT, MVT::f128, Custom); setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); // Lowering for many of the conversions is actually specified by the non-f128 // type. The LowerXXX function will be trivial when f128 isn't involved. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom); // Variable arguments. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); // Variable-sized objects. setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); if (Subtarget->isTargetWindows()) setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); else setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); // Constant pool entries setOperationAction(ISD::ConstantPool, MVT::i64, Custom); // BlockAddress setOperationAction(ISD::BlockAddress, MVT::i64, Custom); // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. setOperationAction(ISD::ADDC, MVT::i32, Custom); setOperationAction(ISD::ADDE, MVT::i32, Custom); setOperationAction(ISD::SUBC, MVT::i32, Custom); setOperationAction(ISD::SUBE, MVT::i32, Custom); setOperationAction(ISD::ADDC, MVT::i64, Custom); setOperationAction(ISD::ADDE, MVT::i64, Custom); setOperationAction(ISD::SUBC, MVT::i64, Custom); setOperationAction(ISD::SUBE, MVT::i64, Custom); // AArch64 lacks both left-rotate and popcount instructions. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); for (MVT VT : MVT::fixedlen_vector_valuetypes()) { setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); } // AArch64 doesn't have i32 MULH{S|U}. setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::MULHS, MVT::i32, Expand); // AArch64 doesn't have {U|S}MUL_LOHI. setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Custom); setOperationAction(ISD::CTPOP, MVT::i64, Custom); setOperationAction(ISD::CTPOP, MVT::i128, Custom); setOperationAction(ISD::ABS, MVT::i32, Custom); setOperationAction(ISD::ABS, MVT::i64, Custom); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); for (MVT VT : MVT::fixedlen_vector_valuetypes()) { setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); } setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // Custom lower Add/Sub/Mul with overflow. setOperationAction(ISD::SADDO, MVT::i32, Custom); setOperationAction(ISD::SADDO, MVT::i64, Custom); setOperationAction(ISD::UADDO, MVT::i32, Custom); setOperationAction(ISD::UADDO, MVT::i64, Custom); setOperationAction(ISD::SSUBO, MVT::i32, Custom); setOperationAction(ISD::SSUBO, MVT::i64, Custom); setOperationAction(ISD::USUBO, MVT::i32, Custom); setOperationAction(ISD::USUBO, MVT::i64, Custom); setOperationAction(ISD::SMULO, MVT::i32, Custom); setOperationAction(ISD::SMULO, MVT::i64, Custom); setOperationAction(ISD::UMULO, MVT::i32, Custom); setOperationAction(ISD::UMULO, MVT::i64, Custom); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); if (Subtarget->hasFullFP16()) setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom); else setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); setOperationAction(ISD::FREM, MVT::f16, Promote); setOperationAction(ISD::FREM, MVT::v4f16, Expand); setOperationAction(ISD::FREM, MVT::v8f16, Expand); setOperationAction(ISD::FPOW, MVT::f16, Promote); setOperationAction(ISD::FPOW, MVT::v4f16, Expand); setOperationAction(ISD::FPOW, MVT::v8f16, Expand); setOperationAction(ISD::FPOWI, MVT::f16, Promote); setOperationAction(ISD::FPOWI, MVT::v4f16, Expand); setOperationAction(ISD::FPOWI, MVT::v8f16, Expand); setOperationAction(ISD::FCOS, MVT::f16, Promote); setOperationAction(ISD::FCOS, MVT::v4f16, Expand); setOperationAction(ISD::FCOS, MVT::v8f16, Expand); setOperationAction(ISD::FSIN, MVT::f16, Promote); setOperationAction(ISD::FSIN, MVT::v4f16, Expand); setOperationAction(ISD::FSIN, MVT::v8f16, Expand); setOperationAction(ISD::FSINCOS, MVT::f16, Promote); setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand); setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand); setOperationAction(ISD::FEXP, MVT::f16, Promote); setOperationAction(ISD::FEXP, MVT::v4f16, Expand); setOperationAction(ISD::FEXP, MVT::v8f16, Expand); setOperationAction(ISD::FEXP2, MVT::f16, Promote); setOperationAction(ISD::FEXP2, MVT::v4f16, Expand); setOperationAction(ISD::FEXP2, MVT::v8f16, Expand); setOperationAction(ISD::FLOG, MVT::f16, Promote); setOperationAction(ISD::FLOG, MVT::v4f16, Expand); setOperationAction(ISD::FLOG, MVT::v8f16, Expand); setOperationAction(ISD::FLOG2, MVT::f16, Promote); setOperationAction(ISD::FLOG2, MVT::v4f16, Expand); setOperationAction(ISD::FLOG2, MVT::v8f16, Expand); setOperationAction(ISD::FLOG10, MVT::f16, Promote); setOperationAction(ISD::FLOG10, MVT::v4f16, Expand); setOperationAction(ISD::FLOG10, MVT::v8f16, Expand); if (!Subtarget->hasFullFP16()) { setOperationAction(ISD::SELECT, MVT::f16, Promote); setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); setOperationAction(ISD::SETCC, MVT::f16, Promote); setOperationAction(ISD::BR_CC, MVT::f16, Promote); setOperationAction(ISD::FADD, MVT::f16, Promote); setOperationAction(ISD::FSUB, MVT::f16, Promote); setOperationAction(ISD::FMUL, MVT::f16, Promote); setOperationAction(ISD::FDIV, MVT::f16, Promote); setOperationAction(ISD::FMA, MVT::f16, Promote); setOperationAction(ISD::FNEG, MVT::f16, Promote); setOperationAction(ISD::FABS, MVT::f16, Promote); setOperationAction(ISD::FCEIL, MVT::f16, Promote); setOperationAction(ISD::FSQRT, MVT::f16, Promote); setOperationAction(ISD::FFLOOR, MVT::f16, Promote); setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); setOperationAction(ISD::FRINT, MVT::f16, Promote); setOperationAction(ISD::FROUND, MVT::f16, Promote); setOperationAction(ISD::FTRUNC, MVT::f16, Promote); setOperationAction(ISD::FMINNUM, MVT::f16, Promote); setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); // promote v4f16 to v4f32 when that is known to be safe. setOperationAction(ISD::FADD, MVT::v4f16, Promote); setOperationAction(ISD::FSUB, MVT::v4f16, Promote); setOperationAction(ISD::FMUL, MVT::v4f16, Promote); setOperationAction(ISD::FDIV, MVT::v4f16, Promote); AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); setOperationAction(ISD::FABS, MVT::v4f16, Expand); setOperationAction(ISD::FNEG, MVT::v4f16, Expand); setOperationAction(ISD::FROUND, MVT::v4f16, Expand); setOperationAction(ISD::FMA, MVT::v4f16, Expand); setOperationAction(ISD::SETCC, MVT::v4f16, Expand); setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); setOperationAction(ISD::SELECT, MVT::v4f16, Expand); setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); setOperationAction(ISD::FRINT, MVT::v4f16, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); setOperationAction(ISD::FABS, MVT::v8f16, Expand); setOperationAction(ISD::FADD, MVT::v8f16, Expand); setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); setOperationAction(ISD::FDIV, MVT::v8f16, Expand); setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); setOperationAction(ISD::FMA, MVT::v8f16, Expand); setOperationAction(ISD::FMUL, MVT::v8f16, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); setOperationAction(ISD::FNEG, MVT::v8f16, Expand); setOperationAction(ISD::FROUND, MVT::v8f16, Expand); setOperationAction(ISD::FRINT, MVT::v8f16, Expand); setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); setOperationAction(ISD::FSUB, MVT::v8f16, Expand); setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); setOperationAction(ISD::SETCC, MVT::v8f16, Expand); setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); setOperationAction(ISD::SELECT, MVT::v8f16, Expand); setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); } // AArch64 has implementations of a lot of rounding-like FP operations. for (MVT Ty : {MVT::f32, MVT::f64}) { setOperationAction(ISD::FFLOOR, Ty, Legal); setOperationAction(ISD::FNEARBYINT, Ty, Legal); setOperationAction(ISD::FCEIL, Ty, Legal); setOperationAction(ISD::FRINT, Ty, Legal); setOperationAction(ISD::FTRUNC, Ty, Legal); setOperationAction(ISD::FROUND, Ty, Legal); setOperationAction(ISD::FMINNUM, Ty, Legal); setOperationAction(ISD::FMAXNUM, Ty, Legal); setOperationAction(ISD::FMINIMUM, Ty, Legal); setOperationAction(ISD::FMAXIMUM, Ty, Legal); setOperationAction(ISD::LROUND, Ty, Legal); setOperationAction(ISD::LLROUND, Ty, Legal); setOperationAction(ISD::LRINT, Ty, Legal); setOperationAction(ISD::LLRINT, Ty, Legal); } if (Subtarget->hasFullFP16()) { setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal); setOperationAction(ISD::FFLOOR, MVT::f16, Legal); setOperationAction(ISD::FCEIL, MVT::f16, Legal); setOperationAction(ISD::FRINT, MVT::f16, Legal); setOperationAction(ISD::FTRUNC, MVT::f16, Legal); setOperationAction(ISD::FROUND, MVT::f16, Legal); setOperationAction(ISD::FMINNUM, MVT::f16, Legal); setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); setOperationAction(ISD::FMINIMUM, MVT::f16, Legal); setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal); } setOperationAction(ISD::PREFETCH, MVT::Other, Custom); setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); // Generate outline atomics library calls only if LSE was not specified for // subtarget if (Subtarget->outlineAtomics() && !Subtarget->hasLSE()) { setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, LibCall); #define LCALLNAMES(A, B, N) \ setLibcallName(A##N##_RELAX, #B #N "_relax"); \ setLibcallName(A##N##_ACQ, #B #N "_acq"); \ setLibcallName(A##N##_REL, #B #N "_rel"); \ setLibcallName(A##N##_ACQ_REL, #B #N "_acq_rel"); #define LCALLNAME4(A, B) \ LCALLNAMES(A, B, 1) \ LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) #define LCALLNAME5(A, B) \ LCALLNAMES(A, B, 1) \ LCALLNAMES(A, B, 2) \ LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16) LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, __aarch64_cas) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, __aarch64_swp) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, __aarch64_ldadd) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, __aarch64_ldset) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, __aarch64_ldclr) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, __aarch64_ldeor) #undef LCALLNAMES #undef LCALLNAME4 #undef LCALLNAME5 } // 128-bit loads and stores can be done without expanding setOperationAction(ISD::LOAD, MVT::i128, Custom); setOperationAction(ISD::STORE, MVT::i128, Custom); // 256 bit non-temporal stores can be lowered to STNP. Do this as part of the // custom lowering, as there are no un-paired non-temporal stores and // legalization will break up 256 bit inputs. setOperationAction(ISD::STORE, MVT::v32i8, Custom); setOperationAction(ISD::STORE, MVT::v16i16, Custom); setOperationAction(ISD::STORE, MVT::v16f16, Custom); setOperationAction(ISD::STORE, MVT::v8i32, Custom); setOperationAction(ISD::STORE, MVT::v8f32, Custom); setOperationAction(ISD::STORE, MVT::v4f64, Custom); setOperationAction(ISD::STORE, MVT::v4i64, Custom); // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. // This requires the Performance Monitors extension. if (Subtarget->hasPerfMon()) setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { // Issue __sincos_stret if available. setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } else { setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); } if (Subtarget->getTargetTriple().isOSMSVCRT()) { // MSVCRT doesn't have powi; fall back to pow setLibcallName(RTLIB::POWI_F32, nullptr); setLibcallName(RTLIB::POWI_F64, nullptr); } // Make floating-point constants legal for the large code model, so they don't // become loads from the constant pool. if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); } // AArch64 does not have floating-point extending loads, i1 sign-extending // load, floating-point truncating stores, or v2i32->v2i16 truncating store. for (MVT VT : MVT::fp_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); } for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f128, MVT::f80, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f16, Expand); setOperationAction(ISD::BITCAST, MVT::i16, Custom); setOperationAction(ISD::BITCAST, MVT::f16, Custom); setOperationAction(ISD::BITCAST, MVT::bf16, Custom); // Indexed loads and stores are supported. for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedLoadAction(im, MVT::i64, Legal); setIndexedLoadAction(im, MVT::f64, Legal); setIndexedLoadAction(im, MVT::f32, Legal); setIndexedLoadAction(im, MVT::f16, Legal); setIndexedLoadAction(im, MVT::bf16, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i64, Legal); setIndexedStoreAction(im, MVT::f64, Legal); setIndexedStoreAction(im, MVT::f32, Legal); setIndexedStoreAction(im, MVT::f16, Legal); setIndexedStoreAction(im, MVT::bf16, Legal); } // Trap. setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); setOperationAction(ISD::UBSANTRAP, MVT::Other, Legal); // We combine OR nodes for bitfield operations. setTargetDAGCombine(ISD::OR); // Try to create BICs for vector ANDs. setTargetDAGCombine(ISD::AND); // Vector add and sub nodes may conceal a high-half opportunity. // Also, try to fold ADD into CSINC/CSINV.. setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::ABS); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::XOR); setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::UINT_TO_FP); setTargetDAGCombine(ISD::FP_TO_SINT); setTargetDAGCombine(ISD::FP_TO_UINT); setTargetDAGCombine(ISD::FDIV); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::CONCAT_VECTORS); setTargetDAGCombine(ISD::STORE); if (Subtarget->supportsAddressTopByteIgnored()) setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::MSCATTER); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::VSELECT); setTargetDAGCombine(ISD::INTRINSIC_VOID); setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::VECREDUCE_ADD); setTargetDAGCombine(ISD::GlobalAddress); // In case of strict alignment, avoid an excessive number of byte wide stores. MaxStoresPerMemsetOptSize = 8; MaxStoresPerMemset = Subtarget->requiresStrictAlign() ? MaxStoresPerMemsetOptSize : 32; MaxGluedStoresPerMemcpy = 4; MaxStoresPerMemcpyOptSize = 4; MaxStoresPerMemcpy = Subtarget->requiresStrictAlign() ? MaxStoresPerMemcpyOptSize : 16; MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4; MaxLoadsPerMemcmpOptSize = 4; MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign() ? MaxLoadsPerMemcmpOptSize : 8; setStackPointerRegisterToSaveRestore(AArch64::SP); setSchedulingPreference(Sched::Hybrid); EnableExtLdPromotion = true; // Set required alignment. setMinFunctionAlignment(Align(4)); // Set preferred alignments. setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment())); setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment())); // Only change the limit for entries in a jump table if specified by // the sub target, but not at the command line. unsigned MaxJT = STI.getMaximumJumpTableSize(); if (MaxJT && getMaximumJumpTableSize() == UINT_MAX) setMaximumJumpTableSize(MaxJT); setHasExtractBitsInsn(true); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); if (Subtarget->hasNEON()) { // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to // silliness like this: setOperationAction(ISD::FABS, MVT::v1f64, Expand); setOperationAction(ISD::FADD, MVT::v1f64, Expand); setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); setOperationAction(ISD::FCOS, MVT::v1f64, Expand); setOperationAction(ISD::FDIV, MVT::v1f64, Expand); setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); setOperationAction(ISD::FMA, MVT::v1f64, Expand); setOperationAction(ISD::FMUL, MVT::v1f64, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); setOperationAction(ISD::FNEG, MVT::v1f64, Expand); setOperationAction(ISD::FPOW, MVT::v1f64, Expand); setOperationAction(ISD::FREM, MVT::v1f64, Expand); setOperationAction(ISD::FROUND, MVT::v1f64, Expand); setOperationAction(ISD::FRINT, MVT::v1f64, Expand); setOperationAction(ISD::FSIN, MVT::v1f64, Expand); setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); setOperationAction(ISD::FSUB, MVT::v1f64, Expand); setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); setOperationAction(ISD::SETCC, MVT::v1f64, Expand); setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); setOperationAction(ISD::SELECT, MVT::v1f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); setOperationAction(ISD::MUL, MVT::v1i64, Expand); // AArch64 doesn't have a direct vector ->f32 conversion instructions for // elements smaller than i32, so promote the input to i32 first. setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32); setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32); // i8 vector elements also need promotion to i32 for v8i8 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32); setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32); // Similarly, there is no direct i32 -> f64 vector conversion instruction. setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); // Or, direct i32 -> f16 vector conversion. Set it so custom, so the // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); if (Subtarget->hasFullFP16()) { setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); } else { // when AArch64 doesn't have fullfp16 support, promote the input // to i32 first. setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32); setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32); setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32); setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32); } setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); // AArch64 doesn't have MUL.2d: setOperationAction(ISD::MUL, MVT::v2i64, Expand); // Custom handling for some quad-vector types to detect MULL. setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); // Saturates for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { setOperationAction(ISD::SADDSAT, VT, Legal); setOperationAction(ISD::UADDSAT, VT, Legal); setOperationAction(ISD::SSUBSAT, VT, Legal); setOperationAction(ISD::USUBSAT, VT, Legal); } // Vector reductions for (MVT VT : { MVT::v4f16, MVT::v2f32, MVT::v8f16, MVT::v4f32, MVT::v2f64 }) { setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); } for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); } setOperationAction(ISD::VECREDUCE_ADD, MVT::v2i64, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); // Likewise, narrowing and extending vector loads/stores aren't handled // directly. for (MVT VT : MVT::fixedlen_vector_valuetypes()) { setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) { setOperationAction(ISD::MULHS, VT, Legal); setOperationAction(ISD::MULHU, VT, Legal); } else { setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); } setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { setTruncStoreAction(VT, InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); } } // AArch64 has implementations of a lot of rounding-like FP operations. for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) { setOperationAction(ISD::FFLOOR, Ty, Legal); setOperationAction(ISD::FNEARBYINT, Ty, Legal); setOperationAction(ISD::FCEIL, Ty, Legal); setOperationAction(ISD::FRINT, Ty, Legal); setOperationAction(ISD::FTRUNC, Ty, Legal); setOperationAction(ISD::FROUND, Ty, Legal); } if (Subtarget->hasFullFP16()) { for (MVT Ty : {MVT::v4f16, MVT::v8f16}) { setOperationAction(ISD::FFLOOR, Ty, Legal); setOperationAction(ISD::FNEARBYINT, Ty, Legal); setOperationAction(ISD::FCEIL, Ty, Legal); setOperationAction(ISD::FRINT, Ty, Legal); setOperationAction(ISD::FTRUNC, Ty, Legal); setOperationAction(ISD::FROUND, Ty, Legal); } } if (Subtarget->hasSVE()) setOperationAction(ISD::VSCALE, MVT::i32, Custom); setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom); } if (Subtarget->hasSVE()) { // FIXME: Add custom lowering of MLOAD to handle different passthrus (not a // splat of 0 or undef) once vector selects supported in SVE codegen. See // D68877 for more details. for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}) { setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::UINT_TO_FP, VT, Custom); setOperationAction(ISD::SINT_TO_FP, VT, Custom); setOperationAction(ISD::FP_TO_UINT, VT, Custom); setOperationAction(ISD::FP_TO_SINT, VT, Custom); setOperationAction(ISD::MGATHER, VT, Custom); setOperationAction(ISD::MSCATTER, VT, Custom); setOperationAction(ISD::MUL, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SDIV, VT, Custom); setOperationAction(ISD::UDIV, VT, Custom); setOperationAction(ISD::SMIN, VT, Custom); setOperationAction(ISD::UMIN, VT, Custom); setOperationAction(ISD::SMAX, VT, Custom); setOperationAction(ISD::UMAX, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); } // Illegal unpacked integer vector types. for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) { setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); } for (auto VT : {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1}) { setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); setOperationAction(ISD::TRUNCATE, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); // There are no legal MVT::nxv16f## based types. if (VT != MVT::nxv16i1) { setOperationAction(ISD::SINT_TO_FP, VT, Promote); AddPromotedToType(ISD::SINT_TO_FP, VT, getPromotedVTForPredicate(VT)); setOperationAction(ISD::UINT_TO_FP, VT, Promote); AddPromotedToType(ISD::UINT_TO_FP, VT, getPromotedVTForPredicate(VT)); } } for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv2f64}) { setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::MGATHER, VT, Custom); setOperationAction(ISD::MSCATTER, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::FADD, VT, Custom); setOperationAction(ISD::FDIV, VT, Custom); setOperationAction(ISD::FMA, VT, Custom); setOperationAction(ISD::FMAXNUM, VT, Custom); setOperationAction(ISD::FMINNUM, VT, Custom); setOperationAction(ISD::FMUL, VT, Custom); setOperationAction(ISD::FNEG, VT, Custom); setOperationAction(ISD::FSUB, VT, Custom); setOperationAction(ISD::FCEIL, VT, Custom); setOperationAction(ISD::FFLOOR, VT, Custom); setOperationAction(ISD::FNEARBYINT, VT, Custom); setOperationAction(ISD::FRINT, VT, Custom); setOperationAction(ISD::FROUND, VT, Custom); setOperationAction(ISD::FROUNDEVEN, VT, Custom); setOperationAction(ISD::FTRUNC, VT, Custom); setOperationAction(ISD::FSQRT, VT, Custom); setOperationAction(ISD::FABS, VT, Custom); setOperationAction(ISD::FP_EXTEND, VT, Custom); setOperationAction(ISD::FP_ROUND, VT, Custom); } for (auto VT : {MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16}) setOperationAction(ISD::MSCATTER, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, MVT::nxv8bf16, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); // NOTE: Currently this has to happen after computeRegisterProperties rather // than the preferred option of combining it with the addRegisterClass call. if (Subtarget->useSVEForFixedLengthVectors()) { for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addTypeForFixedLengthSVE(VT); for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addTypeForFixedLengthSVE(VT); // 64bit results can mean a bigger than NEON input. for (auto VT : {MVT::v8i8, MVT::v4i16}) setOperationAction(ISD::TRUNCATE, VT, Custom); setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom); // 128bit results imply a bigger than NEON input. for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) setOperationAction(ISD::TRUNCATE, VT, Custom); for (auto VT : {MVT::v8f16, MVT::v4f32}) setOperationAction(ISD::FP_ROUND, VT, Expand); // These operations are not supported on NEON but SVE can do them. setOperationAction(ISD::MUL, MVT::v1i64, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); setOperationAction(ISD::SDIV, MVT::v8i8, Custom); setOperationAction(ISD::SDIV, MVT::v16i8, Custom); setOperationAction(ISD::SDIV, MVT::v4i16, Custom); setOperationAction(ISD::SDIV, MVT::v8i16, Custom); setOperationAction(ISD::SDIV, MVT::v2i32, Custom); setOperationAction(ISD::SDIV, MVT::v4i32, Custom); setOperationAction(ISD::SDIV, MVT::v1i64, Custom); setOperationAction(ISD::SDIV, MVT::v2i64, Custom); setOperationAction(ISD::SMAX, MVT::v1i64, Custom); setOperationAction(ISD::SMAX, MVT::v2i64, Custom); setOperationAction(ISD::SMIN, MVT::v1i64, Custom); setOperationAction(ISD::SMIN, MVT::v2i64, Custom); setOperationAction(ISD::UDIV, MVT::v8i8, Custom); setOperationAction(ISD::UDIV, MVT::v16i8, Custom); setOperationAction(ISD::UDIV, MVT::v4i16, Custom); setOperationAction(ISD::UDIV, MVT::v8i16, Custom); setOperationAction(ISD::UDIV, MVT::v2i32, Custom); setOperationAction(ISD::UDIV, MVT::v4i32, Custom); setOperationAction(ISD::UDIV, MVT::v1i64, Custom); setOperationAction(ISD::UDIV, MVT::v2i64, Custom); setOperationAction(ISD::UMAX, MVT::v1i64, Custom); setOperationAction(ISD::UMAX, MVT::v2i64, Custom); setOperationAction(ISD::UMIN, MVT::v1i64, Custom); setOperationAction(ISD::UMIN, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_SMAX, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_SMIN, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_UMAX, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_UMIN, MVT::v2i64, Custom); // Int operations with no NEON support. for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v2i64}) { setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); } // FP operations with no NEON support. for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v1f64, MVT::v2f64}) setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); // Use SVE for vectors with more than 2 elements. for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v4f32}) setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); } } PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); } void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) { assert(VT.isVector() && "VT should be a vector type"); if (VT.isFloatingPoint()) { MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT(); setOperationPromotedToType(ISD::LOAD, VT, PromoteTo); setOperationPromotedToType(ISD::STORE, VT, PromoteTo); } // Mark vector float intrinsics as expand. if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); // But we do support custom-lowering for FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, VT, Custom); } setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::OR, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); for (MVT InnerVT : MVT::all_valuetypes()) setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); // CNT supports only B element sizes, then use UADDLP to widen. if (VT != MVT::v8i8 && VT != MVT::v16i8) setOperationAction(ISD::CTPOP, VT, Custom); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Custom); setOperationAction(ISD::FP_TO_UINT, VT, Custom); if (!VT.isFloatingPoint()) setOperationAction(ISD::ABS, VT, Legal); // [SU][MIN|MAX] are available for all NEON types apart from i64. if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) setOperationAction(Opcode, VT, Legal); // F[MIN|MAX][NUM|NAN] are available for all FP NEON types. if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::bf16 && (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())) for (unsigned Opcode : {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM}) setOperationAction(Opcode, VT, Legal); if (Subtarget->isLittleEndian()) { for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, VT, Legal); setIndexedStoreAction(im, VT, Legal); } } } void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) { assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); // By default everything must be expanded. for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) setOperationAction(Op, VT, Expand); // We use EXTRACT_SUBVECTOR to "cast" a scalable vector to a fixed length one. setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); // Lower fixed length vector operations to scalable equivalents. setOperationAction(ISD::ADD, VT, Custom); setOperationAction(ISD::AND, VT, Custom); setOperationAction(ISD::ANY_EXTEND, VT, Custom); setOperationAction(ISD::FADD, VT, Custom); setOperationAction(ISD::FCEIL, VT, Custom); setOperationAction(ISD::FDIV, VT, Custom); setOperationAction(ISD::FFLOOR, VT, Custom); setOperationAction(ISD::FMA, VT, Custom); setOperationAction(ISD::FMAXNUM, VT, Custom); setOperationAction(ISD::FMINNUM, VT, Custom); setOperationAction(ISD::FMUL, VT, Custom); setOperationAction(ISD::FNEARBYINT, VT, Custom); setOperationAction(ISD::FNEG, VT, Custom); setOperationAction(ISD::FRINT, VT, Custom); setOperationAction(ISD::FROUND, VT, Custom); setOperationAction(ISD::FSQRT, VT, Custom); setOperationAction(ISD::FSUB, VT, Custom); setOperationAction(ISD::FTRUNC, VT, Custom); setOperationAction(ISD::LOAD, VT, Custom); setOperationAction(ISD::MUL, VT, Custom); setOperationAction(ISD::OR, VT, Custom); setOperationAction(ISD::SDIV, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SIGN_EXTEND, VT, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom); setOperationAction(ISD::SMAX, VT, Custom); setOperationAction(ISD::SMIN, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); setOperationAction(ISD::STORE, VT, Custom); setOperationAction(ISD::SUB, VT, Custom); setOperationAction(ISD::TRUNCATE, VT, Custom); setOperationAction(ISD::UDIV, VT, Custom); setOperationAction(ISD::UMAX, VT, Custom); setOperationAction(ISD::UMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); setOperationAction(ISD::VSELECT, VT, Custom); setOperationAction(ISD::XOR, VT, Custom); setOperationAction(ISD::ZERO_EXTEND, VT, Custom); } void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { addRegisterClass(VT, &AArch64::FPR64RegClass); addTypeForNEON(VT, MVT::v2i32); } void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { addRegisterClass(VT, &AArch64::FPR128RegClass); addTypeForNEON(VT, MVT::v4i32); } EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &C, EVT VT) const { if (!VT.isVector()) return MVT::i32; if (VT.isScalableVector()) return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount()); return VT.changeVectorElementTypeToInteger(); } static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm, const APInt &Demanded, TargetLowering::TargetLoweringOpt &TLO, unsigned NewOpc) { uint64_t OldImm = Imm, NewImm, Enc; uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask; // Return if the immediate is already all zeros, all ones, a bimm32 or a // bimm64. if (Imm == 0 || Imm == Mask || AArch64_AM::isLogicalImmediate(Imm & Mask, Size)) return false; unsigned EltSize = Size; uint64_t DemandedBits = Demanded.getZExtValue(); // Clear bits that are not demanded. Imm &= DemandedBits; while (true) { // The goal here is to set the non-demanded bits in a way that minimizes // the number of switching between 0 and 1. In order to achieve this goal, // we set the non-demanded bits to the value of the preceding demanded bits. // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a // non-demanded bit), we copy bit0 (1) to the least significant 'x', // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'. // The final result is 0b11000011. uint64_t NonDemandedBits = ~DemandedBits; uint64_t InvertedImm = ~Imm & DemandedBits; uint64_t RotatedImm = ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) & NonDemandedBits; uint64_t Sum = RotatedImm + NonDemandedBits; bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1)); uint64_t Ones = (Sum + Carry) & NonDemandedBits; NewImm = (Imm | Ones) & Mask; // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate // or all-ones or all-zeros, in which case we can stop searching. Otherwise, // we halve the element size and continue the search. if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask))) break; // We cannot shrink the element size any further if it is 2-bits. if (EltSize == 2) return false; EltSize /= 2; Mask >>= EltSize; uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize; // Return if there is mismatch in any of the demanded bits of Imm and Hi. if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0) return false; // Merge the upper and lower halves of Imm and DemandedBits. Imm |= Hi; DemandedBits |= DemandedBitsHi; } ++NumOptimizedImms; // Replicate the element across the register width. while (EltSize < Size) { NewImm |= NewImm << EltSize; EltSize *= 2; } (void)OldImm; assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && "demanded bits should never be altered"); assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm"); // Create the new constant immediate node. EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue New; // If the new constant immediate is all-zeros or all-ones, let the target // independent DAG combine optimize this node. if (NewImm == 0 || NewImm == OrigMask) { New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), TLO.DAG.getConstant(NewImm, DL, VT)); // Otherwise, create a machine node so that target independent DAG combine // doesn't undo this optimization. } else { Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size); SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT); New = SDValue( TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0); } return TLO.CombineTo(Op, New); } bool AArch64TargetLowering::targetShrinkDemandedConstant( SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const { // Delay this optimization to as late as possible. if (!TLO.LegalOps) return false; if (!EnableOptimizeLogicalImm) return false; EVT VT = Op.getValueType(); if (VT.isVector()) return false; unsigned Size = VT.getSizeInBits(); assert((Size == 32 || Size == 64) && "i32 or i64 is expected after legalization."); // Exit early if we demand all bits. if (DemandedBits.countPopulation() == Size) return false; unsigned NewOpc; switch (Op.getOpcode()) { default: return false; case ISD::AND: NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri; break; case ISD::OR: NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri; break; case ISD::XOR: NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri; break; } ConstantSDNode *C = dyn_cast(Op.getOperand(1)); if (!C) return false; uint64_t Imm = C->getZExtValue(); return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc); } /// computeKnownBitsForTargetNode - Determine which of the bits specified in /// Mask are known to be either zero or one and return them Known. void AArch64TargetLowering::computeKnownBitsForTargetNode( const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { default: break; case AArch64ISD::CSEL: { KnownBits Known2; Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); Known = KnownBits::commonBits(Known, Known2); break; } case AArch64ISD::LOADgot: case AArch64ISD::ADDlow: { if (!Subtarget->isTargetILP32()) break; // In ILP32 mode all valid pointers are in the low 4GB of the address-space. Known.Zero = APInt::getHighBitsSet(64, 32); break; } case ISD::INTRINSIC_W_CHAIN: { ConstantSDNode *CN = cast(Op->getOperand(1)); Intrinsic::ID IntID = static_cast(CN->getZExtValue()); switch (IntID) { default: return; case Intrinsic::aarch64_ldaxr: case Intrinsic::aarch64_ldxr: { unsigned BitWidth = Known.getBitWidth(); EVT VT = cast(Op)->getMemoryVT(); unsigned MemBits = VT.getScalarSizeInBits(); Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); return; } } break; } case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: { unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); switch (IntNo) { default: break; case Intrinsic::aarch64_neon_umaxv: case Intrinsic::aarch64_neon_uminv: { // Figure out the datatype of the vector operand. The UMINV instruction // will zero extend the result, so we can mark as known zero all the // bits larger than the element datatype. 32-bit or larget doesn't need // this as those are legal types and will be handled by isel directly. MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); unsigned BitWidth = Known.getBitWidth(); if (VT == MVT::v8i8 || VT == MVT::v16i8) { assert(BitWidth >= 8 && "Unexpected width!"); APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); Known.Zero |= Mask; } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { assert(BitWidth >= 16 && "Unexpected width!"); APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); Known.Zero |= Mask; } break; } break; } } } } MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, EVT) const { return MVT::i64; } bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, bool *Fast) const { if (Subtarget->requiresStrictAlign()) return false; if (Fast) { // Some CPUs are fine with unaligned stores except for 128-bit ones. *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || // See comments in performSTORECombine() for more details about // these conditions. // Code that uses clang vector extensions can mark that it // wants unaligned accesses to be treated as fast by // underspecifying alignment to be 1 or 2. Align <= 2 || // Disregard v2i64. Memcpy lowering produces those and splitting // them regresses performance on micro-benchmarks and olden/bh. VT == MVT::v2i64; } return true; } // Same as above but handling LLTs instead. bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { if (Subtarget->requiresStrictAlign()) return false; if (Fast) { // Some CPUs are fine with unaligned stores except for 128-bit ones. *Fast = !Subtarget->isMisaligned128StoreSlow() || Ty.getSizeInBytes() != 16 || // See comments in performSTORECombine() for more details about // these conditions. // Code that uses clang vector extensions can mark that it // wants unaligned accesses to be treated as fast by // underspecifying alignment to be 1 or 2. Alignment <= 2 || // Disregard v2i64. Memcpy lowering produces those and splitting // them regresses performance on micro-benchmarks and olden/bh. Ty == LLT::vector(2, 64); } return true; } FastISel * AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return AArch64::createFastISel(funcInfo, libInfo); } const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { #define MAKE_CASE(V) \ case V: \ return #V; switch ((AArch64ISD::NodeType)Opcode) { case AArch64ISD::FIRST_NUMBER: break; MAKE_CASE(AArch64ISD::CALL) MAKE_CASE(AArch64ISD::ADRP) MAKE_CASE(AArch64ISD::ADR) MAKE_CASE(AArch64ISD::ADDlow) MAKE_CASE(AArch64ISD::LOADgot) MAKE_CASE(AArch64ISD::RET_FLAG) MAKE_CASE(AArch64ISD::BRCOND) MAKE_CASE(AArch64ISD::CSEL) MAKE_CASE(AArch64ISD::FCSEL) MAKE_CASE(AArch64ISD::CSINV) MAKE_CASE(AArch64ISD::CSNEG) MAKE_CASE(AArch64ISD::CSINC) MAKE_CASE(AArch64ISD::THREAD_POINTER) MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ) MAKE_CASE(AArch64ISD::ADD_PRED) MAKE_CASE(AArch64ISD::MUL_PRED) MAKE_CASE(AArch64ISD::SDIV_PRED) MAKE_CASE(AArch64ISD::SHL_PRED) MAKE_CASE(AArch64ISD::SMAX_PRED) MAKE_CASE(AArch64ISD::SMIN_PRED) MAKE_CASE(AArch64ISD::SRA_PRED) MAKE_CASE(AArch64ISD::SRL_PRED) MAKE_CASE(AArch64ISD::SUB_PRED) MAKE_CASE(AArch64ISD::UDIV_PRED) MAKE_CASE(AArch64ISD::UMAX_PRED) MAKE_CASE(AArch64ISD::UMIN_PRED) MAKE_CASE(AArch64ISD::FNEG_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FCEIL_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FFLOOR_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FRINT_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FROUND_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FTRUNC_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FP_ROUND_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FCVTZU_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FCVTZS_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FSQRT_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FRECPX_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FABS_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO) MAKE_CASE(AArch64ISD::ADC) MAKE_CASE(AArch64ISD::SBC) MAKE_CASE(AArch64ISD::ADDS) MAKE_CASE(AArch64ISD::SUBS) MAKE_CASE(AArch64ISD::ADCS) MAKE_CASE(AArch64ISD::SBCS) MAKE_CASE(AArch64ISD::ANDS) MAKE_CASE(AArch64ISD::CCMP) MAKE_CASE(AArch64ISD::CCMN) MAKE_CASE(AArch64ISD::FCCMP) MAKE_CASE(AArch64ISD::FCMP) MAKE_CASE(AArch64ISD::STRICT_FCMP) MAKE_CASE(AArch64ISD::STRICT_FCMPE) MAKE_CASE(AArch64ISD::DUP) MAKE_CASE(AArch64ISD::DUPLANE8) MAKE_CASE(AArch64ISD::DUPLANE16) MAKE_CASE(AArch64ISD::DUPLANE32) MAKE_CASE(AArch64ISD::DUPLANE64) MAKE_CASE(AArch64ISD::MOVI) MAKE_CASE(AArch64ISD::MOVIshift) MAKE_CASE(AArch64ISD::MOVIedit) MAKE_CASE(AArch64ISD::MOVImsl) MAKE_CASE(AArch64ISD::FMOV) MAKE_CASE(AArch64ISD::MVNIshift) MAKE_CASE(AArch64ISD::MVNImsl) MAKE_CASE(AArch64ISD::BICi) MAKE_CASE(AArch64ISD::ORRi) MAKE_CASE(AArch64ISD::BSP) MAKE_CASE(AArch64ISD::NEG) MAKE_CASE(AArch64ISD::EXTR) MAKE_CASE(AArch64ISD::ZIP1) MAKE_CASE(AArch64ISD::ZIP2) MAKE_CASE(AArch64ISD::UZP1) MAKE_CASE(AArch64ISD::UZP2) MAKE_CASE(AArch64ISD::TRN1) MAKE_CASE(AArch64ISD::TRN2) MAKE_CASE(AArch64ISD::REV16) MAKE_CASE(AArch64ISD::REV32) MAKE_CASE(AArch64ISD::REV64) MAKE_CASE(AArch64ISD::EXT) MAKE_CASE(AArch64ISD::VSHL) MAKE_CASE(AArch64ISD::VLSHR) MAKE_CASE(AArch64ISD::VASHR) MAKE_CASE(AArch64ISD::VSLI) MAKE_CASE(AArch64ISD::VSRI) MAKE_CASE(AArch64ISD::CMEQ) MAKE_CASE(AArch64ISD::CMGE) MAKE_CASE(AArch64ISD::CMGT) MAKE_CASE(AArch64ISD::CMHI) MAKE_CASE(AArch64ISD::CMHS) MAKE_CASE(AArch64ISD::FCMEQ) MAKE_CASE(AArch64ISD::FCMGE) MAKE_CASE(AArch64ISD::FCMGT) MAKE_CASE(AArch64ISD::CMEQz) MAKE_CASE(AArch64ISD::CMGEz) MAKE_CASE(AArch64ISD::CMGTz) MAKE_CASE(AArch64ISD::CMLEz) MAKE_CASE(AArch64ISD::CMLTz) MAKE_CASE(AArch64ISD::FCMEQz) MAKE_CASE(AArch64ISD::FCMGEz) MAKE_CASE(AArch64ISD::FCMGTz) MAKE_CASE(AArch64ISD::FCMLEz) MAKE_CASE(AArch64ISD::FCMLTz) MAKE_CASE(AArch64ISD::SADDV) MAKE_CASE(AArch64ISD::UADDV) MAKE_CASE(AArch64ISD::SRHADD) MAKE_CASE(AArch64ISD::URHADD) MAKE_CASE(AArch64ISD::SHADD) MAKE_CASE(AArch64ISD::UHADD) MAKE_CASE(AArch64ISD::SMINV) MAKE_CASE(AArch64ISD::UMINV) MAKE_CASE(AArch64ISD::SMAXV) MAKE_CASE(AArch64ISD::UMAXV) MAKE_CASE(AArch64ISD::SADDV_PRED) MAKE_CASE(AArch64ISD::UADDV_PRED) MAKE_CASE(AArch64ISD::SMAXV_PRED) MAKE_CASE(AArch64ISD::UMAXV_PRED) MAKE_CASE(AArch64ISD::SMINV_PRED) MAKE_CASE(AArch64ISD::UMINV_PRED) MAKE_CASE(AArch64ISD::ORV_PRED) MAKE_CASE(AArch64ISD::EORV_PRED) MAKE_CASE(AArch64ISD::ANDV_PRED) MAKE_CASE(AArch64ISD::CLASTA_N) MAKE_CASE(AArch64ISD::CLASTB_N) MAKE_CASE(AArch64ISD::LASTA) MAKE_CASE(AArch64ISD::LASTB) MAKE_CASE(AArch64ISD::REV) MAKE_CASE(AArch64ISD::REINTERPRET_CAST) MAKE_CASE(AArch64ISD::TBL) MAKE_CASE(AArch64ISD::FADD_PRED) MAKE_CASE(AArch64ISD::FADDA_PRED) MAKE_CASE(AArch64ISD::FADDV_PRED) MAKE_CASE(AArch64ISD::FDIV_PRED) MAKE_CASE(AArch64ISD::FMA_PRED) MAKE_CASE(AArch64ISD::FMAXV_PRED) MAKE_CASE(AArch64ISD::FMAXNM_PRED) MAKE_CASE(AArch64ISD::FMAXNMV_PRED) MAKE_CASE(AArch64ISD::FMINV_PRED) MAKE_CASE(AArch64ISD::FMINNM_PRED) MAKE_CASE(AArch64ISD::FMINNMV_PRED) MAKE_CASE(AArch64ISD::FMUL_PRED) MAKE_CASE(AArch64ISD::FSUB_PRED) MAKE_CASE(AArch64ISD::BIT) MAKE_CASE(AArch64ISD::CBZ) MAKE_CASE(AArch64ISD::CBNZ) MAKE_CASE(AArch64ISD::TBZ) MAKE_CASE(AArch64ISD::TBNZ) MAKE_CASE(AArch64ISD::TC_RETURN) MAKE_CASE(AArch64ISD::PREFETCH) MAKE_CASE(AArch64ISD::SITOF) MAKE_CASE(AArch64ISD::UITOF) MAKE_CASE(AArch64ISD::NVCAST) MAKE_CASE(AArch64ISD::SQSHL_I) MAKE_CASE(AArch64ISD::UQSHL_I) MAKE_CASE(AArch64ISD::SRSHR_I) MAKE_CASE(AArch64ISD::URSHR_I) MAKE_CASE(AArch64ISD::SQSHLU_I) MAKE_CASE(AArch64ISD::WrapperLarge) MAKE_CASE(AArch64ISD::LD2post) MAKE_CASE(AArch64ISD::LD3post) MAKE_CASE(AArch64ISD::LD4post) MAKE_CASE(AArch64ISD::ST2post) MAKE_CASE(AArch64ISD::ST3post) MAKE_CASE(AArch64ISD::ST4post) MAKE_CASE(AArch64ISD::LD1x2post) MAKE_CASE(AArch64ISD::LD1x3post) MAKE_CASE(AArch64ISD::LD1x4post) MAKE_CASE(AArch64ISD::ST1x2post) MAKE_CASE(AArch64ISD::ST1x3post) MAKE_CASE(AArch64ISD::ST1x4post) MAKE_CASE(AArch64ISD::LD1DUPpost) MAKE_CASE(AArch64ISD::LD2DUPpost) MAKE_CASE(AArch64ISD::LD3DUPpost) MAKE_CASE(AArch64ISD::LD4DUPpost) MAKE_CASE(AArch64ISD::LD1LANEpost) MAKE_CASE(AArch64ISD::LD2LANEpost) MAKE_CASE(AArch64ISD::LD3LANEpost) MAKE_CASE(AArch64ISD::LD4LANEpost) MAKE_CASE(AArch64ISD::ST2LANEpost) MAKE_CASE(AArch64ISD::ST3LANEpost) MAKE_CASE(AArch64ISD::ST4LANEpost) MAKE_CASE(AArch64ISD::SMULL) MAKE_CASE(AArch64ISD::UMULL) MAKE_CASE(AArch64ISD::FRECPE) MAKE_CASE(AArch64ISD::FRECPS) MAKE_CASE(AArch64ISD::FRSQRTE) MAKE_CASE(AArch64ISD::FRSQRTS) MAKE_CASE(AArch64ISD::STG) MAKE_CASE(AArch64ISD::STZG) MAKE_CASE(AArch64ISD::ST2G) MAKE_CASE(AArch64ISD::STZ2G) MAKE_CASE(AArch64ISD::SUNPKHI) MAKE_CASE(AArch64ISD::SUNPKLO) MAKE_CASE(AArch64ISD::UUNPKHI) MAKE_CASE(AArch64ISD::UUNPKLO) MAKE_CASE(AArch64ISD::INSR) MAKE_CASE(AArch64ISD::PTEST) MAKE_CASE(AArch64ISD::PTRUE) MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO) MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO) MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO) MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO) MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO) MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::ST1_PRED) MAKE_CASE(AArch64ISD::SST1_PRED) MAKE_CASE(AArch64ISD::SST1_SCALED_PRED) MAKE_CASE(AArch64ISD::SST1_SXTW_PRED) MAKE_CASE(AArch64ISD::SST1_UXTW_PRED) MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED) MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED) MAKE_CASE(AArch64ISD::SST1_IMM_PRED) MAKE_CASE(AArch64ISD::SSTNT1_PRED) MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED) MAKE_CASE(AArch64ISD::LDP) MAKE_CASE(AArch64ISD::STP) MAKE_CASE(AArch64ISD::STNP) MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::INDEX_VECTOR) MAKE_CASE(AArch64ISD::UABD) MAKE_CASE(AArch64ISD::SABD) } #undef MAKE_CASE return nullptr; } MachineBasicBlock * AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, MachineBasicBlock *MBB) const { // We materialise the F128CSEL pseudo-instruction as some control flow and a // phi node: // OrigBB: // [... previous instrs leading to comparison ...] // b.ne TrueBB // b EndBB // TrueBB: // ; Fallthrough // EndBB: // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); DebugLoc DL = MI.getDebugLoc(); MachineFunction::iterator It = ++MBB->getIterator(); Register DestReg = MI.getOperand(0).getReg(); Register IfTrueReg = MI.getOperand(1).getReg(); Register IfFalseReg = MI.getOperand(2).getReg(); unsigned CondCode = MI.getOperand(3).getImm(); bool NZCVKilled = MI.getOperand(4).isKill(); MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, TrueBB); MF->insert(It, EndBB); // Transfer rest of current basic-block to EndBB EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); EndBB->transferSuccessorsAndUpdatePHIs(MBB); BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); MBB->addSuccessor(TrueBB); MBB->addSuccessor(EndBB); // TrueBB falls through to the end. TrueBB->addSuccessor(EndBB); if (!NZCVKilled) { TrueBB->addLiveIn(AArch64::NZCV); EndBB->addLiveIn(AArch64::NZCV); } BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) .addReg(IfTrueReg) .addMBB(TrueBB) .addReg(IfFalseReg) .addMBB(MBB); MI.eraseFromParent(); return EndBB; } MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet( MachineInstr &MI, MachineBasicBlock *BB) const { assert(!isAsynchronousEHPersonality(classifyEHPersonality( BB->getParent()->getFunction().getPersonalityFn())) && "SEH does not use catchret!"); return BB; } MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB) const { switch (MI.getOpcode()) { default: #ifndef NDEBUG MI.dump(); #endif llvm_unreachable("Unexpected instruction for custom inserter!"); case AArch64::F128CSEL: return EmitF128CSEL(MI, BB); case TargetOpcode::STACKMAP: case TargetOpcode::PATCHPOINT: case TargetOpcode::STATEPOINT: return emitPatchPoint(MI, BB); case AArch64::CATCHRET: return EmitLoweredCatchRet(MI, BB); } } //===----------------------------------------------------------------------===// // AArch64 Lowering private implementation. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 /// CC static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETNE: return AArch64CC::NE; case ISD::SETEQ: return AArch64CC::EQ; case ISD::SETGT: return AArch64CC::GT; case ISD::SETGE: return AArch64CC::GE; case ISD::SETLT: return AArch64CC::LT; case ISD::SETLE: return AArch64CC::LE; case ISD::SETUGT: return AArch64CC::HI; case ISD::SETUGE: return AArch64CC::HS; case ISD::SETULT: return AArch64CC::LO; case ISD::SETULE: return AArch64CC::LS; } } /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. static void changeFPCCToAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2) { CondCode2 = AArch64CC::AL; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = AArch64CC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = AArch64CC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = AArch64CC::GE; break; case ISD::SETOLT: CondCode = AArch64CC::MI; break; case ISD::SETOLE: CondCode = AArch64CC::LS; break; case ISD::SETONE: CondCode = AArch64CC::MI; CondCode2 = AArch64CC::GT; break; case ISD::SETO: CondCode = AArch64CC::VC; break; case ISD::SETUO: CondCode = AArch64CC::VS; break; case ISD::SETUEQ: CondCode = AArch64CC::EQ; CondCode2 = AArch64CC::VS; break; case ISD::SETUGT: CondCode = AArch64CC::HI; break; case ISD::SETUGE: CondCode = AArch64CC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = AArch64CC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = AArch64CC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = AArch64CC::NE; break; } } /// Convert a DAG fp condition code to an AArch64 CC. /// This differs from changeFPCCToAArch64CC in that it returns cond codes that /// should be AND'ed instead of OR'ed. static void changeFPCCToANDAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2) { CondCode2 = AArch64CC::AL; switch (CC) { default: changeFPCCToAArch64CC(CC, CondCode, CondCode2); assert(CondCode2 == AArch64CC::AL); break; case ISD::SETONE: // (a one b) // == ((a olt b) || (a ogt b)) // == ((a ord b) && (a une b)) CondCode = AArch64CC::VC; CondCode2 = AArch64CC::NE; break; case ISD::SETUEQ: // (a ueq b) // == ((a uno b) || (a oeq b)) // == ((a ule b) && (a uge b)) CondCode = AArch64CC::PL; CondCode2 = AArch64CC::LE; break; } } /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 /// CC usable with the vector instructions. Fewer operations are available /// without a real NZCV register, so we have to use less efficient combinations /// to get the same effect. static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2, bool &Invert) { Invert = false; switch (CC) { default: // Mostly the scalar mappings work fine. changeFPCCToAArch64CC(CC, CondCode, CondCode2); break; case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH; case ISD::SETO: CondCode = AArch64CC::MI; CondCode2 = AArch64CC::GE; break; case ISD::SETUEQ: case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: // All of the compare-mask comparisons are ordered, but we can switch // between the two by a double inversion. E.g. ULE == !OGT. Invert = true; changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32), CondCode, CondCode2); break; } } static bool isLegalArithImmed(uint64_t C) { // Matches AArch64DAGToDAGISel::SelectArithImmed(). bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); LLVM_DEBUG(dbgs() << "Is imm " << C << " legal: " << (IsLegal ? "yes\n" : "no\n")); return IsLegal; } // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags // can be set differently by this operation. It comes down to whether // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then // everything is fine. If not then the optimization is wrong. Thus general // comparisons are only valid if op2 != 0. // // So, finally, the only LLVM-native comparisons that don't mention C and V // are SETEQ and SETNE. They're the only ones we can safely use CMN for in // the absence of information about op2. static bool isCMN(SDValue Op, ISD::CondCode CC) { return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) && (CC == ISD::SETEQ || CC == ISD::SETNE); } static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl, SelectionDAG &DAG, SDValue Chain, bool IsSignaling) { EVT VT = LHS.getValueType(); assert(VT != MVT::f128); assert(VT != MVT::f16 && "Lowering of strict fp16 not yet implemented"); unsigned Opcode = IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP; return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS}); } static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) { EVT VT = LHS.getValueType(); const bool FullFP16 = static_cast(DAG.getSubtarget()).hasFullFP16(); if (VT.isFloatingPoint()) { assert(VT != MVT::f128); if (VT == MVT::f16 && !FullFP16) { LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); VT = MVT::f32; } return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); } // The CMP instruction is just an alias for SUBS, and representing it as // SUBS means that it's possible to get CSE with subtract operations. // A later phase can perform the optimization of setting the destination // register to WZR/XZR if it ends up being unused. unsigned Opcode = AArch64ISD::SUBS; if (isCMN(RHS, CC)) { // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ? Opcode = AArch64ISD::ADDS; RHS = RHS.getOperand(1); } else if (isCMN(LHS, CC)) { // As we are looking for EQ/NE compares, the operands can be commuted ; can // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ? Opcode = AArch64ISD::ADDS; LHS = LHS.getOperand(1); } else if (isNullConstant(RHS) && !isUnsignedIntSetCC(CC)) { if (LHS.getOpcode() == ISD::AND) { // Similarly, (CMP (and X, Y), 0) can be implemented with a TST // (a.k.a. ANDS) except that the flags are only guaranteed to work for one // of the signed comparisons. const SDValue ANDSNode = DAG.getNode(AArch64ISD::ANDS, dl, DAG.getVTList(VT, MVT_CC), LHS.getOperand(0), LHS.getOperand(1)); // Replace all users of (and X, Y) with newly generated (ands X, Y) DAG.ReplaceAllUsesWith(LHS, ANDSNode); return ANDSNode.getValue(1); } else if (LHS.getOpcode() == AArch64ISD::ANDS) { // Use result of ANDS return LHS.getValue(1); } } return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) .getValue(1); } /// \defgroup AArch64CCMP CMP;CCMP matching /// /// These functions deal with the formation of CMP;CCMP;... sequences. /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of /// a comparison. They set the NZCV flags to a predefined value if their /// predicate is false. This allows to express arbitrary conjunctions, for /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))" /// expressed as: /// cmp A /// ccmp B, inv(CB), CA /// check for CB flags /// /// This naturally lets us implement chains of AND operations with SETCC /// operands. And we can even implement some other situations by transforming /// them: /// - We can implement (NEG SETCC) i.e. negating a single comparison by /// negating the flags used in a CCMP/FCCMP operations. /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations /// by negating the flags we test for afterwards. i.e. /// NEG (CMP CCMP CCCMP ...) can be implemented. /// - Note that we can only ever negate all previously processed results. /// What we can not implement by flipping the flags to test is a negation /// of two sub-trees (because the negation affects all sub-trees emitted so /// far, so the 2nd sub-tree we emit would also affect the first). /// With those tools we can implement some OR operations: /// - (OR (SETCC A) (SETCC B)) can be implemented via: /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B))) /// - After transforming OR to NEG/AND combinations we may be able to use NEG /// elimination rules from earlier to implement the whole thing as a /// CCMP/FCCMP chain. /// /// As complete example: /// or (or (setCA (cmp A)) (setCB (cmp B))) /// (and (setCC (cmp C)) (setCD (cmp D)))" /// can be reassociated to: /// or (and (setCC (cmp C)) setCD (cmp D)) // (or (setCA (cmp A)) (setCB (cmp B))) /// can be transformed to: /// not (and (not (and (setCC (cmp C)) (setCD (cmp D)))) /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" /// which can be implemented as: /// cmp C /// ccmp D, inv(CD), CC /// ccmp A, CA, inv(CD) /// ccmp B, CB, inv(CA) /// check for CB flags /// /// A counterexample is "or (and A B) (and C D)" which translates to /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we /// can only implement 1 of the inner (not) operations, but not both! /// @{ /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue CCOp, AArch64CC::CondCode Predicate, AArch64CC::CondCode OutCC, const SDLoc &DL, SelectionDAG &DAG) { unsigned Opcode = 0; const bool FullFP16 = static_cast(DAG.getSubtarget()).hasFullFP16(); if (LHS.getValueType().isFloatingPoint()) { assert(LHS.getValueType() != MVT::f128); if (LHS.getValueType() == MVT::f16 && !FullFP16) { LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); } Opcode = AArch64ISD::FCCMP; } else if (RHS.getOpcode() == ISD::SUB) { SDValue SubOp0 = RHS.getOperand(0); if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // See emitComparison() on why we can only do this for SETEQ and SETNE. Opcode = AArch64ISD::CCMN; RHS = RHS.getOperand(1); } } if (Opcode == 0) Opcode = AArch64ISD::CCMP; SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); } /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be /// expressed as a conjunction. See \ref AArch64CCMP. /// \param CanNegate Set to true if we can negate the whole sub-tree just by /// changing the conditions on the SETCC tests. /// (this means we can call emitConjunctionRec() with /// Negate==true on this sub-tree) /// \param MustBeFirst Set to true if this subtree needs to be negated and we /// cannot do the negation naturally. We are required to /// emit the subtree first in this case. /// \param WillNegate Is true if are called when the result of this /// subexpression must be negated. This happens when the /// outer expression is an OR. We can use this fact to know /// that we have a double negation (or (or ...) ...) that /// can be implemented for free. static bool canEmitConjunction(const SDValue Val, bool &CanNegate, bool &MustBeFirst, bool WillNegate, unsigned Depth = 0) { if (!Val.hasOneUse()) return false; unsigned Opcode = Val->getOpcode(); if (Opcode == ISD::SETCC) { if (Val->getOperand(0).getValueType() == MVT::f128) return false; CanNegate = true; MustBeFirst = false; return true; } // Protect against exponential runtime and stack overflow. if (Depth > 6) return false; if (Opcode == ISD::AND || Opcode == ISD::OR) { bool IsOR = Opcode == ISD::OR; SDValue O0 = Val->getOperand(0); SDValue O1 = Val->getOperand(1); bool CanNegateL; bool MustBeFirstL; if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1)) return false; bool CanNegateR; bool MustBeFirstR; if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1)) return false; if (MustBeFirstL && MustBeFirstR) return false; if (IsOR) { // For an OR expression we need to be able to naturally negate at least // one side or we cannot do the transformation at all. if (!CanNegateL && !CanNegateR) return false; // If we the result of the OR will be negated and we can naturally negate // the leafs, then this sub-tree as a whole negates naturally. CanNegate = WillNegate && CanNegateL && CanNegateR; // If we cannot naturally negate the whole sub-tree, then this must be // emitted first. MustBeFirst = !CanNegate; } else { assert(Opcode == ISD::AND && "Must be OR or AND"); // We cannot naturally negate an AND operation. CanNegate = false; MustBeFirst = MustBeFirstL || MustBeFirstR; } return true; } return false; } /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain /// of CCMP/CFCMP ops. See @ref AArch64CCMP. /// Tries to transform the given i1 producing node @p Val to a series compare /// and conditional compare operations. @returns an NZCV flags producing node /// and sets @p OutCC to the flags that should be tested or returns SDValue() if /// transformation was not possible. /// \p Negate is true if we want this sub-tree being negated just by changing /// SETCC conditions. static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val, AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, AArch64CC::CondCode Predicate) { // We're at a tree leaf, produce a conditional comparison operation. unsigned Opcode = Val->getOpcode(); if (Opcode == ISD::SETCC) { SDValue LHS = Val->getOperand(0); SDValue RHS = Val->getOperand(1); ISD::CondCode CC = cast(Val->getOperand(2))->get(); bool isInteger = LHS.getValueType().isInteger(); if (Negate) CC = getSetCCInverse(CC, LHS.getValueType()); SDLoc DL(Val); // Determine OutCC and handle FP special case. if (isInteger) { OutCC = changeIntCCToAArch64CC(CC); } else { assert(LHS.getValueType().isFloatingPoint()); AArch64CC::CondCode ExtraCC; changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); // Some floating point conditions can't be tested with a single condition // code. Construct an additional comparison in this case. if (ExtraCC != AArch64CC::AL) { SDValue ExtraCmp; if (!CCOp.getNode()) ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); else ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, ExtraCC, DL, DAG); CCOp = ExtraCmp; Predicate = ExtraCC; } } // Produce a normal comparison if we are first in the chain if (!CCOp) return emitComparison(LHS, RHS, CC, DL, DAG); // Otherwise produce a ccmp. return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, DAG); } assert(Val->hasOneUse() && "Valid conjunction/disjunction tree"); bool IsOR = Opcode == ISD::OR; SDValue LHS = Val->getOperand(0); bool CanNegateL; bool MustBeFirstL; bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR); assert(ValidL && "Valid conjunction/disjunction tree"); (void)ValidL; SDValue RHS = Val->getOperand(1); bool CanNegateR; bool MustBeFirstR; bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR); assert(ValidR && "Valid conjunction/disjunction tree"); (void)ValidR; // Swap sub-tree that must come first to the right side. if (MustBeFirstL) { assert(!MustBeFirstR && "Valid conjunction/disjunction tree"); std::swap(LHS, RHS); std::swap(CanNegateL, CanNegateR); std::swap(MustBeFirstL, MustBeFirstR); } bool NegateR; bool NegateAfterR; bool NegateL; bool NegateAfterAll; if (Opcode == ISD::OR) { // Swap the sub-tree that we can negate naturally to the left. if (!CanNegateL) { assert(CanNegateR && "at least one side must be negatable"); assert(!MustBeFirstR && "invalid conjunction/disjunction tree"); assert(!Negate); std::swap(LHS, RHS); NegateR = false; NegateAfterR = true; } else { // Negate the left sub-tree if possible, otherwise negate the result. NegateR = CanNegateR; NegateAfterR = !CanNegateR; } NegateL = true; NegateAfterAll = !Negate; } else { assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree"); assert(!Negate && "Valid conjunction/disjunction tree"); NegateL = false; NegateR = false; NegateAfterR = false; NegateAfterAll = false; } // Emit sub-trees. AArch64CC::CondCode RHSCC; SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate); if (NegateAfterR) RHSCC = AArch64CC::getInvertedCondCode(RHSCC); SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC); if (NegateAfterAll) OutCC = AArch64CC::getInvertedCondCode(OutCC); return CmpL; } /// Emit expression as a conjunction (a series of CCMP/CFCMP ops). /// In some cases this is even possible with OR operations in the expression. /// See \ref AArch64CCMP. /// \see emitConjunctionRec(). static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val, AArch64CC::CondCode &OutCC) { bool DummyCanNegate; bool DummyMustBeFirst; if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false)) return SDValue(); return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL); } /// @} /// Returns how profitable it is to fold a comparison's operand's shift and/or /// extension operations. static unsigned getCmpOperandFoldingProfit(SDValue Op) { auto isSupportedExtend = [&](SDValue V) { if (V.getOpcode() == ISD::SIGN_EXTEND_INREG) return true; if (V.getOpcode() == ISD::AND) if (ConstantSDNode *MaskCst = dyn_cast(V.getOperand(1))) { uint64_t Mask = MaskCst->getZExtValue(); return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); } return false; }; if (!Op.hasOneUse()) return 0; if (isSupportedExtend(Op)) return 1; unsigned Opc = Op.getOpcode(); if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) if (ConstantSDNode *ShiftCst = dyn_cast(Op.getOperand(1))) { uint64_t Shift = ShiftCst->getZExtValue(); if (isSupportedExtend(Op.getOperand(0))) return (Shift <= 4) ? 2 : 1; EVT VT = Op.getValueType(); if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63)) return 1; } return 0; } static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &AArch64cc, SelectionDAG &DAG, const SDLoc &dl) { if (ConstantSDNode *RHSC = dyn_cast(RHS.getNode())) { EVT VT = RHS.getValueType(); uint64_t C = RHSC->getZExtValue(); if (!isLegalArithImmed(C)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if ((VT == MVT::i32 && C != 0x80000000 && isLegalArithImmed((uint32_t)(C - 1))) || (VT == MVT::i64 && C != 0x80000000ULL && isLegalArithImmed(C - 1ULL))) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; RHS = DAG.getConstant(C, dl, VT); } break; case ISD::SETULT: case ISD::SETUGE: if ((VT == MVT::i32 && C != 0 && isLegalArithImmed((uint32_t)(C - 1))) || (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; RHS = DAG.getConstant(C, dl, VT); } break; case ISD::SETLE: case ISD::SETGT: if ((VT == MVT::i32 && C != INT32_MAX && isLegalArithImmed((uint32_t)(C + 1))) || (VT == MVT::i64 && C != INT64_MAX && isLegalArithImmed(C + 1ULL))) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; RHS = DAG.getConstant(C, dl, VT); } break; case ISD::SETULE: case ISD::SETUGT: if ((VT == MVT::i32 && C != UINT32_MAX && isLegalArithImmed((uint32_t)(C + 1))) || (VT == MVT::i64 && C != UINT64_MAX && isLegalArithImmed(C + 1ULL))) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; RHS = DAG.getConstant(C, dl, VT); } break; } } } // Comparisons are canonicalized so that the RHS operand is simpler than the // LHS one, the extreme case being when RHS is an immediate. However, AArch64 // can fold some shift+extend operations on the RHS operand, so swap the // operands if that can be done. // // For example: // lsl w13, w11, #1 // cmp w13, w12 // can be turned into: // cmp w12, w11, lsl #1 if (!isa(RHS) || !isLegalArithImmed(cast(RHS)->getZExtValue())) { SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS; if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) { std::swap(LHS, RHS); CC = ISD::getSetCCSwappedOperands(CC); } } SDValue Cmp; AArch64CC::CondCode AArch64CC; if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa(RHS)) { const ConstantSDNode *RHSC = cast(RHS); // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. // For the i8 operand, the largest immediate is 255, so this can be easily // encoded in the compare instruction. For the i16 operand, however, the // largest immediate cannot be encoded in the compare. // Therefore, use a sign extending load and cmn to avoid materializing the // -1 constant. For example, // movz w1, #65535 // ldrh w0, [x0, #0] // cmp w0, w1 // > // ldrsh w0, [x0, #0] // cmn w0, #1 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) // if and only if (sext LHS) == (sext RHS). The checks are in place to // ensure both the LHS and RHS are truly zero extended and to make sure the // transformation is profitable. if ((RHSC->getZExtValue() >> 16 == 0) && isa(LHS) && cast(LHS)->getExtensionType() == ISD::ZEXTLOAD && cast(LHS)->getMemoryVT() == MVT::i16 && LHS.getNode()->hasNUsesOfValue(1, 0)) { int16_t ValueofRHS = cast(RHS)->getZExtValue(); if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, DAG.getValueType(MVT::i16)); Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, RHS.getValueType()), CC, dl, DAG); AArch64CC = changeIntCCToAArch64CC(CC); } } if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) { if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); } } } if (!Cmp) { Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC = changeIntCCToAArch64CC(CC); } AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); return Cmp; } static std::pair getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && "Unsupported value type"); SDValue Value, Overflow; SDLoc DL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); unsigned Opc = 0; switch (Op.getOpcode()) { default: llvm_unreachable("Unknown overflow instruction!"); case ISD::SADDO: Opc = AArch64ISD::ADDS; CC = AArch64CC::VS; break; case ISD::UADDO: Opc = AArch64ISD::ADDS; CC = AArch64CC::HS; break; case ISD::SSUBO: Opc = AArch64ISD::SUBS; CC = AArch64CC::VS; break; case ISD::USUBO: Opc = AArch64ISD::SUBS; CC = AArch64CC::LO; break; // Multiply needs a little bit extra work. case ISD::SMULO: case ISD::UMULO: { CC = AArch64CC::NE; bool IsSigned = Op.getOpcode() == ISD::SMULO; if (Op.getValueType() == MVT::i32) { unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; // For a 32 bit multiply with overflow check we want the instruction // selector to generate a widening multiply (SMADDL/UMADDL). For that we // need to generate the following pattern: // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, DAG.getConstant(0, DL, MVT::i64)); // On AArch64 the upper 32 bits are always zero extended for a 32 bit // operation. We need to clear out the upper 32 bits, because we used a // widening multiply that wrote all 64 bits. In the end this should be a // noop. Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); if (IsSigned) { // The signed overflow check requires more than just a simple check for // any bit set in the upper 32 bits of the result. These bits could be // just the sign bits of a negative number. To perform the overflow // check we have to arithmetic shift right the 32nd bit of the result by // 31 bits. Then we compare the result to the upper 32 bits. SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, DAG.getConstant(32, DL, MVT::i64)); UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, DAG.getConstant(31, DL, MVT::i64)); // It is important that LowerBits is last, otherwise the arithmetic // shift will not be folded into the compare (SUBS). SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) .getValue(1); } else { // The overflow check for unsigned multiply is easy. We only need to // check if any of the upper 32 bits are set. This can be done with a // CMP (shifted register). For that we need to generate the following // pattern: // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, DL, MVT::i64)); SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, DL, MVT::i64), UpperBits).getValue(1); } break; } assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); // For the 64 bit multiply Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); if (IsSigned) { SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, DAG.getConstant(63, DL, MVT::i64)); // It is important that LowerBits is last, otherwise the arithmetic // shift will not be folded into the compare (SUBS). SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) .getValue(1); } else { SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, DL, MVT::i64), UpperBits).getValue(1); } break; } } // switch (...) if (Opc) { SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); // Emit the AArch64 operation with overflow check. Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); Overflow = Value.getValue(1); } return std::make_pair(Value, Overflow); } SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, RTLIB::Libcall Call) const { bool IsStrict = Op->isStrictFPOpcode(); unsigned Offset = IsStrict ? 1 : 0; SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); SmallVector Ops(Op->op_begin() + Offset, Op->op_end()); MakeLibCallOptions CallOptions; SDValue Result; SDLoc dl(Op); std::tie(Result, Chain) = makeLibCall(DAG, Call, Op.getValueType(), Ops, CallOptions, dl, Chain); return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result; } SDValue AArch64TargetLowering::LowerXOR(SDValue Op, SelectionDAG &DAG) const { if (useSVEForFixedLengthVectorVT(Op.getValueType())) return LowerToScalableOp(Op, DAG); SDValue Sel = Op.getOperand(0); SDValue Other = Op.getOperand(1); SDLoc dl(Sel); // If the operand is an overflow checking operation, invert the condition // code and kill the Not operation. I.e., transform: // (xor (overflow_op_bool, 1)) // --> // (csel 1, 0, invert(cc), overflow_op_bool) // ... which later gets transformed to just a cset instruction with an // inverted condition code, rather than a cset + eor sequence. if (isOneConstant(Other) && ISD::isOverflowIntrOpRes(Sel)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0))) return SDValue(); SDValue TVal = DAG.getConstant(1, dl, MVT::i32); SDValue FVal = DAG.getConstant(0, dl, MVT::i32); AArch64CC::CondCode CC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG); SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal, CCVal, Overflow); } // If neither operand is a SELECT_CC, give up. if (Sel.getOpcode() != ISD::SELECT_CC) std::swap(Sel, Other); if (Sel.getOpcode() != ISD::SELECT_CC) return Op; // The folding we want to perform is: // (xor x, (select_cc a, b, cc, 0, -1) ) // --> // (csel x, (xor x, -1), cc ...) // // The latter will get matched to a CSINV instruction. ISD::CondCode CC = cast(Sel.getOperand(4))->get(); SDValue LHS = Sel.getOperand(0); SDValue RHS = Sel.getOperand(1); SDValue TVal = Sel.getOperand(2); SDValue FVal = Sel.getOperand(3); // FIXME: This could be generalized to non-integer comparisons. if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) return Op; ConstantSDNode *CFVal = dyn_cast(FVal); ConstantSDNode *CTVal = dyn_cast(TVal); // The values aren't constants, this isn't the pattern we're looking for. if (!CFVal || !CTVal) return Op; // We can commute the SELECT_CC by inverting the condition. This // might be needed to make this fit into a CSINV pattern. if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } // If the constants line up, perform the transform! if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); FVal = Other; TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, DAG.getConstant(-1ULL, dl, Other.getValueType())); return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, CCVal, Cmp); } return Op; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned Opc; bool ExtraOp = false; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid code"); case ISD::ADDC: Opc = AArch64ISD::ADDS; break; case ISD::SUBC: Opc = AArch64ISD::SUBS; break; case ISD::ADDE: Opc = AArch64ISD::ADCS; ExtraOp = true; break; case ISD::SUBE: Opc = AArch64ISD::SBCS; ExtraOp = true; break; } if (!ExtraOp) return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), Op.getOperand(2)); } static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) return SDValue(); SDLoc dl(Op); AArch64CC::CondCode CC; // The actual operation that sets the overflow or carry flag. SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); // We use 0 and 1 as false and true values. SDValue TVal = DAG.getConstant(1, dl, MVT::i32); SDValue FVal = DAG.getConstant(0, dl, MVT::i32); // We use an inverted condition, because the conditional select is inverted // too. This will allow it to be selected to a single instruction: // CSINC Wd, WZR, WZR, invert(cond). SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, CCVal, Overflow); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); } // Prefetch operands are: // 1: Address to prefetch // 2: bool isWrite // 3: int locality (0 = no locality ... 3 = extreme locality) // 4: bool isDataCache static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); unsigned IsWrite = cast(Op.getOperand(2))->getZExtValue(); unsigned Locality = cast(Op.getOperand(3))->getZExtValue(); unsigned IsData = cast(Op.getOperand(4))->getZExtValue(); bool IsStream = !Locality; // When the locality number is set if (Locality) { // The front-end should have filtered out the out-of-range values assert(Locality <= 3 && "Prefetch locality out-of-range"); // The locality degree is the opposite of the cache speed. // Put the number the other way around. // The encoding starts at 0 for level 1 Locality = 3 - Locality; } // built the mask value encoding the expected behavior. unsigned PrfOp = (IsWrite << 4) | // Load/Store bit (!IsData << 3) | // IsDataCache bit (Locality << 1) | // Cache level bits (unsigned)IsStream; // Stream bit return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); } SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isScalableVector()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_EXTEND_MERGE_PASSTHRU); assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); RTLIB::Libcall LC; LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); return LowerF128Call(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isScalableVector()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_ROUND_MERGE_PASSTHRU); bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); EVT SrcVT = SrcVal.getValueType(); if (SrcVT != MVT::f128) { // Expand cases where the input is a vector bigger than NEON. if (useSVEForFixedLengthVectorVT(SrcVT)) return SDValue(); // It's legal except when f128 is involved return Op; } RTLIB::Libcall LC; LC = RTLIB::getFPROUND(SrcVT, Op.getValueType()); // FP_ROUND node has a second operand indicating whether it is known to be // precise. That doesn't take part in the LibCall so we can't directly use // LowerF128Call. MakeLibCallOptions CallOptions; SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); SDValue Result; SDLoc dl(Op); std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal, CallOptions, dl, Chain); return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result; } SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. // Any additional optimization in this function should be recorded // in the cost tables. EVT InVT = Op.getOperand(0).getValueType(); EVT VT = Op.getValueType(); if (VT.isScalableVector()) { unsigned Opcode = Op.getOpcode() == ISD::FP_TO_UINT ? AArch64ISD::FCVTZU_MERGE_PASSTHRU : AArch64ISD::FCVTZS_MERGE_PASSTHRU; return LowerToPredicatedOp(Op, DAG, Opcode); } unsigned NumElts = InVT.getVectorNumElements(); // f16 conversions are promoted to f32 when full fp16 is not supported. if (InVT.getVectorElementType() == MVT::f16 && !Subtarget->hasFullFP16()) { MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); SDLoc dl(Op); return DAG.getNode( Op.getOpcode(), dl, Op.getValueType(), DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); } uint64_t VTSize = VT.getFixedSizeInBits(); uint64_t InVTSize = InVT.getFixedSizeInBits(); if (VTSize < InVTSize) { SDLoc dl(Op); SDValue Cv = DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), Op.getOperand(0)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); } if (VTSize > InVTSize) { SDLoc dl(Op); MVT ExtVT = MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), VT.getVectorNumElements()); SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); return DAG.getNode(Op.getOpcode(), dl, VT, Ext); } // Type changing conversions are illegal. return Op; } SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); if (SrcVal.getValueType().isVector()) return LowerVectorFP_TO_INT(Op, DAG); // f16 conversions are promoted to f32 when full fp16 is not supported. if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { assert(!IsStrict && "Lowering of strict fp16 not yet implemented"); SDLoc dl(Op); return DAG.getNode( Op.getOpcode(), dl, Op.getValueType(), DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal)); } if (SrcVal.getValueType() != MVT::f128) { // It's legal except when f128 is involved return Op; } RTLIB::Libcall LC; if (Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::STRICT_FP_TO_SINT) LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), Op.getValueType()); else LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), Op.getValueType()); return LowerF128Call(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. // Any additional optimization in this function should be recorded // in the cost tables. EVT VT = Op.getValueType(); SDLoc dl(Op); SDValue In = Op.getOperand(0); EVT InVT = In.getValueType(); if (VT.isScalableVector()) { unsigned Opcode = Op.getOpcode() == ISD::UINT_TO_FP ? AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU : AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU; return LowerToPredicatedOp(Op, DAG, Opcode); } uint64_t VTSize = VT.getFixedSizeInBits(); uint64_t InVTSize = InVT.getFixedSizeInBits(); if (VTSize < InVTSize) { MVT CastVT = MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), InVT.getVectorNumElements()); In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl)); } if (VTSize > InVTSize) { unsigned CastOpc = Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; EVT CastVT = VT.changeVectorElementTypeToInteger(); In = DAG.getNode(CastOpc, dl, CastVT, In); return DAG.getNode(Op.getOpcode(), dl, VT, In); } return Op; } SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isVector()) return LowerVectorINT_TO_FP(Op, DAG); bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); // f16 conversions are promoted to f32 when full fp16 is not supported. if (Op.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { assert(!IsStrict && "Lowering of strict fp16 not yet implemented"); SDLoc dl(Op); return DAG.getNode( ISD::FP_ROUND, dl, MVT::f16, DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal), DAG.getIntPtrConstant(0, dl)); } // i128 conversions are libcalls. if (SrcVal.getValueType() == MVT::i128) return SDValue(); // Other conversions are legal, unless it's to the completely software-based // fp128. if (Op.getValueType() != MVT::f128) return Op; RTLIB::Libcall LC; if (Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::STRICT_SINT_TO_FP) LC = RTLIB::getSINTTOFP(SrcVal.getValueType(), Op.getValueType()); else LC = RTLIB::getUINTTOFP(SrcVal.getValueType(), Op.getValueType()); return LowerF128Call(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { // For iOS, we want to call an alternative entry point: __sincos_stret, // which returns the values in two S / D registers. SDLoc dl(Op); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); ArgListTy Args; ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.IsSExt = false; Entry.IsZExt = false; Args.push_back(Entry); RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32; const char *LibcallName = getLibcallName(LC); SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); StructType *RetTy = StructType::get(ArgTy, ArgTy); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(DAG.getEntryNode()) .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); std::pair CallResult = LowerCallTo(CLI); return CallResult.first; } static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { EVT OpVT = Op.getValueType(); if (OpVT != MVT::f16 && OpVT != MVT::bf16) return SDValue(); assert(Op.getOperand(0).getValueType() == MVT::i16); SDLoc DL(Op); Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); return SDValue( DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, OpVT, Op, DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 0); } static EVT getExtensionTo64Bits(const EVT &OrigVT) { if (OrigVT.getSizeInBits() >= 64) return OrigVT; assert(OrigVT.isSimple() && "Expecting a simple value type"); MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; switch (OrigSimpleTy) { default: llvm_unreachable("Unexpected Vector Type"); case MVT::v2i8: case MVT::v2i16: return MVT::v2i32; case MVT::v4i8: return MVT::v4i16; } } static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, const EVT &OrigTy, const EVT &ExtTy, unsigned ExtOpcode) { // The vector originally had a size of OrigTy. It was then extended to ExtTy. // We expect the ExtTy to be 128-bits total. If the OrigTy is less than // 64-bits we need to insert a new extension so that it will be 64-bits. assert(ExtTy.is128BitVector() && "Unexpected extension size"); if (OrigTy.getSizeInBits() >= 64) return N; // Must extend size to at least 64 bits to be used as an operand for VMULL. EVT NewVT = getExtensionTo64Bits(OrigTy); return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); } static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, bool isSigned) { EVT VT = N->getValueType(0); if (N->getOpcode() != ISD::BUILD_VECTOR) return false; for (const SDValue &Elt : N->op_values()) { if (ConstantSDNode *C = dyn_cast(Elt)) { unsigned EltSize = VT.getScalarSizeInBits(); unsigned HalfSize = EltSize / 2; if (isSigned) { if (!isIntN(HalfSize, C->getSExtValue())) return false; } else { if (!isUIntN(HalfSize, C->getZExtValue())) return false; } continue; } return false; } return true; } static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, N->getOperand(0)->getValueType(0), N->getValueType(0), N->getOpcode()); assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); EVT VT = N->getValueType(0); SDLoc dl(N); unsigned EltSize = VT.getScalarSizeInBits() / 2; unsigned NumElts = VT.getVectorNumElements(); MVT TruncVT = MVT::getIntegerVT(EltSize); SmallVector Ops; for (unsigned i = 0; i != NumElts; ++i) { ConstantSDNode *C = cast(N->getOperand(i)); const APInt &CInt = C->getAPIntValue(); // Element types smaller than 32 bits are not legal, so use i32 elements. // The values are implicitly truncated so sext vs. zext doesn't matter. Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); } return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); } static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { return N->getOpcode() == ISD::SIGN_EXTEND || isExtendedBUILD_VECTOR(N, DAG, true); } static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { return N->getOpcode() == ISD::ZERO_EXTEND || isExtendedBUILD_VECTOR(N, DAG, false); } static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isSignExtended(N0, DAG) && isSignExtended(N1, DAG); } return false; } static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); } return false; } SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { // The rounding mode is in bits 23:22 of the FPSCR. // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) // so that the shift + and get folded into a bitfield extract. SDLoc dl(Op); SDValue Chain = Op.getOperand(0); SDValue FPCR_64 = DAG.getNode( ISD::INTRINSIC_W_CHAIN, dl, {MVT::i64, MVT::Other}, {Chain, DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, MVT::i64)}); Chain = FPCR_64.getValue(1); SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64); SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32, DAG.getConstant(1U << 22, dl, MVT::i32)); SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, DAG.getConstant(22, dl, MVT::i32)); SDValue AND = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, DAG.getConstant(3, dl, MVT::i32)); return DAG.getMergeValues({AND, Chain}, dl); } SDValue AArch64TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); // If SVE is available then i64 vector multiplications can also be made legal. bool OverrideNEON = VT == MVT::v2i64 || VT == MVT::v1i64; if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, OverrideNEON)) return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED, OverrideNEON); // Multiplications are only custom-lowered for 128-bit vectors so that // VMULL can be detected. Otherwise v2i64 multiplications are not legal. assert(VT.is128BitVector() && VT.isInteger() && "unexpected type for custom-lowering ISD::MUL"); SDNode *N0 = Op.getOperand(0).getNode(); SDNode *N1 = Op.getOperand(1).getNode(); unsigned NewOpc = 0; bool isMLA = false; bool isN0SExt = isSignExtended(N0, DAG); bool isN1SExt = isSignExtended(N1, DAG); if (isN0SExt && isN1SExt) NewOpc = AArch64ISD::SMULL; else { bool isN0ZExt = isZeroExtended(N0, DAG); bool isN1ZExt = isZeroExtended(N1, DAG); if (isN0ZExt && isN1ZExt) NewOpc = AArch64ISD::UMULL; else if (isN1SExt || isN1ZExt) { // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these // into (s/zext A * s/zext C) + (s/zext B * s/zext C) if (isN1SExt && isAddSubSExt(N0, DAG)) { NewOpc = AArch64ISD::SMULL; isMLA = true; } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { NewOpc = AArch64ISD::UMULL; isMLA = true; } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { std::swap(N0, N1); NewOpc = AArch64ISD::UMULL; isMLA = true; } } if (!NewOpc) { if (VT == MVT::v2i64) // Fall through to expand this. It is not legal. return SDValue(); else // Other vector multiplications are legal. return Op; } } // Legalize to a S/UMULL instruction SDLoc DL(Op); SDValue Op0; SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); if (!isMLA) { Op0 = skipExtensionForVectorMULL(N0, DAG); assert(Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL"); return DAG.getNode(NewOpc, DL, VT, Op0, Op1); } // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during // isel lowering to take advantage of no-stall back to back s/umul + s/umla. // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); EVT Op1VT = Op1.getValueType(); return DAG.getNode(N0->getOpcode(), DL, VT, DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); } static inline SDValue getPTrue(SelectionDAG &DAG, SDLoc DL, EVT VT, int Pattern) { return DAG.getNode(AArch64ISD::PTRUE, DL, VT, DAG.getTargetConstant(Pattern, DL, MVT::i32)); } SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); SDLoc dl(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::thread_pointer: { EVT PtrVT = getPointerTy(DAG.getDataLayout()); return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); } case Intrinsic::aarch64_neon_abs: { EVT Ty = Op.getValueType(); if (Ty == MVT::i64) { SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Op.getOperand(1)); Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result); return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result); } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) { return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1)); } else { report_fatal_error("Unexpected type for AArch64 NEON intrinic"); } } case Intrinsic::aarch64_neon_smax: return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_neon_umax: return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_neon_smin: return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_neon_umin: return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_sunpkhi: return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_sunpklo: return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_uunpkhi: return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_uunpklo: return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_clasta_n: return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::aarch64_sve_clastb_n: return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::aarch64_sve_lasta: return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_lastb: return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_rev: return DAG.getNode(AArch64ISD::REV, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_tbl: return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_trn1: return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_trn2: return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_uzp1: return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_uzp2: return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_zip1: return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_zip2: return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_ptrue: return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_dupq_lane: return LowerDUPQLane(Op, DAG); case Intrinsic::aarch64_sve_convert_from_svbool: return DAG.getNode(AArch64ISD::REINTERPRET_CAST, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_fneg: return DAG.getNode(AArch64ISD::FNEG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintp: return DAG.getNode(AArch64ISD::FCEIL_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintm: return DAG.getNode(AArch64ISD::FFLOOR_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frinti: return DAG.getNode(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintx: return DAG.getNode(AArch64ISD::FRINT_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frinta: return DAG.getNode(AArch64ISD::FROUND_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintn: return DAG.getNode(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintz: return DAG.getNode(AArch64ISD::FTRUNC_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_ucvtf: return DAG.getNode(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_scvtf: return DAG.getNode(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_fcvtzu: return DAG.getNode(AArch64ISD::FCVTZU_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_fcvtzs: return DAG.getNode(AArch64ISD::FCVTZS_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_fsqrt: return DAG.getNode(AArch64ISD::FSQRT_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frecpx: return DAG.getNode(AArch64ISD::FRECPX_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_fabs: return DAG.getNode(AArch64ISD::FABS_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_convert_to_svbool: { EVT OutVT = Op.getValueType(); EVT InVT = Op.getOperand(1).getValueType(); // Return the operand if the cast isn't changing type, // i.e. -> if (InVT == OutVT) return Op.getOperand(1); // Otherwise, zero the newly introduced lanes. SDValue Reinterpret = DAG.getNode(AArch64ISD::REINTERPRET_CAST, dl, OutVT, Op.getOperand(1)); SDValue Mask = getPTrue(DAG, dl, InVT, AArch64SVEPredPattern::all); SDValue MaskReinterpret = DAG.getNode(AArch64ISD::REINTERPRET_CAST, dl, OutVT, Mask); return DAG.getNode(ISD::AND, dl, OutVT, Reinterpret, MaskReinterpret); } case Intrinsic::aarch64_sve_insr: { SDValue Scalar = Op.getOperand(2); EVT ScalarTy = Scalar.getValueType(); if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(), Op.getOperand(1), Scalar); } case Intrinsic::aarch64_sve_sxtb: return DAG.getNode( AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)), Op.getOperand(1)); case Intrinsic::aarch64_sve_sxth: return DAG.getNode( AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)), Op.getOperand(1)); case Intrinsic::aarch64_sve_sxtw: return DAG.getNode( AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)), Op.getOperand(1)); case Intrinsic::aarch64_sve_uxtb: return DAG.getNode( AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)), Op.getOperand(1)); case Intrinsic::aarch64_sve_uxth: return DAG.getNode( AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)), Op.getOperand(1)); case Intrinsic::aarch64_sve_uxtw: return DAG.getNode( AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)), Op.getOperand(1)); case Intrinsic::localaddress: { const auto &MF = DAG.getMachineFunction(); const auto *RegInfo = Subtarget->getRegisterInfo(); unsigned Reg = RegInfo->getLocalAddressRegister(MF); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, Op.getSimpleValueType()); } case Intrinsic::eh_recoverfp: { // FIXME: This needs to be implemented to correctly handle highly aligned // stack objects. For now we simply return the incoming FP. Refer D53541 // for more details. SDValue FnOp = Op.getOperand(1); SDValue IncomingFPOp = Op.getOperand(2); GlobalAddressSDNode *GSD = dyn_cast(FnOp); auto *Fn = dyn_cast_or_null(GSD ? GSD->getGlobal() : nullptr); if (!Fn) report_fatal_error( "llvm.eh.recoverfp must take a function as the first argument"); return IncomingFPOp; } case Intrinsic::aarch64_neon_vsri: case Intrinsic::aarch64_neon_vsli: { EVT Ty = Op.getValueType(); if (!Ty.isVector()) report_fatal_error("Unexpected type for aarch64_neon_vsli"); assert(Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits()); bool IsShiftRight = IntNo == Intrinsic::aarch64_neon_vsri; unsigned Opcode = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; return DAG.getNode(Opcode, dl, Ty, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } case Intrinsic::aarch64_neon_srhadd: case Intrinsic::aarch64_neon_urhadd: case Intrinsic::aarch64_neon_shadd: case Intrinsic::aarch64_neon_uhadd: { bool IsSignedAdd = (IntNo == Intrinsic::aarch64_neon_srhadd || IntNo == Intrinsic::aarch64_neon_shadd); bool IsRoundingAdd = (IntNo == Intrinsic::aarch64_neon_srhadd || IntNo == Intrinsic::aarch64_neon_urhadd); unsigned Opcode = IsSignedAdd ? (IsRoundingAdd ? AArch64ISD::SRHADD : AArch64ISD::SHADD) : (IsRoundingAdd ? AArch64ISD::URHADD : AArch64ISD::UHADD); return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::aarch64_neon_uabd: { return DAG.getNode(AArch64ISD::UABD, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::aarch64_neon_sabd: { return DAG.getNode(AArch64ISD::SABD, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } } } bool AArch64TargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { if (VT.getVectorElementType() == MVT::i32 && VT.getVectorElementCount().getKnownMinValue() >= 4) return true; return false; } bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { return ExtVal.getValueType().isScalableVector(); } unsigned getGatherVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) { std::map, unsigned> AddrModes = { {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false), AArch64ISD::GLD1_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true), AArch64ISD::GLD1_UXTW_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false), AArch64ISD::GLD1_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true), AArch64ISD::GLD1_SXTW_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false), AArch64ISD::GLD1_SCALED_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true), AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false), AArch64ISD::GLD1_SCALED_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true), AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO}, }; auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend); return AddrModes.find(Key)->second; } unsigned getScatterVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) { std::map, unsigned> AddrModes = { {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false), AArch64ISD::SST1_PRED}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true), AArch64ISD::SST1_UXTW_PRED}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false), AArch64ISD::SST1_PRED}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true), AArch64ISD::SST1_SXTW_PRED}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false), AArch64ISD::SST1_SCALED_PRED}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true), AArch64ISD::SST1_UXTW_SCALED_PRED}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false), AArch64ISD::SST1_SCALED_PRED}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true), AArch64ISD::SST1_SXTW_SCALED_PRED}, }; auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend); return AddrModes.find(Key)->second; } unsigned getSignExtendedGatherOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("unimplemented opcode"); return Opcode; case AArch64ISD::GLD1_MERGE_ZERO: return AArch64ISD::GLD1S_MERGE_ZERO; case AArch64ISD::GLD1_UXTW_MERGE_ZERO: return AArch64ISD::GLD1S_UXTW_MERGE_ZERO; case AArch64ISD::GLD1_SXTW_MERGE_ZERO: return AArch64ISD::GLD1S_SXTW_MERGE_ZERO; case AArch64ISD::GLD1_SCALED_MERGE_ZERO: return AArch64ISD::GLD1S_SCALED_MERGE_ZERO; case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: return AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO; case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: return AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO; } } bool getGatherScatterIndexIsExtended(SDValue Index) { unsigned Opcode = Index.getOpcode(); if (Opcode == ISD::SIGN_EXTEND_INREG) return true; if (Opcode == ISD::AND) { SDValue Splat = Index.getOperand(1); if (Splat.getOpcode() != ISD::SPLAT_VECTOR) return false; ConstantSDNode *Mask = dyn_cast(Splat.getOperand(0)); if (!Mask || Mask->getZExtValue() != 0xFFFFFFFF) return false; return true; } return false; } SDValue AArch64TargetLowering::LowerMGATHER(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MaskedGatherSDNode *MGT = cast(Op); assert(MGT && "Can only custom lower gather load nodes"); SDValue Index = MGT->getIndex(); SDValue Chain = MGT->getChain(); SDValue PassThru = MGT->getPassThru(); SDValue Mask = MGT->getMask(); SDValue BasePtr = MGT->getBasePtr(); ISD::LoadExtType ExtTy = MGT->getExtensionType(); ISD::MemIndexType IndexType = MGT->getIndexType(); bool IsScaled = IndexType == ISD::SIGNED_SCALED || IndexType == ISD::UNSIGNED_SCALED; bool IsSigned = IndexType == ISD::SIGNED_SCALED || IndexType == ISD::SIGNED_UNSCALED; bool IdxNeedsExtend = getGatherScatterIndexIsExtended(Index) || Index.getSimpleValueType().getVectorElementType() == MVT::i32; bool ResNeedsSignExtend = ExtTy == ISD::EXTLOAD || ExtTy == ISD::SEXTLOAD; EVT VT = PassThru.getSimpleValueType(); EVT MemVT = MGT->getMemoryVT(); SDValue InputVT = DAG.getValueType(MemVT); if (VT.getVectorElementType() == MVT::bf16 && !static_cast(DAG.getSubtarget()).hasBF16()) return SDValue(); // Handle FP data if (VT.isFloatingPoint()) { VT = VT.changeVectorElementTypeToInteger(); ElementCount EC = VT.getVectorElementCount(); auto ScalarIntVT = MVT::getIntegerVT(AArch64::SVEBitsPerBlock / EC.getKnownMinValue()); PassThru = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::getVectorVT(ScalarIntVT, EC), PassThru); InputVT = DAG.getValueType(MemVT.changeVectorElementTypeToInteger()); } SDVTList VTs = DAG.getVTList(PassThru.getSimpleValueType(), MVT::Other); if (getGatherScatterIndexIsExtended(Index)) Index = Index.getOperand(0); unsigned Opcode = getGatherVecOpcode(IsScaled, IsSigned, IdxNeedsExtend); if (ResNeedsSignExtend) Opcode = getSignExtendedGatherOpcode(Opcode); SDValue Ops[] = {Chain, Mask, BasePtr, Index, InputVT, PassThru}; return DAG.getNode(Opcode, DL, VTs, Ops); } SDValue AArch64TargetLowering::LowerMSCATTER(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MaskedScatterSDNode *MSC = cast(Op); assert(MSC && "Can only custom lower scatter store nodes"); SDValue Index = MSC->getIndex(); SDValue Chain = MSC->getChain(); SDValue StoreVal = MSC->getValue(); SDValue Mask = MSC->getMask(); SDValue BasePtr = MSC->getBasePtr(); ISD::MemIndexType IndexType = MSC->getIndexType(); bool IsScaled = IndexType == ISD::SIGNED_SCALED || IndexType == ISD::UNSIGNED_SCALED; bool IsSigned = IndexType == ISD::SIGNED_SCALED || IndexType == ISD::SIGNED_UNSCALED; bool NeedsExtend = getGatherScatterIndexIsExtended(Index) || Index.getSimpleValueType().getVectorElementType() == MVT::i32; EVT VT = StoreVal.getSimpleValueType(); SDVTList VTs = DAG.getVTList(MVT::Other); EVT MemVT = MSC->getMemoryVT(); SDValue InputVT = DAG.getValueType(MemVT); if (VT.getVectorElementType() == MVT::bf16 && !static_cast(DAG.getSubtarget()).hasBF16()) return SDValue(); // Handle FP data if (VT.isFloatingPoint()) { VT = VT.changeVectorElementTypeToInteger(); ElementCount EC = VT.getVectorElementCount(); auto ScalarIntVT = MVT::getIntegerVT(AArch64::SVEBitsPerBlock / EC.getKnownMinValue()); StoreVal = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::getVectorVT(ScalarIntVT, EC), StoreVal); InputVT = DAG.getValueType(MemVT.changeVectorElementTypeToInteger()); } if (getGatherScatterIndexIsExtended(Index)) Index = Index.getOperand(0); SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, InputVT}; return DAG.getNode(getScatterVecOpcode(IsScaled, IsSigned, NeedsExtend), DL, VTs, Ops); } // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16. static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST, EVT VT, EVT MemVT, SelectionDAG &DAG) { assert(VT.isVector() && "VT should be a vector type"); assert(MemVT == MVT::v4i8 && VT == MVT::v4i16); SDValue Value = ST->getValue(); // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract // the word lane which represent the v4i8 subvector. It optimizes the store // to: // // xtn v0.8b, v0.8h // str s0, [x0] SDValue Undef = DAG.getUNDEF(MVT::i16); SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL, {Undef, Undef, Undef, Undef}); SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Value, UndefVec); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt); Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc); SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Trunc, DAG.getConstant(0, DL, MVT::i64)); return DAG.getStore(ST->getChain(), DL, ExtractTrunc, ST->getBasePtr(), ST->getMemOperand()); } // Custom lowering for any store, vector or scalar and/or default or with // a truncate operations. Currently only custom lower truncate operation // from vector v4i16 to v4i8 or volatile stores of i128. SDValue AArch64TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc Dl(Op); StoreSDNode *StoreNode = cast(Op); assert (StoreNode && "Can only custom lower store nodes"); SDValue Value = StoreNode->getValue(); EVT VT = Value.getValueType(); EVT MemVT = StoreNode->getMemoryVT(); if (VT.isVector()) { if (useSVEForFixedLengthVectorVT(VT)) return LowerFixedLengthVectorStoreToSVE(Op, DAG); unsigned AS = StoreNode->getAddressSpace(); Align Alignment = StoreNode->getAlign(); if (Alignment < MemVT.getStoreSize() && !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment.value(), StoreNode->getMemOperand()->getFlags(), nullptr)) { return scalarizeVectorStore(StoreNode, DAG); } if (StoreNode->isTruncatingStore()) { return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG); } // 256 bit non-temporal stores can be lowered to STNP. Do this as part of // the custom lowering, as there are no un-paired non-temporal stores and // legalization will break up 256 bit inputs. ElementCount EC = MemVT.getVectorElementCount(); if (StoreNode->isNonTemporal() && MemVT.getSizeInBits() == 256u && EC.isKnownEven() && ((MemVT.getScalarSizeInBits() == 8u || MemVT.getScalarSizeInBits() == 16u || MemVT.getScalarSizeInBits() == 32u || MemVT.getScalarSizeInBits() == 64u))) { SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl, MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64)); SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl, MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), StoreNode->getValue(), DAG.getConstant(EC.getKnownMinValue() / 2, Dl, MVT::i64)); SDValue Result = DAG.getMemIntrinsicNode( AArch64ISD::STNP, Dl, DAG.getVTList(MVT::Other), {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, StoreNode->getMemoryVT(), StoreNode->getMemOperand()); return Result; } } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) { assert(StoreNode->getValue()->getValueType(0) == MVT::i128); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), DAG.getConstant(1, Dl, MVT::i64)); SDValue Result = DAG.getMemIntrinsicNode( AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other), {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, StoreNode->getMemoryVT(), StoreNode->getMemOperand()); return Result; } return SDValue(); } // Generate SUBS and CSEL for integer abs. static SDValue LowerABS(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op.getOperand(0)); // Generate SUBS & CSEL. SDValue Cmp = DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), Op.getOperand(0), DAG.getConstant(0, DL, VT)); return DAG.getNode(AArch64ISD::CSEL, DL, VT, Op.getOperand(0), Neg, DAG.getConstant(AArch64CC::PL, DL, MVT::i32), Cmp.getValue(1)); } SDValue AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { LLVM_DEBUG(dbgs() << "Custom lowering: "); LLVM_DEBUG(Op.dump()); switch (Op.getOpcode()) { default: llvm_unreachable("unimplemented operand"); return SDValue(); case ISD::BITCAST: return LowerBITCAST(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::SETCC: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: return LowerSETCC(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: return LowerXALUO(Op, DAG); case ISD::FADD: if (Op.getValueType() == MVT::f128) return LowerF128Call(Op, DAG, RTLIB::ADD_F128); return LowerToPredicatedOp(Op, DAG, AArch64ISD::FADD_PRED); case ISD::FSUB: if (Op.getValueType() == MVT::f128) return LowerF128Call(Op, DAG, RTLIB::SUB_F128); return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSUB_PRED); case ISD::FMUL: if (Op.getValueType() == MVT::f128) return LowerF128Call(Op, DAG, RTLIB::MUL_F128); return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMUL_PRED); case ISD::FMA: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMA_PRED); case ISD::FDIV: if (Op.getValueType() == MVT::f128) return LowerF128Call(Op, DAG, RTLIB::DIV_F128); return LowerToPredicatedOp(Op, DAG, AArch64ISD::FDIV_PRED); case ISD::FNEG: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEG_MERGE_PASSTHRU); case ISD::FCEIL: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FCEIL_MERGE_PASSTHRU); case ISD::FFLOOR: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FFLOOR_MERGE_PASSTHRU); case ISD::FNEARBYINT: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEARBYINT_MERGE_PASSTHRU); case ISD::FRINT: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FRINT_MERGE_PASSTHRU); case ISD::FROUND: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUND_MERGE_PASSTHRU); case ISD::FROUNDEVEN: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU); case ISD::FTRUNC: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FTRUNC_MERGE_PASSTHRU); case ISD::FSQRT: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSQRT_MERGE_PASSTHRU); case ISD::FABS: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FABS_MERGE_PASSTHRU); case ISD::FP_ROUND: case ISD::STRICT_FP_ROUND: return LowerFP_ROUND(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::SPONENTRY: return LowerSPONENTRY(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::ADDROFRETURNADDR: return LowerADDROFRETURNADDR(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::SPLAT_VECTOR: return LowerSPLAT_VECTOR(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); case ISD::SDIV: case ISD::UDIV: return LowerDIV(Op, DAG); case ISD::SMIN: return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMIN_PRED, /*OverrideNEON=*/true); case ISD::UMIN: return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMIN_PRED, /*OverrideNEON=*/true); case ISD::SMAX: return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMAX_PRED, /*OverrideNEON=*/true); case ISD::UMAX: return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMAX_PRED, /*OverrideNEON=*/true); case ISD::SRA: case ISD::SRL: case ISD::SHL: return LowerVectorSRA_SRL_SHL(Op, DAG); case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); case ISD::SRL_PARTS: case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); case ISD::CTPOP: return LowerCTPOP(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::OR: return LowerVectorOR(Op, DAG); case ISD::XOR: return LowerXOR(Op, DAG); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::MGATHER: return LowerMGATHER(Op, DAG); case ISD::MSCATTER: return LowerMSCATTER(Op, DAG); case ISD::VECREDUCE_SEQ_FADD: return LowerVECREDUCE_SEQ_FADD(Op, DAG); case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMAX: case ISD::VECREDUCE_FMIN: return LowerVECREDUCE(Op, DAG); case ISD::ATOMIC_LOAD_SUB: return LowerATOMIC_LOAD_SUB(Op, DAG); case ISD::ATOMIC_LOAD_AND: return LowerATOMIC_LOAD_AND(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::VSCALE: return LowerVSCALE(Op, DAG); case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: return LowerFixedLengthVectorIntExtendToSVE(Op, DAG); case ISD::SIGN_EXTEND_INREG: { // Only custom lower when ExtraVT has a legal byte based element type. EVT ExtraVT = cast(Op.getOperand(1))->getVT(); EVT ExtraEltVT = ExtraVT.getVectorElementType(); if ((ExtraEltVT != MVT::i8) && (ExtraEltVT != MVT::i16) && (ExtraEltVT != MVT::i32) && (ExtraEltVT != MVT::i64)) return SDValue(); return LowerToPredicatedOp(Op, DAG, AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU); } case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); case ISD::LOAD: if (useSVEForFixedLengthVectorVT(Op.getValueType())) return LowerFixedLengthVectorLoadToSVE(Op, DAG); llvm_unreachable("Unexpected request to lower ISD::LOAD"); case ISD::ADD: return LowerToPredicatedOp(Op, DAG, AArch64ISD::ADD_PRED); case ISD::AND: return LowerToScalableOp(Op, DAG); case ISD::SUB: return LowerToPredicatedOp(Op, DAG, AArch64ISD::SUB_PRED); case ISD::FMAXNUM: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAXNM_PRED); case ISD::FMINNUM: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMINNM_PRED); case ISD::VSELECT: return LowerFixedLengthVectorSelectToSVE(Op, DAG); case ISD::ABS: return LowerABS(Op, DAG); } } bool AArch64TargetLowering::mergeStoresAfterLegalization(EVT VT) const { return !Subtarget->useSVEForFixedLengthVectors(); } bool AArch64TargetLowering::useSVEForFixedLengthVectorVT( EVT VT, bool OverrideNEON) const { if (!Subtarget->useSVEForFixedLengthVectors()) return false; if (!VT.isFixedLengthVector()) return false; // Don't use SVE for vectors we cannot scalarize if required. switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { // Fixed length predicates should be promoted to i8. // NOTE: This is consistent with how NEON (and thus 64/128bit vectors) work. case MVT::i1: default: return false; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f16: case MVT::f32: case MVT::f64: break; } // All SVE implementations support NEON sized vectors. if (OverrideNEON && (VT.is128BitVector() || VT.is64BitVector())) return true; // Ensure NEON MVTs only belong to a single register class. if (VT.getFixedSizeInBits() <= 128) return false; // Don't use SVE for types that don't fit. if (VT.getFixedSizeInBits() > Subtarget->getMinSVEVectorSizeInBits()) return false; // TODO: Perhaps an artificial restriction, but worth having whilst getting // the base fixed length SVE support in place. if (!VT.isPow2VectorType()) return false; return true; } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// /// Selects the correct CCAssignFn for a given CallingConvention value. CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const { switch (CC) { default: report_fatal_error("Unsupported calling convention."); case CallingConv::WebKit_JS: return CC_AArch64_WebKit_JS; case CallingConv::GHC: return CC_AArch64_GHC; case CallingConv::C: case CallingConv::Fast: case CallingConv::PreserveMost: case CallingConv::CXX_FAST_TLS: case CallingConv::Swift: if (Subtarget->isTargetWindows() && IsVarArg) return CC_AArch64_Win64_VarArg; if (!Subtarget->isTargetDarwin()) return CC_AArch64_AAPCS; if (!IsVarArg) return CC_AArch64_DarwinPCS; return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg : CC_AArch64_DarwinPCS_VarArg; case CallingConv::Win64: return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS; case CallingConv::CFGuard_Check: return CC_AArch64_Win64_CFGuard_Check; case CallingConv::AArch64_VectorCall: case CallingConv::AArch64_SVE_VectorCall: return CC_AArch64_AAPCS; } } CCAssignFn * AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS : RetCC_AArch64_AAPCS; } SDValue AArch64TargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; DenseMap CopiedRegs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // At this point, Ins[].VT may already be promoted to i32. To correctly // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here // we use a special version of AnalyzeFormalArguments to pass in ValVT and // LocVT. unsigned NumArgs = Ins.size(); Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); unsigned CurArgIdx = 0; for (unsigned i = 0; i != NumArgs; ++i) { MVT ValVT = Ins[i].VT; if (Ins[i].isOrigArg()) { std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); CurArgIdx = Ins[i].getOrigArgIndex(); // Get type of the original argument. EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), /*AllowUnknown*/ true); MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) ValVT = MVT::i8; else if (ActualMVT == MVT::i16) ValVT = MVT::i16; } CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } SmallVector ArgValues; unsigned ExtraArgLocs = 0; for (unsigned i = 0, e = Ins.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i - ExtraArgLocs]; if (Ins[i].Flags.isByVal()) { // Byval is used for HFAs in the PCS, but the system should work in a // non-compliant manner for larger structs. EVT PtrVT = getPointerTy(DAG.getDataLayout()); int Size = Ins[i].Flags.getByValSize(); unsigned NumRegs = (Size + 7) / 8; // FIXME: This works on big-endian for composite byvals, which are the common // case. It should also work for fundamental types too. unsigned FrameIdx = MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); InVals.push_back(FrameIdxN); continue; } SDValue ArgValue; if (VA.isRegLoc()) { // Arguments stored in registers. EVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = &AArch64::GPR32RegClass; else if (RegVT == MVT::i64) RC = &AArch64::GPR64RegClass; else if (RegVT == MVT::f16 || RegVT == MVT::bf16) RC = &AArch64::FPR16RegClass; else if (RegVT == MVT::f32) RC = &AArch64::FPR32RegClass; else if (RegVT == MVT::f64 || RegVT.is64BitVector()) RC = &AArch64::FPR64RegClass; else if (RegVT == MVT::f128 || RegVT.is128BitVector()) RC = &AArch64::FPR128RegClass; else if (RegVT.isScalableVector() && RegVT.getVectorElementType() == MVT::i1) RC = &AArch64::PPRRegClass; else if (RegVT.isScalableVector()) RC = &AArch64::ZPRRegClass; else llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); // Transform the arguments in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); // If this is an 8, 16 or 32-bit value, it is really passed promoted // to 64 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::Indirect: assert(VA.getValVT().isScalableVector() && "Only scalable vectors can be passed indirectly"); break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); break; case CCValAssign::AExt: case CCValAssign::SExt: case CCValAssign::ZExt: break; case CCValAssign::AExtUpper: ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue, DAG.getConstant(32, DL, RegVT)); ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT()); break; } } else { // VA.isRegLoc() assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); unsigned ArgOffset = VA.getLocMemOffset(); unsigned ArgSize = (VA.getLocInfo() == CCValAssign::Indirect ? VA.getLocVT().getSizeInBits() : VA.getValVT().getSizeInBits()) / 8; uint32_t BEAlign = 0; if (!Subtarget->isLittleEndian() && ArgSize < 8 && !Ins[i].Flags.isInConsecutiveRegs()) BEAlign = 8 - ArgSize; int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; MVT MemVT = VA.getValVT(); switch (VA.getLocInfo()) { default: break; case CCValAssign::Trunc: case CCValAssign::BCvt: MemVT = VA.getLocVT(); break; case CCValAssign::Indirect: assert(VA.getValVT().isScalableVector() && "Only scalable vectors can be passed indirectly"); MemVT = VA.getLocVT(); break; case CCValAssign::SExt: ExtType = ISD::SEXTLOAD; break; case CCValAssign::ZExt: ExtType = ISD::ZEXTLOAD; break; case CCValAssign::AExt: ExtType = ISD::EXTLOAD; break; } ArgValue = DAG.getExtLoad( ExtType, DL, VA.getLocVT(), Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), MemVT); } if (VA.getLocInfo() == CCValAssign::Indirect) { assert(VA.getValVT().isScalableVector() && "Only scalable vectors can be passed indirectly"); uint64_t PartSize = VA.getValVT().getStoreSize().getKnownMinSize(); unsigned NumParts = 1; if (Ins[i].Flags.isInConsecutiveRegs()) { assert(!Ins[i].Flags.isInConsecutiveRegsLast()); while (!Ins[i + NumParts - 1].Flags.isInConsecutiveRegsLast()) ++NumParts; } MVT PartLoad = VA.getValVT(); SDValue Ptr = ArgValue; // Ensure we generate all loads for each tuple part, whilst updating the // pointer after each load correctly using vscale. while (NumParts > 0) { ArgValue = DAG.getLoad(PartLoad, DL, Chain, Ptr, MachinePointerInfo()); InVals.push_back(ArgValue); NumParts--; if (NumParts > 0) { SDValue BytesIncrement = DAG.getVScale( DL, Ptr.getValueType(), APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize)); SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, BytesIncrement, Flags); ExtraArgLocs++; i++; } } } else { if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer()) ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(), ArgValue, DAG.getValueType(MVT::i32)); InVals.push_back(ArgValue); } } assert((ArgLocs.size() + ExtraArgLocs) == Ins.size()); // varargs AArch64FunctionInfo *FuncInfo = MF.getInfo(); if (isVarArg) { if (!Subtarget->isTargetDarwin() || IsWin64) { // The AAPCS variadic function ABI is identical to the non-variadic // one. As a result there may be more arguments in registers and we should // save them for future reference. // Win64 variadic functions also pass arguments in registers, but all float // arguments are passed in integer registers. saveVarArgRegisters(CCInfo, DAG, DL, Chain); } // This will point to the next argument passed via stack. unsigned StackOffset = CCInfo.getNextStackOffset(); // We currently pass all varargs at 8-byte alignment, or 4 for ILP32 StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8); FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); if (MFI.hasMustTailInVarArgFunc()) { SmallVector RegParmTypes; RegParmTypes.push_back(MVT::i64); RegParmTypes.push_back(MVT::f128); // Compute the set of forwarded registers. The rest are scratch. SmallVectorImpl &Forwards = FuncInfo->getForwardedMustTailRegParms(); CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_AArch64_AAPCS); // Conservatively forward X8, since it might be used for aggregate return. if (!CCInfo.isAllocated(AArch64::X8)) { unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); } } } // On Windows, InReg pointers must be returned, so record the pointer in a // virtual register at the start of the function so it can be returned in the // epilogue. if (IsWin64) { for (unsigned I = 0, E = Ins.size(); I != E; ++I) { if (Ins[I].Flags.isInReg()) { assert(!FuncInfo->getSRetReturnReg()); MVT PtrTy = getPointerTy(DAG.getDataLayout()); Register Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); FuncInfo->setSRetReturnReg(Reg); SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); break; } } } unsigned StackArgSize = CCInfo.getNextStackOffset(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { // This is a non-standard ABI so by fiat I say we're allowed to make full // use of the stack area to be popped, which must be aligned to 16 bytes in // any case: StackArgSize = alignTo(StackArgSize, 16); // If we're expected to restore the stack (e.g. fastcc) then we'll be adding // a multiple of 16. FuncInfo->setArgumentStackToRestore(StackArgSize); // This realignment carries over to the available bytes below. Our own // callers will guarantee the space is free by giving an aligned value to // CALLSEQ_START. } // Even if we're not expected to free up the space, it's useful to know how // much is there while considering tail calls (because we can reuse it). FuncInfo->setBytesInStackArgArea(StackArgSize); if (Subtarget->hasCustomCallingConv()) Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); return Chain; } void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); AArch64FunctionInfo *FuncInfo = MF.getInfo(); auto PtrVT = getPointerTy(DAG.getDataLayout()); bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); SmallVector MemOps; static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 }; static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); int GPRIdx = 0; if (GPRSaveSize != 0) { if (IsWin64) { GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false); if (GPRSaveSize & 15) // The extra size here, if triggered, will always be 8. MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false); } else GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false); SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT); for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); SDValue Store = DAG.getStore( Val.getValue(1), DL, Val, FIN, IsWin64 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), GPRIdx, (i - FirstVariadicGPR) * 8) : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8)); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); } } FuncInfo->setVarArgsGPRIndex(GPRIdx); FuncInfo->setVarArgsGPRSize(GPRSaveSize); if (Subtarget->hasFPARMv8() && !IsWin64) { static const MCPhysReg FPRArgRegs[] = { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); int FPRIdx = 0; if (FPRSaveSize != 0) { FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false); SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); SDValue Store = DAG.getStore( Val.getValue(1), DL, Val, FIN, MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16)); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(16, DL, PtrVT)); } } FuncInfo->setVarArgsFPRIndex(FPRIdx); FuncInfo->setVarArgsFPRSize(FPRSaveSize); } if (!MemOps.empty()) { Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue AArch64TargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal) const { CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); // Assign locations to each value returned by this call. SmallVector RVLocs; DenseMap CopiedRegs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; // Pass 'this' value directly from the argument to return value, to avoid // reg unit interference if (i == 0 && isThisReturn) { assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && "unexpected return calling convention register assignment"); InVals.push_back(ThisVal); continue; } // Avoid copying a physreg twice since RegAllocFast is incompetent and only // allows one use of a physreg per block. SDValue Val = CopiedRegs.lookup(VA.getLocReg()); if (!Val) { Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); CopiedRegs[VA.getLocReg()] = Val; } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); break; case CCValAssign::AExtUpper: Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val, DAG.getConstant(32, DL, VA.getLocVT())); LLVM_FALLTHROUGH; case CCValAssign::AExt: LLVM_FALLTHROUGH; case CCValAssign::ZExt: Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT()); break; } InVals.push_back(Val); } return Chain; } /// Return true if the calling convention is one that we can guarantee TCO for. static bool canGuaranteeTCO(CallingConv::ID CC) { return CC == CallingConv::Fast; } /// Return true if we might ever do TCO for calls with this calling convention. static bool mayTailCallThisCC(CallingConv::ID CC) { switch (CC) { case CallingConv::C: case CallingConv::AArch64_SVE_VectorCall: case CallingConv::PreserveMost: case CallingConv::Swift: return true; default: return canGuaranteeTCO(CC); } } bool AArch64TargetLowering::isEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG) const { if (!mayTailCallThisCC(CalleeCC)) return false; MachineFunction &MF = DAG.getMachineFunction(); const Function &CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF.getCallingConv(); // If this function uses the C calling convention but has an SVE signature, // then it preserves more registers and should assume the SVE_VectorCall CC. // The check for matching callee-saved regs will determine whether it is // eligible for TCO. if (CallerCC == CallingConv::C && AArch64RegisterInfo::hasSVEArgsOrReturn(&MF)) CallerCC = CallingConv::AArch64_SVE_VectorCall; bool CCMatch = CallerCC == CalleeCC; // When using the Windows calling convention on a non-windows OS, we want // to back up and restore X18 in such functions; we can't do a tail call // from those functions. if (CallerCC == CallingConv::Win64 && !Subtarget->isTargetWindows() && CalleeCC != CallingConv::Win64) return false; // Byval parameters hand the function a pointer directly into the stack area // we want to reuse during a tail call. Working around this *is* possible (see // X86) but less efficient and uglier in LowerCall. for (Function::const_arg_iterator i = CallerF.arg_begin(), e = CallerF.arg_end(); i != e; ++i) { if (i->hasByValAttr()) return false; // On Windows, "inreg" attributes signify non-aggregate indirect returns. // In this case, it is necessary to save/restore X0 in the callee. Tail // call opt interferes with this. So we disable tail call opt when the // caller has an argument with "inreg" attribute. // FIXME: Check whether the callee also has an "inreg" argument. if (i->hasInRegAttr()) return false; } if (getTargetMachine().Options.GuaranteedTailCallOpt) return canGuaranteeTCO(CalleeCC) && CCMatch; // Externally-defined functions with weak linkage should not be // tail-called on AArch64 when the OS does not support dynamic // pre-emption of symbols, as the AAELF spec requires normal calls // to undefined weak functions to be replaced with a NOP or jump to the // next instruction. The behaviour of branch instructions in this // situation (as used for tail calls) is implementation-defined, so we // cannot rely on the linker replacing the tail call with a return. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { const GlobalValue *GV = G->getGlobal(); const Triple &TT = getTargetMachine().getTargetTriple(); if (GV->hasExternalWeakLinkage() && (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) return false; } // Now we search for cases where we can use a tail call without changing the // ABI. Sibcall is used in some places (particularly gcc) to refer to this // concept. // I want anyone implementing a new calling convention to think long and hard // about this assert. assert((!isVarArg || CalleeCC == CallingConv::C) && "Unexpected variadic calling convention"); LLVMContext &C = *DAG.getContext(); if (isVarArg && !Outs.empty()) { // At least two cases here: if caller is fastcc then we can't have any // memory arguments (we'd be expected to clean up the stack afterwards). If // caller is C then we could potentially use its argument area. // FIXME: for now we take the most conservative of these in both cases: // disallow all variadic memory operands. SmallVector ArgLocs; CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); for (const CCValAssign &ArgLoc : ArgLocs) if (!ArgLoc.isRegLoc()) return false; } // Check that the call results are passed in the same way. if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, CCAssignFnForCall(CalleeCC, isVarArg), CCAssignFnForCall(CallerCC, isVarArg))) return false; // The callee has to preserve all registers the caller needs to preserve. const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); if (!CCMatch) { const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); if (Subtarget->hasCustomCallingConv()) { TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); } if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) return false; } // Nothing more to check if the callee is taking no arguments if (Outs.empty()) return true; SmallVector ArgLocs; CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); const AArch64FunctionInfo *FuncInfo = MF.getInfo(); // If any of the arguments is passed indirectly, it must be SVE, so the // 'getBytesInStackArgArea' is not sufficient to determine whether we need to // allocate space on the stack. That is why we determine this explicitly here // the call cannot be a tailcall. if (llvm::any_of(ArgLocs, [](CCValAssign &A) { assert((A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector()) && "Expected value to be scalable"); return A.getLocInfo() == CCValAssign::Indirect; })) return false; // If the stack arguments for this call do not fit into our own save area then // the call cannot be made tail. if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) return false; const MachineRegisterInfo &MRI = MF.getRegInfo(); if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) return false; return true; } SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const { SmallVector ArgChains; int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; // Include the original chain at the beginning of the list. When this is // used by target LowerCall hooks, this helps legalize find the // CALLSEQ_BEGIN node. ArgChains.push_back(Chain); // Add a chain value for each stack argument corresponding for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) if (LoadSDNode *L = dyn_cast(*U)) if (FrameIndexSDNode *FI = dyn_cast(L->getBasePtr())) if (FI->getIndex() < 0) { int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); int64_t InLastByte = InFirstByte; InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || (FirstByte <= InFirstByte && InFirstByte <= LastByte)) ArgChains.push_back(SDValue(L, 1)); } // Build a tokenfactor for all the chains. return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); } bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const { return CallCC == CallingConv::Fast && TailCallOpt; } /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, /// and add input and output parameter nodes. SDValue AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); MachineFunction::CallSiteInfo CSInfo; bool IsThisReturn = false; AArch64FunctionInfo *FuncInfo = MF.getInfo(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; bool IsSibCall = false; // Check callee args/returns for SVE registers and set calling convention // accordingly. if (CallConv == CallingConv::C) { bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){ return Out.VT.isScalableVector(); }); bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){ return In.VT.isScalableVector(); }); if (CalleeInSVE || CalleeOutSVE) CallConv = CallingConv::AArch64_SVE_VectorCall; } if (IsTailCall) { // Check if it's really possible to do a tail call. IsTailCall = isEligibleForTailCallOptimization( Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); // A sibling call is one where we're under the usual C ABI and not planning // to change that but can still do a tail call: if (!TailCallOpt && IsTailCall) IsSibCall = true; if (IsTailCall) ++NumTailCalls; } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); if (IsVarArg) { // Handle fixed and variable vector arguments differently. // Variable vector arguments always go into memory. unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Outs[i].VT; if (!Outs[i].IsFixed && ArgVT.isScalableVector()) report_fatal_error("Passing SVE types to variadic functions is " "currently not supported"); ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/ !Outs[i].IsFixed); bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } } else { // At this point, Outs[].VT may already be promoted to i32. To correctly // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here // we use a special version of AnalyzeCallOperands to pass in ValVT and // LocVT. unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ValVT = Outs[i].VT; // Get type of the original argument. EVT ActualVT = getValueType(DAG.getDataLayout(), CLI.getArgs()[Outs[i].OrigArgIndex].Ty, /*AllowUnknown*/ true); MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) ValVT = MVT::i8; else if (ActualMVT == MVT::i16) ValVT = MVT::i16; CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (IsSibCall) { // Since we're not changing the ABI to make this a tail call, the memory // operands are already available in the caller's incoming argument space. NumBytes = 0; } // FPDiff is the byte offset of the call's argument area from the callee's. // Stores to callee stack arguments will be placed in FixedStackSlots offset // by this amount for a tail call. In a sibling call it must be 0 because the // caller will deallocate the entire stack and the callee still expects its // arguments to begin at SP+0. Completely unused for non-tail calls. int FPDiff = 0; if (IsTailCall && !IsSibCall) { unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); // Since callee will pop argument stack as a tail call, we must keep the // popped size 16-byte aligned. NumBytes = alignTo(NumBytes, 16); // FPDiff will be negative if this tail call requires more space than we // would automatically have in our incoming argument space. Positive if we // can actually shrink the stack. FPDiff = NumReusableBytes - NumBytes; // The stack pointer must be 16-byte aligned at all times it's used for a // memory operation, which in practice means at *all* times and in // particular across call boundaries. Therefore our own arguments started at // a 16-byte aligned SP and the delta applied for the tail call should // satisfy the same constraint. assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); } // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!IsSibCall) Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy(DAG.getDataLayout())); SmallVector, 8> RegsToPass; SmallSet RegsUsed; SmallVector MemOpChains; auto PtrVT = getPointerTy(DAG.getDataLayout()); if (IsVarArg && CLI.CB && CLI.CB->isMustTailCall()) { const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); for (const auto &F : Forwards) { SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); RegsToPass.emplace_back(F.PReg, Val); } } // Walk the register/memloc assignments, inserting copies/loads. unsigned ExtraArgLocs = 0; for (unsigned i = 0, e = Outs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i - ExtraArgLocs]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: if (Outs[i].ArgVT == MVT::i1) { // AAPCS requires i1 to be zero-extended to 8-bits by the caller. Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); } Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExtUpper: assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, DAG.getConstant(32, DL, VA.getLocVT())); break; case CCValAssign::BCvt: Arg = DAG.getBitcast(VA.getLocVT(), Arg); break; case CCValAssign::Trunc: Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); break; case CCValAssign::FPExt: Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::Indirect: assert(VA.getValVT().isScalableVector() && "Only scalable vectors can be passed indirectly"); uint64_t StoreSize = VA.getValVT().getStoreSize().getKnownMinSize(); uint64_t PartSize = StoreSize; unsigned NumParts = 1; if (Outs[i].Flags.isInConsecutiveRegs()) { assert(!Outs[i].Flags.isInConsecutiveRegsLast()); while (!Outs[i + NumParts - 1].Flags.isInConsecutiveRegsLast()) ++NumParts; StoreSize *= NumParts; } MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); Type *Ty = EVT(VA.getValVT()).getTypeForEVT(*DAG.getContext()); Align Alignment = DAG.getDataLayout().getPrefTypeAlign(Ty); int FI = MFI.CreateStackObject(StoreSize, Alignment, false); MFI.setStackID(FI, TargetStackID::SVEVector); MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); SDValue Ptr = DAG.getFrameIndex( FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); SDValue SpillSlot = Ptr; // Ensure we generate all stores for each tuple part, whilst updating the // pointer after each store correctly using vscale. while (NumParts) { Chain = DAG.getStore(Chain, DL, OutVals[i], Ptr, MPI); NumParts--; if (NumParts > 0) { SDValue BytesIncrement = DAG.getVScale( DL, Ptr.getValueType(), APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize)); SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); MPI = MachinePointerInfo(MPI.getAddrSpace()); Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, BytesIncrement, Flags); ExtraArgLocs++; i++; } } Arg = SpillSlot; break; } if (VA.isRegLoc()) { if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && Outs[0].VT == MVT::i64) { assert(VA.getLocVT() == MVT::i64 && "unexpected calling convention register assignment"); assert(!Ins.empty() && Ins[0].VT == MVT::i64 && "unexpected use of 'returned'"); IsThisReturn = true; } if (RegsUsed.count(VA.getLocReg())) { // If this register has already been used then we're trying to pack // parts of an [N x i32] into an X-register. The extension type will // take care of putting the two halves in the right place but we have to // combine them. SDValue &Bits = std::find_if(RegsToPass.begin(), RegsToPass.end(), [=](const std::pair &Elt) { return Elt.first == VA.getLocReg(); }) ->second; Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); // Call site info is used for function's parameter entry value // tracking. For now we track only simple cases when parameter // is transferred through whole register. CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(), [&VA](MachineFunction::ArgRegPair ArgReg) { return ArgReg.Reg == VA.getLocReg(); }), CSInfo.end()); } else { RegsToPass.emplace_back(VA.getLocReg(), Arg); RegsUsed.insert(VA.getLocReg()); const TargetOptions &Options = DAG.getTarget().Options; if (Options.EmitCallSiteInfo) CSInfo.emplace_back(VA.getLocReg(), i); } } else { assert(VA.isMemLoc()); SDValue DstAddr; MachinePointerInfo DstInfo; // FIXME: This works on big-endian for composite byvals, which are the // common case. It should also work for fundamental types too. uint32_t BEAlign = 0; unsigned OpSize; if (VA.getLocInfo() == CCValAssign::Indirect) OpSize = VA.getLocVT().getFixedSizeInBits(); else OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 : VA.getValVT().getSizeInBits(); OpSize = (OpSize + 7) / 8; if (!Subtarget->isLittleEndian() && !Flags.isByVal() && !Flags.isInConsecutiveRegs()) { if (OpSize < 8) BEAlign = 8 - OpSize; } unsigned LocMemOffset = VA.getLocMemOffset(); int32_t Offset = LocMemOffset + BEAlign; SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); if (IsTailCall) { Offset = Offset + FPDiff; int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); DstAddr = DAG.getFrameIndex(FI, PtrVT); DstInfo = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); // Make sure any stack arguments overlapping with where we're storing // are loaded before this eventual operation. Otherwise they'll be // clobbered. Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); } else { SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset); } if (Outs[i].Flags.isByVal()) { SDValue SizeNode = DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); SDValue Cpy = DAG.getMemcpy( Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getNonZeroByValAlign(), /*isVol = */ false, /*AlwaysInline = */ false, /*isTailCall = */ false, DstInfo, MachinePointerInfo()); MemOpChains.push_back(Cpy); } else { // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already // promoted to a legal register type i32, we should truncate Arg back to // i1/i8/i16. if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); MemOpChains.push_back(Store); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (auto &RegToPass : RegsToPass) { Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, RegToPass.second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (auto *G = dyn_cast(Callee)) { auto GV = G->getGlobal(); unsigned OpFlags = Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()); if (OpFlags & AArch64II::MO_GOT) { Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); } else { const GlobalValue *GV = G->getGlobal(); Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); } } else if (auto *S = dyn_cast(Callee)) { if (getTargetMachine().getCodeModel() == CodeModel::Large && Subtarget->isTargetMachO()) { const char *Sym = S->getSymbol(); Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); } else { const char *Sym = S->getSymbol(); Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); } } // We don't usually want to end the call-sequence here because we would tidy // the frame up *after* the call, however in the ABI-changing tail-call case // we've carefully laid out the parameters so that when sp is reset they'll be // in the correct location. if (IsTailCall && !IsSibCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), DAG.getIntPtrConstant(0, DL, true), InFlag, DL); InFlag = Chain.getValue(1); } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (IsTailCall) { // Each tail call may have to adjust the stack by a different amount, so // this information must travel along with the operation for eventual // consumption by emitEpilogue. Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); } // Add argument registers to the end of the list so that they are known live // into the call. for (auto &RegToPass : RegsToPass) Ops.push_back(DAG.getRegister(RegToPass.first, RegToPass.second.getValueType())); // Add a register mask operand representing the call-preserved registers. const uint32_t *Mask; const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); if (IsThisReturn) { // For 'this' returns, use the X0-preserving mask if applicable Mask = TRI->getThisReturnPreservedMask(MF, CallConv); if (!Mask) { IsThisReturn = false; Mask = TRI->getCallPreservedMask(MF, CallConv); } } else Mask = TRI->getCallPreservedMask(MF, CallConv); if (Subtarget->hasCustomCallingConv()) TRI->UpdateCustomCallPreservedMask(MF, &Mask); if (TRI->isAnyArgRegReserved(MF)) TRI->emitReservedArgRegCallError(MF); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // If we're doing a tall call, use a TC_RETURN here rather than an // actual call instruction. if (IsTailCall) { MF.getFrameInfo().setHasTailCall(); SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); return Ret; } // Returns a chain and a flag for retval copy to use. Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); InFlag = Chain.getValue(1); DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), DAG.getIntPtrConstant(CalleePopBytes, DL, true), InFlag, DL); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, InVals, IsThisReturn, IsThisReturn ? OutVals[0] : SDValue()); } bool AArch64TargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC); } SDValue AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { auto &MF = DAG.getMachineFunction(); auto *FuncInfo = MF.getInfo(); CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC); // Copy the result values into the output registers. SDValue Flag; SmallVector, 4> RetVals; SmallSet RegsUsed; for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[realRVLocIdx]; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: if (Outs[i].ArgVT == MVT::i1) { // AAPCS requires i1 to be zero-extended to i8 by the producer of the // value. This is strictly redundant on Darwin (which uses "zeroext // i1"), but will be optimised out before ISel. Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); } break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: case CCValAssign::ZExt: Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); break; case CCValAssign::AExtUpper: assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, DAG.getConstant(32, DL, VA.getLocVT())); break; } if (RegsUsed.count(VA.getLocReg())) { SDValue &Bits = std::find_if(RetVals.begin(), RetVals.end(), [=](const std::pair &Elt) { return Elt.first == VA.getLocReg(); }) ->second; Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); } else { RetVals.emplace_back(VA.getLocReg(), Arg); RegsUsed.insert(VA.getLocReg()); } } SmallVector RetOps(1, Chain); for (auto &RetVal : RetVals) { Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag); Flag = Chain.getValue(1); RetOps.push_back( DAG.getRegister(RetVal.first, RetVal.second.getValueType())); } // Windows AArch64 ABIs require that for returning structs by value we copy // the sret argument into X0 for the return. // We saved the argument into a virtual register in the entry block, // so now we copy the value out and into X0. if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg, getPointerTy(MF.getDataLayout())); unsigned RetValReg = AArch64::X0; Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag); Flag = Chain.getValue(1); RetOps.push_back( DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); } const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); if (I) { for (; *I; ++I) { if (AArch64::GPR64RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i64)); else if (AArch64::FPR64RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); } } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, N->getOffset(), Flag); } SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); } SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), N->getOffset(), Flag); } SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); } // (loadGOT sym) template SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags); // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes instead of using a wrapper node. return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr); } // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym)) template SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); const unsigned char MO_NC = AArch64II::MO_NC; return DAG.getNode( AArch64ISD::WrapperLarge, DL, Ty, getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags), getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags), getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags), getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags)); } // (addlow (adrp %hi(sym)) %lo(sym)) template SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags); SDValue Lo = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi); return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo); } // (adr sym) template SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue Sym = getTargetNode(N, Ty, DAG, Flags); return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym); } SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GN = cast(Op); const GlobalValue *GV = GN->getGlobal(); unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); if (OpFlags != AArch64II::MO_NO_FLAG) assert(cast(Op)->getOffset() == 0 && "unexpected offset in global node"); // This also catches the large code model case for Darwin, and tiny code // model with got relocations. if ((OpFlags & AArch64II::MO_GOT) != 0) { return getGOT(GN, DAG, OpFlags); } SDValue Result; if (getTargetMachine().getCodeModel() == CodeModel::Large) { Result = getAddrLarge(GN, DAG, OpFlags); } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { Result = getAddrTiny(GN, DAG, OpFlags); } else { Result = getAddr(GN, DAG, OpFlags); } EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(GN); if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB)) Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction())); return Result; } /// Convert a TLS address reference into the correct sequence of loads /// and calls to compute the variable's address (for Darwin, currently) and /// return an SDValue containing the final node. /// Darwin only has one TLS scheme which must be capable of dealing with the /// fully general situation, in the worst case. This means: /// + "extern __thread" declaration. /// + Defined in a possibly unknown dynamic library. /// /// The general system is that each __thread variable has a [3 x i64] descriptor /// which contains information used by the runtime to calculate the address. The /// only part of this the compiler needs to know about is the first xword, which /// contains a function pointer that must be called with the address of the /// entire descriptor in "x0". /// /// Since this descriptor may be in a different unit, in general even the /// descriptor must be accessed via an indirect load. The "ideal" code sequence /// is: /// adrp x0, _var@TLVPPAGE /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, /// ; the function pointer /// blr x1 ; Uses descriptor address in x0 /// ; Address of _var is now in x0. /// /// If the address of _var's descriptor *is* known to the linker, then it can /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for /// a slight efficiency gain. SDValue AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && "This function expects a Darwin target"); SDLoc DL(Op); MVT PtrVT = getPointerTy(DAG.getDataLayout()); MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout()); const GlobalValue *GV = cast(Op)->getGlobal(); SDValue TLVPAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); // The first entry in the descriptor is a function pointer that we must call // to obtain the address of the variable. SDValue Chain = DAG.getEntryNode(); SDValue FuncTLVGet = DAG.getLoad( PtrMemVT, DL, Chain, DescAddr, MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(PtrMemVT.getSizeInBits() / 8), MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); Chain = FuncTLVGet.getValue(1); // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer. FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setAdjustsStack(true); // TLS calls preserve all registers except those that absolutely must be // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be // silly). const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *Mask = TRI->getTLSCallPreservedMask(); if (Subtarget->hasCustomCallingConv()) TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); // Finally, we can make the call. This is just a degenerate version of a // normal AArch64 call node: x0 takes the address of the descriptor, and // returns the address of the variable in this thread. Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); Chain = DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), DAG.getRegisterMask(Mask), Chain.getValue(1)); return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); } /// Convert a thread-local variable reference into a sequence of instructions to /// compute the variable's address for the local exec TLS model of ELF targets. /// The sequence depends on the maximum TLS area size. SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV, SDValue ThreadBase, const SDLoc &DL, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue TPOff, Addr; switch (DAG.getTarget().Options.TLSSize) { default: llvm_unreachable("Unexpected TLS size"); case 12: { // mrs x0, TPIDR_EL0 // add x0, x0, :tprel_lo12:a SDValue Var = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, Var, DAG.getTargetConstant(0, DL, MVT::i32)), 0); } case 24: { // mrs x0, TPIDR_EL0 // add x0, x0, :tprel_hi12:a // add x0, x0, :tprel_lo12_nc:a SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, HiVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); } case 32: { // mrs x1, TPIDR_EL0 // movz x0, #:tprel_g1:a // movk x0, #:tprel_g0_nc:a // add x0, x1, x0 SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, DAG.getTargetConstant(16, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } case 48: { // mrs x1, TPIDR_EL0 // movz x0, #:tprel_g2:a // movk x0, #:tprel_g1_nc:a // movk x0, #:tprel_g0_nc:a // add x0, x1, x0 SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2); SDValue MiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, DAG.getTargetConstant(32, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar, DAG.getTargetConstant(16, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } } } /// When accessing thread-local variables under either the general-dynamic or /// local-dynamic system, we make a "TLS-descriptor" call. The variable will /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry /// is a function pointer to carry out the resolution. /// /// The sequence is: /// adrp x0, :tlsdesc:var /// ldr x1, [x0, #:tlsdesc_lo12:var] /// add x0, x0, #:tlsdesc_lo12:var /// .tlsdesccall var /// blr x1 /// (TPIDR_EL0 offset now in x0) /// /// The above sequence must be produced unscheduled, to enable the linker to /// optimize/relax this sequence. /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the /// above sequence, and expanded really late in the compilation flow, to ensure /// the sequence is produced as per above. SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, const SDLoc &DL, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Chain = DAG.getEntryNode(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); SDValue Glue = Chain.getValue(1); return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); } SDValue AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetELF() && "This function expects an ELF target"); const GlobalAddressSDNode *GA = cast(Op); TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); if (!EnableAArch64ELFLocalDynamicTLSGeneration) { if (Model == TLSModel::LocalDynamic) Model = TLSModel::GeneralDynamic; } if (getTargetMachine().getCodeModel() == CodeModel::Large && Model != TLSModel::LocalExec) report_fatal_error("ELF TLS only supported in small memory model or " "in local exec TLS model"); // Different choices can be made for the maximum size of the TLS area for a // module. For the small address model, the default TLS size is 16MiB and the // maximum TLS size is 4GiB. // FIXME: add tiny and large code model support for TLS access models other // than local exec. We currently generate the same code as small for tiny, // which may be larger than needed. SDValue TPOff; EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); const GlobalValue *GV = GA->getGlobal(); SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); if (Model == TLSModel::LocalExec) { return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG); } else if (Model == TLSModel::InitialExec) { TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); } else if (Model == TLSModel::LocalDynamic) { // Local-dynamic accesses proceed in two phases. A general-dynamic TLS // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate // the beginning of the module's TLS region, followed by a DTPREL offset // calculation. // These accesses will need deduplicating if there's more than one. AArch64FunctionInfo *MFI = DAG.getMachineFunction().getInfo(); MFI->incNumLocalDynamicTLSAccesses(); // The call needs a relocation too for linker relaxation. It doesn't make // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of // the address. SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS); // Now we can calculate the offset from TPIDR_EL0 to this module's // thread-local area. TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); // Now use :dtprel_whatever: operations to calculate this variable's offset // in its thread-storage area. SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); } else if (Model == TLSModel::GeneralDynamic) { // The call needs a relocation too for linker relaxation. It doesn't make // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of // the address. SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); // Finally we can make a call to calculate the offset from tpidr_el0. TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); } else llvm_unreachable("Unsupported ELF TLS access model"); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } SDValue AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); SDValue Chain = DAG.getEntryNode(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64); // Load the ThreadLocalStoragePointer from the TEB // A pointer to the TLS array is located at offset 0x58 from the TEB. SDValue TLSArray = DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL)); TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); Chain = TLSArray.getValue(1); // Load the TLS index from the C runtime; // This does the same as getAddr(), but without having a GlobalAddressSDNode. // This also does the same as LOADgot, but using a generic i32 load, // while LOADgot only loads i64. SDValue TLSIndexHi = DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE); SDValue TLSIndexLo = DAG.getTargetExternalSymbol( "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi); SDValue TLSIndex = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo); TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo()); Chain = TLSIndex.getValue(1); // The pointer to the thread's TLS data area is at the TLS Index scaled by 8 // offset into the TLSArray. TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex); SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, DAG.getConstant(3, DL, PtrVT)); SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), MachinePointerInfo()); Chain = TLS.getValue(1); const GlobalAddressSDNode *GA = cast(Op); const GlobalValue *GV = GA->getGlobal(); SDValue TGAHi = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); SDValue TGALo = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); // Add the offset from the start of the .tls section (section base). SDValue Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi, DAG.getTargetConstant(0, DL, MVT::i32)), 0); Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo); return Addr; } SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalAddressSDNode *GA = cast(Op); if (DAG.getTarget().useEmulatedTLS()) return LowerToTLSEmulatedModel(GA, DAG); if (Subtarget->isTargetDarwin()) return LowerDarwinGlobalTLSAddress(Op, DAG); if (Subtarget->isTargetELF()) return LowerELFGlobalTLSAddress(Op, DAG); if (Subtarget->isTargetWindows()) return LowerWindowsGlobalTLSAddress(Op, DAG); llvm_unreachable("Unexpected platform trying to use TLS"); } // Looks through \param Val to determine the bit that can be used to // check the sign of the value. It returns the unextended value and // the sign bit position. std::pair lookThroughSignExtension(SDValue Val) { if (Val.getOpcode() == ISD::SIGN_EXTEND_INREG) return {Val.getOperand(0), cast(Val.getOperand(1))->getVT().getFixedSizeInBits() - 1}; if (Val.getOpcode() == ISD::SIGN_EXTEND) return {Val.getOperand(0), Val.getOperand(0)->getValueType(0).getFixedSizeInBits() - 1}; return {Val, Val.getValueSizeInBits() - 1}; } SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); MachineFunction &MF = DAG.getMachineFunction(); // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions // will not be produced, as they are conditional branch instructions that do // not set flags. bool ProduceNonFlagSettingCondBr = !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); // Handle f128 first, since lowering it will result in comparing the return // value of a libcall against zero, which is just what the rest of LowerBR_CC // is expecting to deal with. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch // instruction. if (ISD::isOverflowIntrOpRes(LHS) && isOneConstant(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) return SDValue(); // The actual operation with overflow check. AArch64CC::CondCode OFCC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); if (CC == ISD::SETNE) OFCC = getInvertedCondCode(OFCC); SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, Overflow); } if (LHS.getValueType().isInteger()) { assert((LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); // If the RHS of the comparison is zero, we can potentially fold this // to a specialized branch. const ConstantSDNode *RHSC = dyn_cast(RHS); if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) { if (CC == ISD::SETEQ) { // See if we can use a TBZ to fold in an AND as well. // TBZ has a smaller branch displacement than CBZ. If the offset is // out of bounds, a late MI-layer pass rewrites branches. // 403.gcc is an example that hits this case. if (LHS.getOpcode() == ISD::AND && isa(LHS.getOperand(1)) && isPowerOf2_64(LHS.getConstantOperandVal(1))) { SDValue Test = LHS.getOperand(0); uint64_t Mask = LHS.getConstantOperandVal(1); return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, DAG.getConstant(Log2_64(Mask), dl, MVT::i64), Dest); } return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); } else if (CC == ISD::SETNE) { // See if we can use a TBZ to fold in an AND as well. // TBZ has a smaller branch displacement than CBZ. If the offset is // out of bounds, a late MI-layer pass rewrites branches. // 403.gcc is an example that hits this case. if (LHS.getOpcode() == ISD::AND && isa(LHS.getOperand(1)) && isPowerOf2_64(LHS.getConstantOperandVal(1))) { SDValue Test = LHS.getOperand(0); uint64_t Mask = LHS.getConstantOperandVal(1); return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, DAG.getConstant(Log2_64(Mask), dl, MVT::i64), Dest); } return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { // Don't combine AND since emitComparison converts the AND to an ANDS // (a.k.a. TST) and the test in the test bit and branch instruction // becomes redundant. This would also increase register pressure. uint64_t SignBitPos; std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS); return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, DAG.getConstant(SignBitPos, dl, MVT::i64), Dest); } } if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) { // Don't combine AND since emitComparison converts the AND to an ANDS // (a.k.a. TST) and the test in the test bit and branch instruction // becomes redundant. This would also increase register pressure. uint64_t SignBitPos; std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS); return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, DAG.getConstant(SignBitPos, dl, MVT::i64), Dest); } SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, Cmp); } assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two branches to implement. SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); SDValue BR1 = DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); if (CC2 != AArch64CC::AL) { SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, Cmp); } return BR1; } SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue In1 = Op.getOperand(0); SDValue In2 = Op.getOperand(1); EVT SrcVT = In2.getValueType(); if (SrcVT.bitsLT(VT)) In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); else if (SrcVT.bitsGT(VT)) In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL)); EVT VecVT; uint64_t EltMask; SDValue VecVal1, VecVal2; auto setVecVal = [&] (int Idx) { if (!VT.isVector()) { VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In1); VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In2); } else { VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); } }; if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32); EltMask = 0x80000000ULL; setVecVal(AArch64::ssub); } else if (VT == MVT::f64 || VT == MVT::v2f64) { VecVT = MVT::v2i64; // We want to materialize a mask with the high bit set, but the AdvSIMD // immediate moves cannot materialize that in a single instruction for // 64-bit elements. Instead, materialize zero and then negate it. EltMask = 0; setVecVal(AArch64::dsub); } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) { VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16); EltMask = 0x8000ULL; setVecVal(AArch64::hsub); } else { llvm_unreachable("Invalid type for copysign!"); } SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT); // If we couldn't materialize the mask above, then the mask vector will be // the zero vector, and we need to negate it here. if (VT == MVT::f64 || VT == MVT::v2f64) { BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); } SDValue Sel = DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); if (VT == MVT::f16) return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel); if (VT == MVT::f32) return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); else if (VT == MVT::f64) return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); else return DAG.getNode(ISD::BITCAST, DL, VT, Sel); } SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { if (DAG.getMachineFunction().getFunction().hasFnAttribute( Attribute::NoImplicitFloat)) return SDValue(); if (!Subtarget->hasNEON()) return SDValue(); // While there is no integer popcount instruction, it can // be more efficiently lowered to the following sequence that uses // AdvSIMD registers/instructions as long as the copies to/from // the AdvSIMD registers are cheap. // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd // CNT V0.8B, V0.8B // 8xbyte pop-counts // ADDV B0, V0.8B // sum 8xbyte pop-counts // UMOV X0, V0.B[0] // copy byte result back to integer reg SDValue Val = Op.getOperand(0); SDLoc DL(Op); EVT VT = Op.getValueType(); if (VT == MVT::i32 || VT == MVT::i64) { if (VT == MVT::i32) Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); SDValue UaddLV = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); if (VT == MVT::i64) UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); return UaddLV; } else if (VT == MVT::i128) { Val = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Val); SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v16i8, Val); SDValue UaddLV = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, UaddLV); } assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"); EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; Val = DAG.getBitcast(VT8Bit, Val); Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val); // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. unsigned EltSize = 8; unsigned NumElts = VT.is64BitVector() ? 8 : 16; while (EltSize != VT.getScalarSizeInBits()) { EltSize *= 2; NumElts /= 2; MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); Val = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val); } return Val; } SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG); bool IsStrict = Op->isStrictFPOpcode(); bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS; unsigned OpNo = IsStrict ? 1 : 0; SDValue Chain; if (IsStrict) Chain = Op.getOperand(0); SDValue LHS = Op.getOperand(OpNo + 0); SDValue RHS = Op.getOperand(OpNo + 1); ISD::CondCode CC = cast(Op.getOperand(OpNo + 2))->get(); SDLoc dl(Op); // We chose ZeroOrOneBooleanContents, so use zero and one. EVT VT = Op.getValueType(); SDValue TVal = DAG.getConstant(1, dl, VT); SDValue FVal = DAG.getConstant(0, dl, VT); // Handle f128 first, since one possible outcome is a normal integer // comparison which gets picked up by the next if statement. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling); // If softenSetCCOperands returned a scalar, use it. if (!RHS.getNode()) { assert(LHS.getValueType() == Op.getValueType() && "Unexpected setcc expansion!"); return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS; } } if (LHS.getValueType().isInteger()) { SDValue CCVal; SDValue Cmp = getAArch64Cmp( LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl); // Note that we inverted the condition above, so we reverse the order of // the true and false operands here. This will allow the setcc to be // matched to a single CSINC instruction. SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res; } // Now we know we're dealing with FP values. assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead // and do the comparison. SDValue Cmp; if (IsStrict) Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling); else Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); SDValue Res; if (CC2 == AArch64CC::AL) { changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1, CC2); SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); // Note that we inverted the condition above, so we reverse the order of // the true and false operands here. This will allow the setcc to be // matched to a single CSINC instruction. Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); } else { // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't // totally clean. Some of them require two CSELs to implement. As is in // this case, we emit the first CSEL and then emit a second using the output // of the first as the RHS. We're effectively OR'ing the two CC's together. // FIXME: It would be nice if we could match the two CSELs to two CSINCs. SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); } return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res; } SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, SDValue RHS, SDValue TVal, SDValue FVal, const SDLoc &dl, SelectionDAG &DAG) const { // Handle f128 first, because it will result in a comparison of some RTLIB // call result against zero. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } // Also handle f16, for which we need to do a f32 comparison. if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); } // Next, handle integers. if (LHS.getValueType().isInteger()) { assert((LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); unsigned Opcode = AArch64ISD::CSEL; // If both the TVal and the FVal are constants, see if we can swap them in // order to for a CSINV or CSINC out of them. ConstantSDNode *CFVal = dyn_cast(FVal); ConstantSDNode *CTVal = dyn_cast(TVal); if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } else if (TVal.getOpcode() == ISD::XOR) { // If TVal is a NOT we want to swap TVal and FVal so that we can match // with a CSINV rather than a CSEL. if (isAllOnesConstant(TVal.getOperand(1))) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } } else if (TVal.getOpcode() == ISD::SUB) { // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so // that we can match with a CSNEG rather than a CSEL. if (isNullConstant(TVal.getOperand(0))) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } } else if (CTVal && CFVal) { const int64_t TrueVal = CTVal->getSExtValue(); const int64_t FalseVal = CFVal->getSExtValue(); bool Swap = false; // If both TVal and FVal are constants, see if FVal is the // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC // instead of a CSEL in that case. if (TrueVal == ~FalseVal) { Opcode = AArch64ISD::CSINV; } else if (FalseVal > std::numeric_limits::min() && TrueVal == -FalseVal) { Opcode = AArch64ISD::CSNEG; } else if (TVal.getValueType() == MVT::i32) { // If our operands are only 32-bit wide, make sure we use 32-bit // arithmetic for the check whether we can use CSINC. This ensures that // the addition in the check will wrap around properly in case there is // an overflow (which would not be the case if we do the check with // 64-bit arithmetic). const uint32_t TrueVal32 = CTVal->getZExtValue(); const uint32_t FalseVal32 = CFVal->getZExtValue(); if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { Opcode = AArch64ISD::CSINC; if (TrueVal32 > FalseVal32) { Swap = true; } } // 64-bit check whether we can use CSINC. } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { Opcode = AArch64ISD::CSINC; if (TrueVal > FalseVal) { Swap = true; } } // Swap TVal and FVal if necessary. if (Swap) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } if (Opcode != AArch64ISD::CSEL) { // Drop FVal since we can get its value by simply inverting/negating // TVal. FVal = TVal; } } // Avoid materializing a constant when possible by reusing a known value in // a register. However, don't perform this optimization if the known value // is one, zero or negative one in the case of a CSEL. We can always // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the // FVal, respectively. ConstantSDNode *RHSVal = dyn_cast(RHS); if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) { AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to // "a != C ? x : a" to avoid materializing C. if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) TVal = LHS; else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) FVal = LHS; } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { assert (CTVal && CFVal && "Expected constant operands for CSNEG."); // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to // avoid materializing C. AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { Opcode = AArch64ISD::CSINV; TVal = LHS; FVal = DAG.getConstant(0, dl, FVal.getValueType()); } } SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); EVT VT = TVal.getValueType(); return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); } // Now we know we're dealing with FP values. assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); assert(LHS.getValueType() == RHS.getValueType()); EVT VT = TVal.getValueType(); SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two CSELs to implement. AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); if (DAG.getTarget().Options.UnsafeFPMath) { // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. ConstantFPSDNode *RHSVal = dyn_cast(RHS); if (RHSVal && RHSVal->isZero()) { ConstantFPSDNode *CFVal = dyn_cast(FVal); ConstantFPSDNode *CTVal = dyn_cast(TVal); if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) TVal = LHS; else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && CFVal && CFVal->isZero() && FVal.getValueType() == LHS.getValueType()) FVal = LHS; } } // Emit first, and possibly only, CSEL. SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); // If we need a second CSEL, emit it, using the output of the first as the // RHS. We're effectively OR'ing the two CC's together. if (CC2 != AArch64CC::AL) { SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); } // Otherwise, return the output of the first CSEL. return CS1; } SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue TVal = Op.getOperand(2); SDValue FVal = Op.getOperand(3); SDLoc DL(Op); return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); } SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue CCVal = Op->getOperand(0); SDValue TVal = Op->getOperand(1); SDValue FVal = Op->getOperand(2); SDLoc DL(Op); EVT Ty = Op.getValueType(); if (Ty.isScalableVector()) { SDValue TruncCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, CCVal); MVT PredVT = MVT::getVectorVT(MVT::i1, Ty.getVectorElementCount()); SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, TruncCC); return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal); } // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select // instruction. if (ISD::isOverflowIntrOpRes(CCVal)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) return SDValue(); AArch64CC::CondCode OFCC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, CCVal, Overflow); } // Lower it the same way as we would lower a SELECT_CC node. ISD::CondCode CC; SDValue LHS, RHS; if (CCVal.getOpcode() == ISD::SETCC) { LHS = CCVal.getOperand(0); RHS = CCVal.getOperand(1); CC = cast(CCVal->getOperand(2))->get(); } else { LHS = CCVal; RHS = DAG.getConstant(0, DL, CCVal.getValueType()); CC = ISD::SETNE; } return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); } SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { // Jump table entries as PC relative offsets. No additional tweaking // is necessary here. Just get the address of the jump table. JumpTableSDNode *JT = cast(Op); if (getTargetMachine().getCodeModel() == CodeModel::Large && !Subtarget->isTargetMachO()) { return getAddrLarge(JT, DAG); } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { return getAddrTiny(JT, DAG); } return getAddr(JT, DAG); } SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { // Jump table entries as PC relative offsets. No additional tweaking // is necessary here. Just get the address of the jump table. SDLoc DL(Op); SDValue JT = Op.getOperand(1); SDValue Entry = Op.getOperand(2); int JTI = cast(JT.getNode())->getIndex(); auto *AFI = DAG.getMachineFunction().getInfo(); AFI->setJumpTableEntryInfo(JTI, 4, nullptr); SDNode *Dest = DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT, Entry, DAG.getTargetJumpTable(JTI, MVT::i32)); return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0), SDValue(Dest, 0)); } SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *CP = cast(Op); if (getTargetMachine().getCodeModel() == CodeModel::Large) { // Use the GOT for the large code model on iOS. if (Subtarget->isTargetMachO()) { return getGOT(CP, DAG); } return getAddrLarge(CP, DAG); } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { return getAddrTiny(CP, DAG); } else { return getAddr(CP, DAG); } } SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { BlockAddressSDNode *BA = cast(Op); if (getTargetMachine().getCodeModel() == CodeModel::Large && !Subtarget->isTargetMachO()) { return getAddrLarge(BA, DAG); } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { return getAddrTiny(BA, DAG); } return getAddr(BA, DAG); } SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const { AArch64FunctionInfo *FuncInfo = DAG.getMachineFunction().getInfo(); SDLoc DL(Op); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy(DAG.getDataLayout())); FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout())); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op, SelectionDAG &DAG) const { AArch64FunctionInfo *FuncInfo = DAG.getMachineFunction().getInfo(); SDLoc DL(Op); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0 ? FuncInfo->getVarArgsGPRIndex() : FuncInfo->getVarArgsStackIndex(), getPointerTy(DAG.getDataLayout())); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const { // The layout of the va_list struct is specified in the AArch64 Procedure Call // Standard, section B.3. MachineFunction &MF = DAG.getMachineFunction(); AArch64FunctionInfo *FuncInfo = MF.getInfo(); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue VAList = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); SmallVector MemOps; // void *__stack at offset 0 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); MemOps.push_back( DAG.getStore(Chain, DL, Stack, VAList, MachinePointerInfo(SV), Align(8))); // void *__gr_top at offset 8 int GPRSize = FuncInfo->getVarArgsGPRSize(); if (GPRSize > 0) { SDValue GRTop, GRTopAddr; GRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT)); GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, DAG.getConstant(GPRSize, DL, PtrVT)); MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, MachinePointerInfo(SV, 8), Align(8))); } // void *__vr_top at offset 16 int FPRSize = FuncInfo->getVarArgsFPRSize(); if (FPRSize > 0) { SDValue VRTop, VRTopAddr; VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(16, DL, PtrVT)); VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, DAG.getConstant(FPRSize, DL, PtrVT)); MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, MachinePointerInfo(SV, 16), Align(8))); } // int __gr_offs at offset 24 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT)); MemOps.push_back( DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr, MachinePointerInfo(SV, 24), Align(4))); // int __vr_offs at offset 28 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT)); MemOps.push_back( DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr, MachinePointerInfo(SV, 28), Align(4))); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv())) return LowerWin64_VASTART(Op, DAG); else if (Subtarget->isTargetDarwin()) return LowerDarwin_VASTART(Op, DAG); else return LowerAAPCS_VASTART(Op, DAG); } SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single // pointer. SDLoc DL(Op); unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; unsigned VaListSize = (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) ? PtrSize : 32; const Value *DestSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2), DAG.getConstant(VaListSize, DL, MVT::i32), Align(PtrSize), false, false, false, MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); } SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && "automatic va_arg instruction only works on Darwin"); const Value *V = cast(Op.getOperand(2))->getValue(); EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); MaybeAlign Align(Op.getConstantOperandVal(3)); unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8; auto PtrVT = getPointerTy(DAG.getDataLayout()); auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); SDValue VAList = DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V)); Chain = VAList.getValue(1); VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT); if (VT.isScalableVector()) report_fatal_error("Passing SVE types to variadic functions is " "currently not supported"); if (Align && *Align > MinSlotSize) { VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(Align->value() - 1, DL, PtrVT)); VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, DAG.getConstant(-(int64_t)Align->value(), DL, PtrVT)); } Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); // Scalar integer and FP values smaller than 64 bits are implicitly extended // up to 64 bits. At the very least, we have to increase the striding of the // vaargs list to match this, and for FP values we need to introduce // FP_ROUND nodes as well. if (VT.isInteger() && !VT.isVector()) ArgSize = std::max(ArgSize, MinSlotSize); bool NeedFPTrunc = false; if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { ArgSize = 8; NeedFPTrunc = true; } // Increment the pointer, VAList, to the next vaarg SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(ArgSize, DL, PtrVT)); VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT); // Store the incremented VAList to the legalized pointer SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); // Load the actual argument out of the pointer VAList if (NeedFPTrunc) { // Load the value as an f64. SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); // Round the value down to an f32. SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), DAG.getIntPtrConstant(1, DL)); SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; // Merge the rounded value with the chain output of the load. return DAG.getMergeValues(Ops, DL); } return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); } SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64); while (Depth--) FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, MachinePointerInfo()); if (Subtarget->isTargetILP32()) FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr, DAG.getValueType(VT)); return FrameAddr; } SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); EVT VT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); int FI = MFI.CreateFixedObject(4, 0, false); return DAG.getFrameIndex(FI, VT); } #define GET_REGISTER_MATCHER #include "AArch64GenAsmMatcher.inc" // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. Register AArch64TargetLowering:: getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { Register Reg = MatchRegisterName(RegName); if (AArch64::X1 <= Reg && Reg <= AArch64::X28) { const MCRegisterInfo *MRI = Subtarget->getRegisterInfo(); unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false); if (!Subtarget->isXRegisterReserved(DwarfRegNum)) Reg = 0; } if (Reg) return Reg; report_fatal_error(Twine("Invalid register name \"" + StringRef(RegName) + "\".")); } SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const { DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset); } SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); SDValue ReturnAddress; if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); ReturnAddress = DAG.getLoad( VT, DL, DAG.getEntryNode(), DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo()); } else { // Return LR, which contains the return address. Mark it an implicit // live-in. unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); ReturnAddress = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); } // The XPACLRI instruction assembles to a hint-space instruction before // Armv8.3-A therefore this instruction can be safely used for any pre // Armv8.3-A architectures. On Armv8.3-A and onwards XPACI is available so use // that instead. SDNode *St; if (Subtarget->hasV8_3aOps()) { St = DAG.getMachineNode(AArch64::XPACI, DL, VT, ReturnAddress); } else { // XPACLRI operates on LR therefore we must move the operand accordingly. SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::LR, ReturnAddress); St = DAG.getMachineNode(AArch64::XPACLRI, DL, VT, Chain); } return SDValue(St, 0); } /// LowerShiftRightParts - Lower SRA_PARTS, which returns two /// i64 values and take a 2 x i64 value to shift plus a shift amount. SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which // is "undef". We wanted 0, so CSEL it directly. SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETEQ, dl, DAG); SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); HiBitsForLo = DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), HiBitsForLo, CCVal, Cmp); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, DAG.getConstant(VTBits, dl, MVT::i64)); SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); SDValue LoForNormalShift = DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo); Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, dl, DAG); CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, LoForNormalShift, CCVal, Cmp); // AArch64 shifts larger than the register width are wrapped rather than // clamped, so we can't just emit "hi >> x". SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); SDValue HiForBigShift = Opc == ISD::SRA ? DAG.getNode(Opc, dl, VT, ShOpHi, DAG.getConstant(VTBits - 1, dl, MVT::i64)) : DAG.getConstant(0, dl, VT); SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, HiForNormalShift, CCVal, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two /// i64 values and take a 2 x i64 value to shift plus a shift amount. SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); assert(Op.getOpcode() == ISD::SHL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which // is "undef". We wanted 0, so CSEL it directly. SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETEQ, dl, DAG); SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); LoBitsForHi = DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), LoBitsForHi, CCVal, Cmp); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, DAG.getConstant(VTBits, dl, MVT::i64)); SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); SDValue HiForNormalShift = DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, dl, DAG); CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, HiForNormalShift, CCVal, Cmp); // AArch64 shifts of larger than register sizes are wrapped rather than // clamped, so we can't just emit "lo << a" if a is too big. SDValue LoForBigShift = DAG.getConstant(0, dl, VT); SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, LoForNormalShift, CCVal, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } bool AArch64TargetLowering::isOffsetFoldingLegal( const GlobalAddressSDNode *GA) const { // Offsets are folded in the DAG combine rather than here so that we can // intelligently choose an offset based on the uses. return false; } bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, bool OptForSize) const { bool IsLegal = false; // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and // 16-bit case when target has full fp16 support. // FIXME: We should be able to handle f128 as well with a clever lowering. const APInt ImmInt = Imm.bitcastToAPInt(); if (VT == MVT::f64) IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero(); else if (VT == MVT::f32) IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero(); else if (VT == MVT::f16 && Subtarget->hasFullFP16()) IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero(); // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to // generate that fmov. // If we can not materialize in immediate field for fmov, check if the // value can be encoded as the immediate operand of a logical instruction. // The immediate value will be created with either MOVZ, MOVN, or ORR. if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) { // The cost is actually exactly the same for mov+fmov vs. adrp+ldr; // however the mov+fmov sequence is always better because of the reduced // cache pressure. The timings are still the same if you consider // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the // movw+movk is fused). So we limit up to 2 instrdduction at most. SmallVector Insn; AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(), Insn); unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2)); IsLegal = Insn.size() <= Limit; } LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString() << " imm value: "; Imm.dump();); return IsLegal; } //===----------------------------------------------------------------------===// // AArch64 Optimization Hooks //===----------------------------------------------------------------------===// static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, SDValue Operand, SelectionDAG &DAG, int &ExtraSteps) { EVT VT = Operand.getValueType(); if (ST->hasNEON() && (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || VT == MVT::f32 || VT == MVT::v1f32 || VT == MVT::v2f32 || VT == MVT::v4f32)) { if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) // For the reciprocal estimates, convergence is quadratic, so the number // of digits is doubled after each iteration. In ARMv8, the accuracy of // the initial estimate is 2^-8. Thus the number of extra steps to refine // the result for float (23 mantissa bits) is 2 and for double (52 // mantissa bits) is 3. ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2; return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); } return SDValue(); } SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const { if (Enabled == ReciprocalEstimate::Enabled || (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, DAG, ExtraSteps)) { SDLoc DL(Operand); EVT VT = Operand.getValueType(); SDNodeFlags Flags; Flags.setAllowReassociation(true); // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) for (int i = ExtraSteps; i > 0; --i) { SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, Flags); Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags); Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); } if (!Reciprocal) { EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ); Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags); // Correct the result if the operand is 0.0. Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, Eq, Operand, Estimate); } ExtraSteps = 0; return Estimate; } return SDValue(); } SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps) const { if (Enabled == ReciprocalEstimate::Enabled) if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, DAG, ExtraSteps)) { SDLoc DL(Operand); EVT VT = Operand.getValueType(); SDNodeFlags Flags; Flags.setAllowReassociation(true); // Newton reciprocal iteration: E * (2 - X * E) // AArch64 reciprocal iteration instruction: (2 - M * N) for (int i = ExtraSteps; i > 0; --i) { SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, Estimate, Flags); Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); } ExtraSteps = 0; return Estimate; } return SDValue(); } //===----------------------------------------------------------------------===// // AArch64 Inline Assembly Support //===----------------------------------------------------------------------===// // Table of Constraints // TODO: This is the current set of constraints supported by ARM for the // compiler, not all of them may make sense. // // r - A general register // w - An FP/SIMD register of some size in the range v0-v31 // x - An FP/SIMD register of some size in the range v0-v15 // I - Constant that can be used with an ADD instruction // J - Constant that can be used with a SUB instruction // K - Constant that can be used with a 32-bit logical instruction // L - Constant that can be used with a 64-bit logical instruction // M - Constant that can be used as a 32-bit MOV immediate // N - Constant that can be used as a 64-bit MOV immediate // Q - A memory reference with base register and no offset // S - A symbolic address // Y - Floating point constant zero // Z - Integer constant zero // // Note that general register operands will be output using their 64-bit x // register name, whatever the size of the variable, unless the asm operand // is prefixed by the %w modifier. Floating-point and SIMD register operands // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or // %q modifier. const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { // At this point, we have to lower this constraint to something else, so we // lower it to an "r" or "w". However, by doing this we will force the result // to be in register, while the X constraint is much more permissive. // // Although we are correct (we are free to emit anything, without // constraints), we might break use cases that would expect us to be more // efficient and emit something else. if (!Subtarget->hasFPARMv8()) return "r"; if (ConstraintVT.isFloatingPoint()) return "w"; if (ConstraintVT.isVector() && (ConstraintVT.getSizeInBits() == 64 || ConstraintVT.getSizeInBits() == 128)) return "w"; return "r"; } enum PredicateConstraint { Upl, Upa, Invalid }; static PredicateConstraint parsePredicateConstraint(StringRef Constraint) { PredicateConstraint P = PredicateConstraint::Invalid; if (Constraint == "Upa") P = PredicateConstraint::Upa; if (Constraint == "Upl") P = PredicateConstraint::Upl; return P; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. AArch64TargetLowering::ConstraintType AArch64TargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'x': case 'w': case 'y': return C_RegisterClass; // An address with a single base register. Due to the way we // currently handle addresses it is the same as 'r'. case 'Q': return C_Memory; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'Y': case 'Z': return C_Immediate; case 'z': case 'S': // A symbolic address return C_Other; } } else if (parsePredicateConstraint(Constraint) != PredicateConstraint::Invalid) return C_RegisterClass; return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight AArch64TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'x': case 'w': case 'y': if (type->isFloatingPointTy() || type->isVectorTy()) weight = CW_Register; break; case 'z': weight = CW_Constant; break; case 'U': if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid) weight = CW_Register; break; } return weight; } std::pair AArch64TargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': if (VT.isScalableVector()) return std::make_pair(0U, nullptr); if (VT.getFixedSizeInBits() == 64) return std::make_pair(0U, &AArch64::GPR64commonRegClass); return std::make_pair(0U, &AArch64::GPR32commonRegClass); case 'w': { if (!Subtarget->hasFPARMv8()) break; if (VT.isScalableVector()) { if (VT.getVectorElementType() != MVT::i1) return std::make_pair(0U, &AArch64::ZPRRegClass); return std::make_pair(0U, nullptr); } uint64_t VTSize = VT.getFixedSizeInBits(); if (VTSize == 16) return std::make_pair(0U, &AArch64::FPR16RegClass); if (VTSize == 32) return std::make_pair(0U, &AArch64::FPR32RegClass); if (VTSize == 64) return std::make_pair(0U, &AArch64::FPR64RegClass); if (VTSize == 128) return std::make_pair(0U, &AArch64::FPR128RegClass); break; } // The instructions that this constraint is designed for can // only take 128-bit registers so just use that regclass. case 'x': if (!Subtarget->hasFPARMv8()) break; if (VT.isScalableVector()) return std::make_pair(0U, &AArch64::ZPR_4bRegClass); if (VT.getSizeInBits() == 128) return std::make_pair(0U, &AArch64::FPR128_loRegClass); break; case 'y': if (!Subtarget->hasFPARMv8()) break; if (VT.isScalableVector()) return std::make_pair(0U, &AArch64::ZPR_3bRegClass); break; } } else { PredicateConstraint PC = parsePredicateConstraint(Constraint); if (PC != PredicateConstraint::Invalid) { if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1) return std::make_pair(0U, nullptr); bool restricted = (PC == PredicateConstraint::Upl); return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass) : std::make_pair(0U, &AArch64::PPRRegClass); } } if (StringRef("{cc}").equals_lower(Constraint)) return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair Res; Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); // Not found as a standard register? if (!Res.second) { unsigned Size = Constraint.size(); if ((Size == 4 || Size == 5) && Constraint[0] == '{' && tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { int RegNo; bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); if (!Failed && RegNo >= 0 && RegNo <= 31) { // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. // By default we'll emit v0-v31 for this unless there's a modifier where // we'll emit the correct register as well. if (VT != MVT::Other && VT.getSizeInBits() == 64) { Res.first = AArch64::FPR64RegClass.getRegister(RegNo); Res.second = &AArch64::FPR64RegClass; } else { Res.first = AArch64::FPR128RegClass.getRegister(RegNo); Res.second = &AArch64::FPR128RegClass; } } } } if (Res.second && !Subtarget->hasFPARMv8() && !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) && !AArch64::GPR64allRegClass.hasSubClassEq(Res.second)) return std::make_pair(0U, nullptr); return Res; } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void AArch64TargetLowering::LowerAsmOperandForConstraint( SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { SDValue Result; // Currently only support length 1 constraints. if (Constraint.length() != 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; // This set of constraints deal with valid constants for various instructions. // Validate and return a target constant for them if we can. case 'z': { // 'z' maps to xzr or wzr so it needs an input of 0. if (!isNullConstant(Op)) return; if (Op.getValueType() == MVT::i64) Result = DAG.getRegister(AArch64::XZR, MVT::i64); else Result = DAG.getRegister(AArch64::WZR, MVT::i32); break; } case 'S': { // An absolute symbolic address or label reference. if (const GlobalAddressSDNode *GA = dyn_cast(Op)) { Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), GA->getValueType(0)); } else if (const BlockAddressSDNode *BA = dyn_cast(Op)) { Result = DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0)); } else if (const ExternalSymbolSDNode *ES = dyn_cast(Op)) { Result = DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0)); } else return; break; } case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': ConstantSDNode *C = dyn_cast(Op); if (!C) return; // Grab the value and do some validation. uint64_t CVal = C->getZExtValue(); switch (ConstraintLetter) { // The I constraint applies only to simple ADD or SUB immediate operands: // i.e. 0 to 4095 with optional shift by 12 // The J constraint applies only to ADD or SUB immediates that would be // valid when negated, i.e. if [an add pattern] were to be output as a SUB // instruction [or vice versa], in other words -1 to -4095 with optional // left shift by 12. case 'I': if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) break; return; case 'J': { uint64_t NVal = -C->getSExtValue(); if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { CVal = C->getSExtValue(); break; } return; } // The K and L constraints apply *only* to logical immediates, including // what used to be the MOVI alias for ORR (though the MOVI alias has now // been removed and MOV should be used). So these constraints have to // distinguish between bit patterns that are valid 32-bit or 64-bit // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice // versa. case 'K': if (AArch64_AM::isLogicalImmediate(CVal, 32)) break; return; case 'L': if (AArch64_AM::isLogicalImmediate(CVal, 64)) break; return; // The M and N constraints are a superset of K and L respectively, for use // with the MOV (immediate) alias. As well as the logical immediates they // also match 32 or 64-bit immediates that can be loaded either using a // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca // (M) or 64-bit 0x1234000000000000 (N) etc. // As a note some of this code is liberally stolen from the asm parser. case 'M': { if (!isUInt<32>(CVal)) return; if (AArch64_AM::isLogicalImmediate(CVal, 32)) break; if ((CVal & 0xFFFF) == CVal) break; if ((CVal & 0xFFFF0000ULL) == CVal) break; uint64_t NCVal = ~(uint32_t)CVal; if ((NCVal & 0xFFFFULL) == NCVal) break; if ((NCVal & 0xFFFF0000ULL) == NCVal) break; return; } case 'N': { if (AArch64_AM::isLogicalImmediate(CVal, 64)) break; if ((CVal & 0xFFFFULL) == CVal) break; if ((CVal & 0xFFFF0000ULL) == CVal) break; if ((CVal & 0xFFFF00000000ULL) == CVal) break; if ((CVal & 0xFFFF000000000000ULL) == CVal) break; uint64_t NCVal = ~CVal; if ((NCVal & 0xFFFFULL) == NCVal) break; if ((NCVal & 0xFFFF0000ULL) == NCVal) break; if ((NCVal & 0xFFFF00000000ULL) == NCVal) break; if ((NCVal & 0xFFFF000000000000ULL) == NCVal) break; return; } default: return; } // All assembler immediates are 64-bit integers. Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } //===----------------------------------------------------------------------===// // AArch64 Advanced SIMD Support //===----------------------------------------------------------------------===// /// WidenVector - Given a value in the V64 register class, produce the /// equivalent value in the V128 register class. static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { EVT VT = V64Reg.getValueType(); unsigned NarrowSize = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType().getSimpleVT(); MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); SDLoc DL(V64Reg); return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), V64Reg, DAG.getConstant(0, DL, MVT::i32)); } /// getExtFactor - Determine the adjustment factor for the position when /// generating an "extract from vector registers" instruction. static unsigned getExtFactor(SDValue &V) { EVT EltType = V.getValueType().getVectorElementType(); return EltType.getSizeInBits() / 8; } /// NarrowVector - Given a value in the V128 register class, produce the /// equivalent value in the V64 register class. static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { EVT VT = V128Reg.getValueType(); unsigned WideSize = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType().getSimpleVT(); MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); SDLoc DL(V128Reg); return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); } // Gather data to see if the operation can be modelled as a // shuffle in combination with VEXTs. SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n"); SDLoc dl(Op); EVT VT = Op.getValueType(); assert(!VT.isScalableVector() && "Scalable vectors cannot be used with ISD::BUILD_VECTOR"); unsigned NumElts = VT.getVectorNumElements(); struct ShuffleSourceInfo { SDValue Vec; unsigned MinElt; unsigned MaxElt; // We may insert some combination of BITCASTs and VEXT nodes to force Vec to // be compatible with the shuffle we intend to construct. As a result // ShuffleVec will be some sliding window into the original Vec. SDValue ShuffleVec; // Code should guarantee that element i in Vec starts at element "WindowBase // + i * WindowScale in ShuffleVec". int WindowBase; int WindowScale; ShuffleSourceInfo(SDValue Vec) : Vec(Vec), MinElt(std::numeric_limits::max()), MaxElt(0), ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } }; // First gather all vectors used as an immediate source for this BUILD_VECTOR // node. SmallVector Sources; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.isUndef()) continue; else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa(V.getOperand(1))) { LLVM_DEBUG( dbgs() << "Reshuffle failed: " "a shuffle can only come from building a vector from " "various elements of other vectors, provided their " "indices are constant\n"); return SDValue(); } // Add this element source to the list if it's not already there. SDValue SourceVec = V.getOperand(0); auto Source = find(Sources, SourceVec); if (Source == Sources.end()) Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); // Update the minimum and maximum lane number seen. unsigned EltNo = cast(V.getOperand(1))->getZExtValue(); Source->MinElt = std::min(Source->MinElt, EltNo); Source->MaxElt = std::max(Source->MaxElt, EltNo); } if (Sources.size() > 2) { LLVM_DEBUG( dbgs() << "Reshuffle failed: currently only do something sane when at " "most two source vectors are involved\n"); return SDValue(); } // Find out the smallest element size among result and two sources, and use // it as element size to build the shuffle_vector. EVT SmallestEltTy = VT.getVectorElementType(); for (auto &Source : Sources) { EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); if (SrcEltTy.bitsLT(SmallestEltTy)) { SmallestEltTy = SrcEltTy; } } unsigned ResMultiplier = VT.getScalarSizeInBits() / SmallestEltTy.getFixedSizeInBits(); uint64_t VTSize = VT.getFixedSizeInBits(); NumElts = VTSize / SmallestEltTy.getFixedSizeInBits(); EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); // If the source vector is too wide or too narrow, we may nevertheless be able // to construct a compatible shuffle either by concatenating it with UNDEF or // extracting a suitable range of elements. for (auto &Src : Sources) { EVT SrcVT = Src.ShuffleVec.getValueType(); uint64_t SrcVTSize = SrcVT.getFixedSizeInBits(); if (SrcVTSize == VTSize) continue; // This stage of the search produces a source with the same element type as // the original, but with a total width matching the BUILD_VECTOR output. EVT EltVT = SrcVT.getVectorElementType(); unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits(); EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); if (SrcVTSize < VTSize) { assert(2 * SrcVTSize == VTSize); // We can pad out the smaller vector for free, so if it's part of a // shuffle... Src.ShuffleVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, DAG.getUNDEF(Src.ShuffleVec.getValueType())); continue; } if (SrcVTSize != 2 * VTSize) { LLVM_DEBUG( dbgs() << "Reshuffle failed: result vector too small to extract\n"); return SDValue(); } if (Src.MaxElt - Src.MinElt >= NumSrcElts) { LLVM_DEBUG( dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n"); return SDValue(); } if (Src.MinElt >= NumSrcElts) { // The extraction can just take the second half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i64)); Src.WindowBase = -NumSrcElts; } else if (Src.MaxElt < NumSrcElts) { // The extraction can just take the first half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i64)); } else { // An actual VEXT is needed SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i64)); SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i64)); unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); if (!SrcVT.is64BitVector()) { LLVM_DEBUG( dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT " "for SVE vectors."); return SDValue(); } Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, VEXTSrc2, DAG.getConstant(Imm, dl, MVT::i32)); Src.WindowBase = -Src.MinElt; } } // Another possible incompatibility occurs from the vector element types. We // can fix this by bitcasting the source vectors to the same type we intend // for the shuffle. for (auto &Src : Sources) { EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); if (SrcEltTy == SmallestEltTy) continue; assert(ShuffleVT.getVectorElementType() == SmallestEltTy); Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); Src.WindowScale = SrcEltTy.getFixedSizeInBits() / SmallestEltTy.getFixedSizeInBits(); Src.WindowBase *= Src.WindowScale; } // Final sanity check before we try to actually produce a shuffle. LLVM_DEBUG(for (auto Src : Sources) assert(Src.ShuffleVec.getValueType() == ShuffleVT);); // The stars all align, our next step is to produce the mask for the shuffle. SmallVector Mask(ShuffleVT.getVectorNumElements(), -1); int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { SDValue Entry = Op.getOperand(i); if (Entry.isUndef()) continue; auto Src = find(Sources, Entry.getOperand(0)); int EltNo = cast(Entry.getOperand(1))->getSExtValue(); // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit // trunc. So only std::min(SrcBits, DestBits) actually get defined in this // segment. EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(), VT.getScalarSizeInBits()); int LanesDefined = BitsDefined / BitsPerShuffleLane; // This source is expected to fill ResMultiplier lanes of the final shuffle, // starting at the appropriate offset. int *LaneMask = &Mask[i * ResMultiplier]; int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; ExtractBase += NumElts * (Src - Sources.begin()); for (int j = 0; j < LanesDefined; ++j) LaneMask[j] = ExtractBase + j; } // Final check before we try to produce nonsense... if (!isShuffleMaskLegal(Mask, ShuffleVT)) { LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n"); return SDValue(); } SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; for (unsigned i = 0; i < Sources.size(); ++i) ShuffleOps[i] = Sources[i].ShuffleVec; SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], ShuffleOps[1], Mask); SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump(); dbgs() << "Reshuffle, creating node: "; V.dump();); return V; } // check if an EXT instruction can handle the shuffle mask when the // vector sources of the shuffle are the same. static bool isSingletonEXTMask(ArrayRef M, EVT VT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, just follow it // back to index zero and keep going. ++ExpectedElt; if (ExpectedElt == NumElts) ExpectedElt = 0; if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast(M[i])) return false; } return true; } /// Check if a vector shuffle corresponds to a DUP instructions with a larger /// element width than the vector lane type. If that is the case the function /// returns true and writes the value of the DUP instruction lane operand into /// DupLaneOp static bool isWideDUPMask(ArrayRef M, EVT VT, unsigned BlockSize, unsigned &DupLaneOp) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for wide DUP are: 16, 32, 64"); if (BlockSize <= VT.getScalarSizeInBits()) return false; if (BlockSize % VT.getScalarSizeInBits() != 0) return false; if (VT.getSizeInBits() % BlockSize != 0) return false; size_t SingleVecNumElements = VT.getVectorNumElements(); size_t NumEltsPerBlock = BlockSize / VT.getScalarSizeInBits(); size_t NumBlocks = VT.getSizeInBits() / BlockSize; // We are looking for masks like // [0, 1, 0, 1] or [2, 3, 2, 3] or [4, 5, 6, 7, 4, 5, 6, 7] where any element // might be replaced by 'undefined'. BlockIndices will eventually contain // lane indices of the duplicated block (i.e. [0, 1], [2, 3] and [4, 5, 6, 7] // for the above examples) SmallVector BlockElts(NumEltsPerBlock, -1); for (size_t BlockIndex = 0; BlockIndex < NumBlocks; BlockIndex++) for (size_t I = 0; I < NumEltsPerBlock; I++) { int Elt = M[BlockIndex * NumEltsPerBlock + I]; if (Elt < 0) continue; // For now we don't support shuffles that use the second operand if ((unsigned)Elt >= SingleVecNumElements) return false; if (BlockElts[I] < 0) BlockElts[I] = Elt; else if (BlockElts[I] != Elt) return false; } // We found a candidate block (possibly with some undefs). It must be a // sequence of consecutive integers starting with a value divisible by // NumEltsPerBlock with some values possibly replaced by undef-s. // Find first non-undef element auto FirstRealEltIter = find_if(BlockElts, [](int Elt) { return Elt >= 0; }); assert(FirstRealEltIter != BlockElts.end() && "Shuffle with all-undefs must have been caught by previous cases, " "e.g. isSplat()"); if (FirstRealEltIter == BlockElts.end()) { DupLaneOp = 0; return true; } // Index of FirstRealElt in BlockElts size_t FirstRealIndex = FirstRealEltIter - BlockElts.begin(); if ((unsigned)*FirstRealEltIter < FirstRealIndex) return false; // BlockElts[0] must have the following value if it isn't undef: size_t Elt0 = *FirstRealEltIter - FirstRealIndex; // Check the first element if (Elt0 % NumEltsPerBlock != 0) return false; // Check that the sequence indeed consists of consecutive integers (modulo // undefs) for (size_t I = 0; I < NumEltsPerBlock; I++) if (BlockElts[I] >= 0 && (unsigned)BlockElts[I] != Elt0 + I) return false; DupLaneOp = Elt0 / NumEltsPerBlock; return true; } // check if an EXT instruction can handle the shuffle mask when the // vector sources of the shuffle are different. static bool isEXTMask(ArrayRef M, EVT VT, bool &ReverseEXT, unsigned &Imm) { // Look for the first non-undef element. const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); // Benefit form APInt to handle overflow when calculating expected element. unsigned NumElts = VT.getVectorNumElements(); unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); // The following shuffle indices must be the successive elements after the // first real element. const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); if (FirstWrongElt != M.end()) return false; // The index of an EXT is the first element if it is not UNDEF. // Watch out for the beginning UNDEFs. The EXT index should be the expected // value of the first element. E.g. // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. // ExpectedElt is the last mask index plus 1. Imm = ExpectedElt.getZExtValue(); // There are two difference cases requiring to reverse input vectors. // For example, for vector <4 x i32> we have the following cases, // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) // For both cases, we finally use mask <5, 6, 7, 0>, which requires // to reverse two input vectors. if (Imm < NumElts) ReverseEXT = true; else Imm -= NumElts; return true; } /// isREVMask - Check if a vector shuffle corresponds to a REV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) static bool isREVMask(ArrayRef M, EVT VT, unsigned BlockSize) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for REV are: 16, 32, 64"); unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSz; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) return false; } return true; } static bool isZIPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != Idx) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) return false; Idx += 1; } return true; } static bool isUZPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i != NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned)M[i] != 2 * i + WhichResult) return false; } return true; } static bool isTRNMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) return false; } return true; } /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. static bool isZIP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != Idx) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) return false; Idx += 1; } return true; } /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, static bool isUZP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned Half = VT.getVectorNumElements() / 2; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned j = 0; j != 2; ++j) { unsigned Idx = WhichResult; for (unsigned i = 0; i != Half; ++i) { int MIdx = M[i + j * Half]; if (MIdx >= 0 && (unsigned)MIdx != Idx) return false; Idx += 2; } } return true; } /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. static bool isTRN_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) return false; } return true; } static bool isINSMask(ArrayRef M, int NumInputElements, bool &DstIsLeft, int &Anomaly) { if (M.size() != static_cast(NumInputElements)) return false; int NumLHSMatch = 0, NumRHSMatch = 0; int LastLHSMismatch = -1, LastRHSMismatch = -1; for (int i = 0; i < NumInputElements; ++i) { if (M[i] == -1) { ++NumLHSMatch; ++NumRHSMatch; continue; } if (M[i] == i) ++NumLHSMatch; else LastLHSMismatch = i; if (M[i] == i + NumInputElements) ++NumRHSMatch; else LastRHSMismatch = i; } if (NumLHSMatch == NumInputElements - 1) { DstIsLeft = true; Anomaly = LastLHSMismatch; return true; } else if (NumRHSMatch == NumInputElements - 1) { DstIsLeft = false; Anomaly = LastRHSMismatch; return true; } return false; } static bool isConcatMask(ArrayRef Mask, EVT VT, bool SplitLHS) { if (VT.getSizeInBits() != 128) return false; unsigned NumElts = VT.getVectorNumElements(); for (int I = 0, E = NumElts / 2; I != E; I++) { if (Mask[I] != I) return false; } int Offset = NumElts / 2; for (int I = NumElts / 2, E = NumElts; I != E; I++) { if (Mask[I] != I + SplitLHS * Offset) return false; } return true; } static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue V0 = Op.getOperand(0); SDValue V1 = Op.getOperand(1); ArrayRef Mask = cast(Op)->getMask(); if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || VT.getVectorElementType() != V1.getValueType().getVectorElementType()) return SDValue(); bool SplitV0 = V0.getValueSizeInBits() == 128; if (!isConcatMask(Mask, VT, SplitV0)) return SDValue(); EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); if (SplitV0) { V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, DAG.getConstant(0, DL, MVT::i64)); } if (V1.getValueSizeInBits() == 128) { V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, DAG.getConstant(0, DL, MVT::i64)); } return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); enum { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VREV, OP_VDUP0, OP_VDUP1, OP_VDUP2, OP_VDUP3, OP_VEXT1, OP_VEXT2, OP_VEXT3, OP_VUZPL, // VUZP, left result OP_VUZPR, // VUZP, right result OP_VZIPL, // VZIP, left result OP_VZIPR, // VZIP, right result OP_VTRNL, // VTRN, left result OP_VTRNR // VTRN, right result }; if (OpNum == OP_COPY) { if (LHSID == (1 * 9 + 2) * 9 + 3) return LHS; assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); EVT VT = OpLHS.getValueType(); switch (OpNum) { default: llvm_unreachable("Unknown shuffle opcode!"); case OP_VREV: // VREV divides the vector in half and swaps within the half. if (VT.getVectorElementType() == MVT::i32 || VT.getVectorElementType() == MVT::f32) return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); // vrev <4 x i16> -> REV32 if (VT.getVectorElementType() == MVT::i16 || VT.getVectorElementType() == MVT::f16 || VT.getVectorElementType() == MVT::bf16) return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); // vrev <4 x i8> -> REV16 assert(VT.getVectorElementType() == MVT::i8); return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); case OP_VDUP0: case OP_VDUP1: case OP_VDUP2: case OP_VDUP3: { EVT EltTy = VT.getVectorElementType(); unsigned Opcode; if (EltTy == MVT::i8) Opcode = AArch64ISD::DUPLANE8; else if (EltTy == MVT::i16 || EltTy == MVT::f16 || EltTy == MVT::bf16) Opcode = AArch64ISD::DUPLANE16; else if (EltTy == MVT::i32 || EltTy == MVT::f32) Opcode = AArch64ISD::DUPLANE32; else if (EltTy == MVT::i64 || EltTy == MVT::f64) Opcode = AArch64ISD::DUPLANE64; else llvm_unreachable("Invalid vector element type?"); if (VT.getSizeInBits() == 64) OpLHS = WidenVector(OpLHS, DAG); SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); } case OP_VEXT1: case OP_VEXT2: case OP_VEXT3: { unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, DAG.getConstant(Imm, dl, MVT::i32)); } case OP_VUZPL: return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VUZPR: return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VZIPL: return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VZIPR: return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VTRNL: return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VTRNR: return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); } } static SDValue GenerateTBL(SDValue Op, ArrayRef ShuffleMask, SelectionDAG &DAG) { // Check to see if we can use the TBL instruction. SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc DL(Op); EVT EltVT = Op.getValueType().getVectorElementType(); unsigned BytesPerElt = EltVT.getSizeInBits() / 8; SmallVector TBLMask; for (int Val : ShuffleMask) { for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { unsigned Offset = Byte + Val * BytesPerElt; TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); } } MVT IndexVT = MVT::v8i8; unsigned IndexLen = 8; if (Op.getValueSizeInBits() == 128) { IndexVT = MVT::v16i8; IndexLen = 16; } SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); SDValue Shuffle; if (V2.getNode()->isUndef()) { if (IndexLen == 8) V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, DAG.getBuildVector(IndexVT, DL, makeArrayRef(TBLMask.data(), IndexLen))); } else { if (IndexLen == 8) { V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, DAG.getBuildVector(IndexVT, DL, makeArrayRef(TBLMask.data(), IndexLen))); } else { // FIXME: We cannot, for the moment, emit a TBL2 instruction because we // cannot currently represent the register constraints on the input // table registers. // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, // DAG.getBuildVector(IndexVT, DL, &TBLMask[0], // IndexLen)); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, V2Cst, DAG.getBuildVector(IndexVT, DL, makeArrayRef(TBLMask.data(), IndexLen))); } } return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); } static unsigned getDUPLANEOp(EVT EltType) { if (EltType == MVT::i8) return AArch64ISD::DUPLANE8; if (EltType == MVT::i16 || EltType == MVT::f16 || EltType == MVT::bf16) return AArch64ISD::DUPLANE16; if (EltType == MVT::i32 || EltType == MVT::f32) return AArch64ISD::DUPLANE32; if (EltType == MVT::i64 || EltType == MVT::f64) return AArch64ISD::DUPLANE64; llvm_unreachable("Invalid vector element type?"); } static SDValue constructDup(SDValue V, int Lane, SDLoc dl, EVT VT, unsigned Opcode, SelectionDAG &DAG) { // Try to eliminate a bitcasted extract subvector before a DUPLANE. auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) { // Match: dup (bitcast (extract_subv X, C)), LaneC if (BitCast.getOpcode() != ISD::BITCAST || BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR) return false; // The extract index must align in the destination type. That may not // happen if the bitcast is from narrow to wide type. SDValue Extract = BitCast.getOperand(0); unsigned ExtIdx = Extract.getConstantOperandVal(1); unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits(); unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth; unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits(); if (ExtIdxInBits % CastedEltBitWidth != 0) return false; // Update the lane value by offsetting with the scaled extract index. LaneC += ExtIdxInBits / CastedEltBitWidth; // Determine the casted vector type of the wide vector input. // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC' // Examples: // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3 // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5 unsigned SrcVecNumElts = Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth; CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(), SrcVecNumElts); return true; }; MVT CastVT; if (getScaledOffsetDup(V, Lane, CastVT)) { V = DAG.getBitcast(CastVT, V.getOperand(0).getOperand(0)); } else if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) { // The lane is incremented by the index of the extract. // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3 Lane += V.getConstantOperandVal(1); V = V.getOperand(0); } else if (V.getOpcode() == ISD::CONCAT_VECTORS) { // The lane is decremented if we are splatting from the 2nd operand. // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; Lane -= Idx * VT.getVectorNumElements() / 2; V = WidenVector(V.getOperand(Idx), DAG); } else if (VT.getSizeInBits() == 64) { // Widen the operand to 128-bit register with undef. V = WidenVector(V, DAG); } return DAG.getNode(Opcode, dl, VT, V, DAG.getConstant(Lane, dl, MVT::i64)); } SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op.getNode()); // Convert shuffles that are directly supported on NEON to target-specific // DAG nodes, instead of keeping them as shuffles and matching them again // during code selection. This is more efficient and avoids the possibility // of inconsistencies between legalization and selection. ArrayRef ShuffleMask = SVN->getMask(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); if (SVN->isSplat()) { int Lane = SVN->getSplatIndex(); // If this is undef splat, generate it via "just" vdup, if possible. if (Lane == -1) Lane = 0; if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), V1.getOperand(0)); // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- // constant. If so, we can just reference the lane's definition directly. if (V1.getOpcode() == ISD::BUILD_VECTOR && !isa(V1.getOperand(Lane))) return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); // Otherwise, duplicate from the lane of the input vector. unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); return constructDup(V1, Lane, dl, VT, Opcode, DAG); } // Check if the mask matches a DUP for a wider element for (unsigned LaneSize : {64U, 32U, 16U}) { unsigned Lane = 0; if (isWideDUPMask(ShuffleMask, VT, LaneSize, Lane)) { unsigned Opcode = LaneSize == 64 ? AArch64ISD::DUPLANE64 : LaneSize == 32 ? AArch64ISD::DUPLANE32 : AArch64ISD::DUPLANE16; // Cast V1 to an integer vector with required lane size MVT NewEltTy = MVT::getIntegerVT(LaneSize); unsigned NewEltCount = VT.getSizeInBits() / LaneSize; MVT NewVecTy = MVT::getVectorVT(NewEltTy, NewEltCount); V1 = DAG.getBitcast(NewVecTy, V1); // Constuct the DUP instruction V1 = constructDup(V1, Lane, dl, NewVecTy, Opcode, DAG); // Cast back to the original type return DAG.getBitcast(VT, V1); } } if (isREVMask(ShuffleMask, VT, 64)) return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); if (isREVMask(ShuffleMask, VT, 32)) return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); if (isREVMask(ShuffleMask, VT, 16)) return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); bool ReverseEXT = false; unsigned Imm; if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { if (ReverseEXT) std::swap(V1, V2); Imm *= getExtFactor(V1); return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, DAG.getConstant(Imm, dl, MVT::i32)); } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { Imm *= getExtFactor(V1); return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, DAG.getConstant(Imm, dl, MVT::i32)); } unsigned WhichResult; if (isZIPMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isUZPMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isTRNMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) return Concat; bool DstIsLeft; int Anomaly; int NumInputElements = V1.getValueType().getVectorNumElements(); if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { SDValue DstVec = DstIsLeft ? V1 : V2; SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); SDValue SrcVec = V1; int SrcLane = ShuffleMask[Anomaly]; if (SrcLane >= NumInputElements) { SrcVec = V2; SrcLane -= VT.getVectorNumElements(); } SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); EVT ScalarVT = VT.getVectorElementType(); if (ScalarVT.getFixedSizeInBits() < 32 && ScalarVT.isInteger()) ScalarVT = MVT::i32; return DAG.getNode( ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), DstLaneV); } // If the shuffle is not directly supported and it has 4 elements, use // the PerfectShuffle-generated table to synthesize it from other shuffles. unsigned NumElts = VT.getVectorNumElements(); if (NumElts == 4) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (ShuffleMask[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = ShuffleMask[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + PFIndexes[2] * 9 + PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } return GenerateTBL(Op, ShuffleMask, DAG); } SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); EVT ElemVT = VT.getScalarType(); SDValue SplatVal = Op.getOperand(0); if (useSVEForFixedLengthVectorVT(VT)) return LowerToScalableOp(Op, DAG); // Extend input splat value where needed to fit into a GPR (32b or 64b only) // FPRs don't have this restriction. switch (ElemVT.getSimpleVT().SimpleTy) { case MVT::i1: { // The only legal i1 vectors are SVE vectors, so we can use SVE-specific // lowering code. if (auto *ConstVal = dyn_cast(SplatVal)) { if (ConstVal->isOne()) return getPTrue(DAG, dl, VT, AArch64SVEPredPattern::all); // TODO: Add special case for constant false } // The general case of i1. There isn't any natural way to do this, // so we use some trickery with whilelo. SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal, DAG.getValueType(MVT::i1)); SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, MVT::i64); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID, DAG.getConstant(0, dl, MVT::i64), SplatVal); } case MVT::i8: case MVT::i16: case MVT::i32: SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32); break; case MVT::i64: SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); break; case MVT::f16: case MVT::bf16: case MVT::f32: case MVT::f64: // Fine as is break; default: report_fatal_error("Unsupported SPLAT_VECTOR input operand type"); } return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal); } SDValue AArch64TargetLowering::LowerDUPQLane(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); if (!isTypeLegal(VT) || !VT.isScalableVector()) return SDValue(); // Current lowering only supports the SVE-ACLE types. if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) return SDValue(); // The DUPQ operation is indepedent of element type so normalise to i64s. SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::nxv2i64, Op.getOperand(1)); SDValue Idx128 = Op.getOperand(2); // DUPQ can be used when idx is in range. auto *CIdx = dyn_cast(Idx128); if (CIdx && (CIdx->getZExtValue() <= 3)) { SDValue CI = DAG.getTargetConstant(CIdx->getZExtValue(), DL, MVT::i64); SDNode *DUPQ = DAG.getMachineNode(AArch64::DUP_ZZI_Q, DL, MVT::nxv2i64, V, CI); return DAG.getNode(ISD::BITCAST, DL, VT, SDValue(DUPQ, 0)); } // The ACLE says this must produce the same result as: // svtbl(data, svadd_x(svptrue_b64(), // svand_x(svptrue_b64(), svindex_u64(0, 1), 1), // index * 2)) SDValue One = DAG.getConstant(1, DL, MVT::i64); SDValue SplatOne = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, One); // create the vector 0,1,0,1,... SDValue Zero = DAG.getConstant(0, DL, MVT::i64); SDValue SV = DAG.getNode(AArch64ISD::INDEX_VECTOR, DL, MVT::nxv2i64, Zero, One); SV = DAG.getNode(ISD::AND, DL, MVT::nxv2i64, SV, SplatOne); // create the vector idx64,idx64+1,idx64,idx64+1,... SDValue Idx64 = DAG.getNode(ISD::ADD, DL, MVT::i64, Idx128, Idx128); SDValue SplatIdx64 = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Idx64); SDValue ShuffleMask = DAG.getNode(ISD::ADD, DL, MVT::nxv2i64, SV, SplatIdx64); // create the vector Val[idx64],Val[idx64+1],Val[idx64],Val[idx64+1],... SDValue TBL = DAG.getNode(AArch64ISD::TBL, DL, MVT::nxv2i64, V, ShuffleMask); return DAG.getNode(ISD::BITCAST, DL, VT, TBL); } static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, APInt &UndefBits) { EVT VT = BVN->getValueType(0); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; for (unsigned i = 0; i < NumSplats; ++i) { CnstBits <<= SplatBitSize; UndefBits <<= SplatBitSize; CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); } return true; } return false; } // Try 64-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64; if (AArch64_AM::isAdvSIMDModImmType10(Value)) { Value = AArch64_AM::encodeAdvSIMDModImmType10(Value); SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 32-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits, const SDValue *LHS = nullptr) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; bool isAdvSIMDModImm = false; uint64_t Shift; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType1(Value); Shift = 0; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType2(Value); Shift = 8; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType3(Value); Shift = 16; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType4(Value); Shift = 24; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov; if (LHS) Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); else Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 16-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits, const SDValue *LHS = nullptr) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; bool isAdvSIMDModImm = false; uint64_t Shift; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType5(Value); Shift = 0; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType6(Value); Shift = 8; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov; if (LHS) Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); else Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 32-bit splatted SIMD immediate with shifted ones. static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; bool isAdvSIMDModImm = false; uint64_t Shift; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType7(Value); Shift = 264; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType8(Value); Shift = 272; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 8-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; if (AArch64_AM::isAdvSIMDModImmType9(Value)) { Value = AArch64_AM::encodeAdvSIMDModImmType9(Value); SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try FP splatted SIMD immediate. static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); bool isWide = (VT.getSizeInBits() == 128); MVT MovTy; bool isAdvSIMDModImm = false; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType11(Value); MovTy = isWide ? MVT::v4f32 : MVT::v2f32; } else if (isWide && (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType12(Value); MovTy = MVT::v2f64; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Specialized code to quickly find if PotentialBVec is a BuildVector that // consists of only the same constant int value, returned in reference arg // ConstVal static bool isAllConstantBuildVector(const SDValue &PotentialBVec, uint64_t &ConstVal) { BuildVectorSDNode *Bvec = dyn_cast(PotentialBVec); if (!Bvec) return false; ConstantSDNode *FirstElt = dyn_cast(Bvec->getOperand(0)); if (!FirstElt) return false; EVT VT = Bvec->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); for (unsigned i = 1; i < NumElts; ++i) if (dyn_cast(Bvec->getOperand(i)) != FirstElt) return false; ConstVal = FirstElt->getZExtValue(); return true; } static unsigned getIntrinsicID(const SDNode *N) { unsigned Opcode = N->getOpcode(); switch (Opcode) { default: return Intrinsic::not_intrinsic; case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = cast(N->getOperand(0))->getZExtValue(); if (IID < Intrinsic::num_intrinsics) return IID; return Intrinsic::not_intrinsic; } } } // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a // BUILD_VECTORs with constant element C1, C2 is a constant, and: // - for the SLI case: C1 == ~(Ones(ElemSizeInBits) << C2) // - for the SRI case: C1 == ~(Ones(ElemSizeInBits) >> C2) // The (or (lsl Y, C2), (and X, BvecC1)) case is also handled. static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); SDLoc DL(N); SDValue And; SDValue Shift; SDValue FirstOp = N->getOperand(0); unsigned FirstOpc = FirstOp.getOpcode(); SDValue SecondOp = N->getOperand(1); unsigned SecondOpc = SecondOp.getOpcode(); // Is one of the operands an AND or a BICi? The AND may have been optimised to // a BICi in order to use an immediate instead of a register. // Is the other operand an shl or lshr? This will have been turned into: // AArch64ISD::VSHL vector, #shift or AArch64ISD::VLSHR vector, #shift. if ((FirstOpc == ISD::AND || FirstOpc == AArch64ISD::BICi) && (SecondOpc == AArch64ISD::VSHL || SecondOpc == AArch64ISD::VLSHR)) { And = FirstOp; Shift = SecondOp; } else if ((SecondOpc == ISD::AND || SecondOpc == AArch64ISD::BICi) && (FirstOpc == AArch64ISD::VSHL || FirstOpc == AArch64ISD::VLSHR)) { And = SecondOp; Shift = FirstOp; } else return SDValue(); bool IsAnd = And.getOpcode() == ISD::AND; bool IsShiftRight = Shift.getOpcode() == AArch64ISD::VLSHR; // Is the shift amount constant? ConstantSDNode *C2node = dyn_cast(Shift.getOperand(1)); if (!C2node) return SDValue(); uint64_t C1; if (IsAnd) { // Is the and mask vector all constant? if (!isAllConstantBuildVector(And.getOperand(1), C1)) return SDValue(); } else { // Reconstruct the corresponding AND immediate from the two BICi immediates. ConstantSDNode *C1nodeImm = dyn_cast(And.getOperand(1)); ConstantSDNode *C1nodeShift = dyn_cast(And.getOperand(2)); assert(C1nodeImm && C1nodeShift); C1 = ~(C1nodeImm->getZExtValue() << C1nodeShift->getZExtValue()); } // Is C1 == ~(Ones(ElemSizeInBits) << C2) or // C1 == ~(Ones(ElemSizeInBits) >> C2), taking into account // how much one can shift elements of a particular size? uint64_t C2 = C2node->getZExtValue(); unsigned ElemSizeInBits = VT.getScalarSizeInBits(); if (C2 > ElemSizeInBits) return SDValue(); APInt C1AsAPInt(ElemSizeInBits, C1); APInt RequiredC1 = IsShiftRight ? APInt::getHighBitsSet(ElemSizeInBits, C2) : APInt::getLowBitsSet(ElemSizeInBits, C2); if (C1AsAPInt != RequiredC1) return SDValue(); SDValue X = And.getOperand(0); SDValue Y = Shift.getOperand(0); unsigned Inst = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; SDValue ResultSLI = DAG.getNode(Inst, DL, VT, X, Y, Shift.getOperand(1)); LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n"); LLVM_DEBUG(N->dump(&DAG)); LLVM_DEBUG(dbgs() << "into: \n"); LLVM_DEBUG(ResultSLI->dump(&DAG)); ++NumShiftInserts; return ResultSLI; } SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, SelectionDAG &DAG) const { if (useSVEForFixedLengthVectorVT(Op.getValueType())) return LowerToScalableOp(Op, DAG); // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) return Res; EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getOperand(1).getNode()); if (!BVN) { // OR commutes, so try swapping the operands. LHS = Op.getOperand(1); BVN = dyn_cast(Op.getOperand(0).getNode()); } if (!BVN) return Op; APInt DefBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); if (resolveBuildVector(BVN, DefBits, UndefBits)) { SDValue NewOp; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, DefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, DefBits, &LHS))) return NewOp; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, UndefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, UndefBits, &LHS))) return NewOp; } // We can always fall back to a non-immediate OR. return Op; } // Normalize the operands of BUILD_VECTOR. The value of constant operands will // be truncated to fit element width. static SDValue NormalizeBuildVector(SDValue Op, SelectionDAG &DAG) { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT EltTy= VT.getVectorElementType(); if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) return Op; SmallVector Ops; for (SDValue Lane : Op->ops()) { // For integer vectors, type legalization would have promoted the // operands already. Otherwise, if Op is a floating-point splat // (with operands cast to integers), then the only possibilities // are constants and UNDEFs. if (auto *CstLane = dyn_cast(Lane)) { APInt LowBits(EltTy.getSizeInBits(), CstLane->getZExtValue()); Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); } else if (Lane.getNode()->isUndef()) { Lane = DAG.getUNDEF(MVT::i32); } else { assert(Lane.getValueType() == MVT::i32 && "Unexpected BUILD_VECTOR operand type"); } Ops.push_back(Lane); } return DAG.getBuildVector(VT, dl, Ops); } static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); APInt DefBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); BuildVectorSDNode *BVN = cast(Op.getNode()); if (resolveBuildVector(BVN, DefBits, UndefBits)) { SDValue NewOp; if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) return NewOp; DefBits = ~DefBits; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) return NewOp; DefBits = UndefBits; if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) return NewOp; DefBits = ~UndefBits; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) return NewOp; } return SDValue(); } SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); // Try to build a simple constant vector. Op = NormalizeBuildVector(Op, DAG); if (VT.isInteger()) { // Certain vector constants, used to express things like logical NOT and // arithmetic NEG, are passed through unmodified. This allows special // patterns for these operations to match, which will lower these constants // to whatever is proven necessary. BuildVectorSDNode *BVN = cast(Op.getNode()); if (BVN->isConstant()) if (ConstantSDNode *Const = BVN->getConstantSplatNode()) { unsigned BitSize = VT.getVectorElementType().getSizeInBits(); APInt Val(BitSize, Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue()); if (Val.isNullValue() || Val.isAllOnesValue()) return Op; } } if (SDValue V = ConstantBuildVector(Op, DAG)) return V; // Scan through the operands to find some interesting properties we can // exploit: // 1) If only one value is used, we can use a DUP, or // 2) if only the low element is not undef, we can just insert that, or // 3) if only one constant value is used (w/ some non-constant lanes), // we can splat the constant value into the whole vector then fill // in the non-constant lanes. // 4) FIXME: If different constant values are used, but we can intelligently // select the values we'll be overwriting for the non-constant // lanes such that we can directly materialize the vector // some other way (MOVI, e.g.), we can be sneaky. // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP. SDLoc dl(Op); unsigned NumElts = VT.getVectorNumElements(); bool isOnlyLowElement = true; bool usesOnlyOneValue = true; bool usesOnlyOneConstantValue = true; bool isConstant = true; bool AllLanesExtractElt = true; unsigned NumConstantLanes = 0; unsigned NumDifferentLanes = 0; unsigned NumUndefLanes = 0; SDValue Value; SDValue ConstantValue; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) AllLanesExtractElt = false; if (V.isUndef()) { ++NumUndefLanes; continue; } if (i > 0) isOnlyLowElement = false; if (!isa(V) && !isa(V)) isConstant = false; if (isa(V) || isa(V)) { ++NumConstantLanes; if (!ConstantValue.getNode()) ConstantValue = V; else if (ConstantValue != V) usesOnlyOneConstantValue = false; } if (!Value.getNode()) Value = V; else if (V != Value) { usesOnlyOneValue = false; ++NumDifferentLanes; } } if (!Value.getNode()) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n"); return DAG.getUNDEF(VT); } // Convert BUILD_VECTOR where all elements but the lowest are undef into // SCALAR_TO_VECTOR, except for when we have a single-element constant vector // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR. if (isOnlyLowElement && !(NumElts == 1 && isa(Value))) { LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " "SCALAR_TO_VECTOR node\n"); return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); } if (AllLanesExtractElt) { SDNode *Vector = nullptr; bool Even = false; bool Odd = false; // Check whether the extract elements match the Even pattern <0,2,4,...> or // the Odd pattern <1,3,5,...>. for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); const SDNode *N = V.getNode(); if (!isa(N->getOperand(1))) break; SDValue N0 = N->getOperand(0); // All elements are extracted from the same vector. if (!Vector) { Vector = N0.getNode(); // Check that the type of EXTRACT_VECTOR_ELT matches the type of // BUILD_VECTOR. if (VT.getVectorElementType() != N0.getValueType().getVectorElementType()) break; } else if (Vector != N0.getNode()) { Odd = false; Even = false; break; } // Extracted values are either at Even indices <0,2,4,...> or at Odd // indices <1,3,5,...>. uint64_t Val = N->getConstantOperandVal(1); if (Val == 2 * i) { Even = true; continue; } if (Val - 1 == 2 * i) { Odd = true; continue; } // Something does not match: abort. Odd = false; Even = false; break; } if (Even || Odd) { SDValue LHS = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), DAG.getConstant(0, dl, MVT::i64)); SDValue RHS = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), DAG.getConstant(NumElts, dl, MVT::i64)); if (Even && !Odd) return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS, RHS); if (Odd && !Even) return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS, RHS); } } // Use DUP for non-constant splats. For f32 constant splats, reduce to // i32 and try again. if (usesOnlyOneValue) { if (!isConstant) { if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Value.getValueType() != VT) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n"); return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); } // This is actually a DUPLANExx operation, which keeps everything vectory. SDValue Lane = Value.getOperand(1); Value = Value.getOperand(0); if (Value.getValueSizeInBits() == 64) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " "widening it\n"); Value = WidenVector(Value, DAG); } unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); return DAG.getNode(Opcode, dl, VT, Value, Lane); } if (VT.getVectorElementType().isFloatingPoint()) { SmallVector Ops; EVT EltTy = VT.getVectorElementType(); assert ((EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 || EltTy == MVT::f64) && "Unsupported floating-point vector type"); LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " "BITCASTS, and try again\n"); MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: "; Val.dump();); Val = LowerBUILD_VECTOR(Val, DAG); if (Val.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, Val); } } // If we need to insert a small number of different non-constant elements and // the vector width is sufficiently large, prefer using DUP with the common // value and INSERT_VECTOR_ELT for the different lanes. If DUP is preferred, // skip the constant lane handling below. bool PreferDUPAndInsert = !isConstant && NumDifferentLanes >= 1 && NumDifferentLanes < ((NumElts - NumUndefLanes) / 2) && NumDifferentLanes >= NumConstantLanes; // If there was only one constant value used and for more than one lane, // start by splatting that value, then replace the non-constant lanes. This // is better than the default, which will perform a separate initialization // for each lane. if (!PreferDUPAndInsert && NumConstantLanes > 0 && usesOnlyOneConstantValue) { // Firstly, try to materialize the splat constant. SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue), Val = ConstantBuildVector(Vec, DAG); if (!Val) { // Otherwise, materialize the constant and splat it. Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); DAG.ReplaceAllUsesWith(Vec.getNode(), &Val); } // Now insert the non-constant lanes. for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); if (!isa(V) && !isa(V)) // Note that type legalization likely mucked about with the VT of the // source operand, so we may have to convert it here before inserting. Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); } return Val; } // This will generate a load from the constant pool. if (isConstant) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " "expansion\n"); return SDValue(); } // Empirical tests suggest this is rarely worth it for vectors of length <= 2. if (NumElts >= 4) { if (SDValue shuffle = ReconstructShuffle(Op, DAG)) return shuffle; } if (PreferDUPAndInsert) { // First, build a constant vector with the common element. SmallVector Ops; for (unsigned I = 0; I < NumElts; ++I) Ops.push_back(Value); SDValue NewVector = LowerBUILD_VECTOR(DAG.getBuildVector(VT, dl, Ops), DAG); // Next, insert the elements that do not match the common value. for (unsigned I = 0; I < NumElts; ++I) if (Op.getOperand(I) != Value) NewVector = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, NewVector, Op.getOperand(I), DAG.getConstant(I, dl, MVT::i64)); return NewVector; } // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we // know the default expansion would otherwise fall back on something even // worse. For a vector with one or two non-undef values, that's // scalar_to_vector for the elements followed by a shuffle (provided the // shuffle is valid for the target) and materialization element by element // on the stack followed by a load for everything else. if (!isConstant && !usesOnlyOneValue) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " "of INSERT_VECTOR_ELT\n"); SDValue Vec = DAG.getUNDEF(VT); SDValue Op0 = Op.getOperand(0); unsigned i = 0; // Use SCALAR_TO_VECTOR for lane zero to // a) Avoid a RMW dependency on the full vector register, and // b) Allow the register coalescer to fold away the copy if the // value is already in an S or D register, and we're forced to emit an // INSERT_SUBREG that we can't fold anywhere. // // We also allow types like i8 and i16 which are illegal scalar but legal // vector element types. After type-legalization the inserted value is // extended (i32) and it is safe to cast them to the vector type by ignoring // the upper bits of the lowest lane (e.g. v8i8, v4i16). if (!Op0.isUndef()) { LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n"); Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0); ++i; } LLVM_DEBUG(if (i < NumElts) dbgs() << "Creating nodes for the other vector elements:\n";); for (; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.isUndef()) continue; SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); } return Vec; } LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " "better alternative\n"); return SDValue(); } SDValue AArch64TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType().isScalableVector() && isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!"); if (isTypeLegal(Op.getOperand(0).getValueType()) && Op.getNumOperands() == 2) return Op; return SDValue(); } SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); // Check for non-constant or out of range lane. EVT VT = Op.getOperand(0).getValueType(); ConstantSDNode *CI = dyn_cast(Op.getOperand(2)); if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) return SDValue(); // Insertion/extraction are legal for V128 types. if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f16 || VT == MVT::v8bf16) return Op; if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 && VT != MVT::v4bf16) return SDValue(); // For V64 types, we perform insertion by expanding the value // to a V128 type and perform the insertion on that. SDLoc DL(Op); SDValue WideVec = WidenVector(Op.getOperand(0), DAG); EVT WideTy = WideVec.getValueType(); SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, Op.getOperand(1), Op.getOperand(2)); // Re-narrow the resultant vector. return NarrowVector(Node, DAG); } SDValue AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); // Check for non-constant or out of range lane. EVT VT = Op.getOperand(0).getValueType(); ConstantSDNode *CI = dyn_cast(Op.getOperand(1)); if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) return SDValue(); // Insertion/extraction are legal for V128 types. if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f16 || VT == MVT::v8bf16) return Op; if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 && VT != MVT::v4bf16) return SDValue(); // For V64 types, we perform extraction by expanding the value // to a V128 type and perform the extraction on that. SDLoc DL(Op); SDValue WideVec = WidenVector(Op.getOperand(0), DAG); EVT WideTy = WideVec.getValueType(); EVT ExtrTy = WideTy.getVectorElementType(); if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) ExtrTy = MVT::i32; // For extractions, we just return the result directly. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, Op.getOperand(1)); } SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType().isFixedLengthVector() && "Only cases that extract a fixed length vector are supported!"); EVT InVT = Op.getOperand(0).getValueType(); unsigned Idx = cast(Op.getOperand(1))->getZExtValue(); unsigned Size = Op.getValueSizeInBits(); if (InVT.isScalableVector()) { // This will be matched by custom code during ISelDAGToDAG. if (Idx == 0 && isPackedVectorType(InVT, DAG)) return Op; return SDValue(); } // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. if (Idx == 0 && InVT.getSizeInBits() <= 128) return Op; // If this is extracting the upper 64-bits of a 128-bit vector, we match // that directly. if (Size == 64 && Idx * InVT.getScalarSizeInBits() == 64 && InVT.getSizeInBits() == 128) return Op; return SDValue(); } SDValue AArch64TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType().isScalableVector() && "Only expect to lower inserts into scalable vectors!"); EVT InVT = Op.getOperand(1).getValueType(); unsigned Idx = cast(Op.getOperand(2))->getZExtValue(); if (InVT.isScalableVector()) { SDLoc DL(Op); EVT VT = Op.getValueType(); if (!isTypeLegal(VT) || !VT.isInteger()) return SDValue(); SDValue Vec0 = Op.getOperand(0); SDValue Vec1 = Op.getOperand(1); // Ensure the subvector is half the size of the main vector. if (VT.getVectorElementCount() != (InVT.getVectorElementCount() * 2)) return SDValue(); // Extend elements of smaller vector... EVT WideVT = InVT.widenIntegerVectorElementType(*(DAG.getContext())); SDValue ExtVec = DAG.getNode(ISD::ANY_EXTEND, DL, WideVT, Vec1); if (Idx == 0) { SDValue HiVec0 = DAG.getNode(AArch64ISD::UUNPKHI, DL, WideVT, Vec0); return DAG.getNode(AArch64ISD::UZP1, DL, VT, ExtVec, HiVec0); } else if (Idx == InVT.getVectorMinNumElements()) { SDValue LoVec0 = DAG.getNode(AArch64ISD::UUNPKLO, DL, WideVT, Vec0); return DAG.getNode(AArch64ISD::UZP1, DL, VT, LoVec0, ExtVec); } return SDValue(); } // This will be matched by custom code during ISelDAGToDAG. if (Idx == 0 && isPackedVectorType(InVT, DAG) && Op.getOperand(0).isUndef()) return Op; return SDValue(); } SDValue AArch64TargetLowering::LowerDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true)) return LowerFixedLengthVectorIntDivideToSVE(Op, DAG); assert(VT.isScalableVector() && "Expected a scalable vector."); bool Signed = Op.getOpcode() == ISD::SDIV; unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED; if (VT == MVT::nxv4i32 || VT == MVT::nxv2i64) return LowerToPredicatedOp(Op, DAG, PredOpcode); // SVE doesn't have i8 and i16 DIV operations; widen them to 32-bit // operations, and truncate the result. EVT WidenedVT; if (VT == MVT::nxv16i8) WidenedVT = MVT::nxv8i16; else if (VT == MVT::nxv8i16) WidenedVT = MVT::nxv4i32; else llvm_unreachable("Unexpected Custom DIV operation"); SDLoc dl(Op); unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI; SDValue Op0Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(0)); SDValue Op1Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(1)); SDValue Op0Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(0)); SDValue Op1Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(1)); SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Lo, Op1Lo); SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Hi, Op1Hi); return DAG.getNode(AArch64ISD::UZP1, dl, VT, ResultLo, ResultHi); } bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef M, EVT VT) const { // Currently no fixed length shuffles that require SVE are legal. if (useSVEForFixedLengthVectorVT(VT)) return false; if (VT.getVectorNumElements() == 4 && (VT.is128BitVector() || VT.is64BitVector())) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (M[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = M[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + PFIndexes[2] * 9 + PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return true; } bool DummyBool; int DummyInt; unsigned DummyUnsigned; return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || isEXTMask(M, VT, DummyBool, DummyUnsigned) || // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || isZIPMask(M, VT, DummyUnsigned) || isTRN_v_undef_Mask(M, VT, DummyUnsigned) || isUZP_v_undef_Mask(M, VT, DummyUnsigned) || isZIP_v_undef_Mask(M, VT, DummyUnsigned) || isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || isConcatMask(M, VT, VT.getSizeInBits() == 128)); } /// getVShiftImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift operation, where all the elements of the /// build_vector must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// isVShiftLImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits for a left shift; or /// 0 <= Value <= ElementBits for a long left shift. static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getScalarSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); } /// isVShiftRImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift right operation. The value must be in the range: /// 1 <= Value <= ElementBits for a right shift; or static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getScalarSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); } SDValue AArch64TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.getScalarType() == MVT::i1) { // Lower i1 truncate to `(x & 1) != 0`. SDLoc dl(Op); EVT OpVT = Op.getOperand(0).getValueType(); SDValue Zero = DAG.getConstant(0, dl, OpVT); SDValue One = DAG.getConstant(1, dl, OpVT); SDValue And = DAG.getNode(ISD::AND, dl, OpVT, Op.getOperand(0), One); return DAG.getSetCC(dl, VT, And, Zero, ISD::SETNE); } if (!VT.isVector() || VT.isScalableVector()) return SDValue(); if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType())) return LowerFixedLengthVectorTruncateToSVE(Op, DAG); return SDValue(); } SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); int64_t Cnt; if (!Op.getOperand(1).getValueType().isVector()) return Op; unsigned EltSize = VT.getScalarSizeInBits(); switch (Op.getOpcode()) { default: llvm_unreachable("unexpected shift opcode"); case ISD::SHL: if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT)) return LowerToPredicatedOp(Op, DAG, AArch64ISD::SHL_PRED); if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), DAG.getConstant(Cnt, DL, MVT::i32)); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, MVT::i32), Op.getOperand(0), Op.getOperand(1)); case ISD::SRA: case ISD::SRL: if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT)) { unsigned Opc = Op.getOpcode() == ISD::SRA ? AArch64ISD::SRA_PRED : AArch64ISD::SRL_PRED; return LowerToPredicatedOp(Op, DAG, Opc); } // Right shift immediate if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { unsigned Opc = (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; return DAG.getNode(Opc, DL, VT, Op.getOperand(0), DAG.getConstant(Cnt, DL, MVT::i32)); } // Right shift register. Note, there is not a shift right register // instruction, but the shift left register instruction takes a signed // value, where negative numbers specify a right shift. unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl : Intrinsic::aarch64_neon_ushl; // negate the shift amount SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); SDValue NegShiftLeft = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), NegShift); return NegShiftLeft; } return SDValue(); } static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, AArch64CC::CondCode CC, bool NoNans, EVT VT, const SDLoc &dl, SelectionDAG &DAG) { EVT SrcVT = LHS.getValueType(); assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && "function only supposed to emit natural comparisons"); BuildVectorSDNode *BVN = dyn_cast(RHS.getNode()); APInt CnstBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); bool IsZero = IsCnst && (CnstBits == 0); if (SrcVT.getVectorElementType().isFloatingPoint()) { switch (CC) { default: return SDValue(); case AArch64CC::NE: { SDValue Fcmeq; if (IsZero) Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); else Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); return DAG.getNOT(dl, Fcmeq, VT); } case AArch64CC::EQ: if (IsZero) return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); case AArch64CC::GE: if (IsZero) return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); case AArch64CC::GT: if (IsZero) return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); case AArch64CC::LS: if (IsZero) return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); case AArch64CC::LT: if (!NoNans) return SDValue(); // If we ignore NaNs then we can use to the MI implementation. LLVM_FALLTHROUGH; case AArch64CC::MI: if (IsZero) return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); } } switch (CC) { default: return SDValue(); case AArch64CC::NE: { SDValue Cmeq; if (IsZero) Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); else Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); return DAG.getNOT(dl, Cmeq, VT); } case AArch64CC::EQ: if (IsZero) return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); case AArch64CC::GE: if (IsZero) return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); case AArch64CC::GT: if (IsZero) return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); case AArch64CC::LE: if (IsZero) return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); case AArch64CC::LS: return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); case AArch64CC::LO: return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); case AArch64CC::LT: if (IsZero) return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); case AArch64CC::HI: return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); case AArch64CC::HS: return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); } } SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isScalableVector()) { if (Op.getOperand(0).getValueType().isFloatingPoint()) return Op; return LowerToPredicatedOp(Op, DAG, AArch64ISD::SETCC_MERGE_ZERO); } if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType())) return LowerFixedLengthVectorSetccToSVE(Op, DAG); ISD::CondCode CC = cast(Op.getOperand(2))->get(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); SDLoc dl(Op); if (LHS.getValueType().getVectorElementType().isInteger()) { assert(LHS.getValueType() == RHS.getValueType()); AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); SDValue Cmp = EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); } const bool FullFP16 = static_cast(DAG.getSubtarget()).hasFullFP16(); // Make v4f16 (only) fcmp operations utilise vector instructions // v8f16 support will be a litle more complicated if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) { if (LHS.getValueType().getVectorNumElements() == 4) { LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS); SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC); DAG.ReplaceAllUsesWith(Op, NewSetcc); CmpVT = MVT::v4i32; } else return SDValue(); } assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) || LHS.getValueType().getVectorElementType() != MVT::f128); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two branches to implement. AArch64CC::CondCode CC1, CC2; bool ShouldInvert; changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; SDValue Cmp = EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); if (!Cmp.getNode()) return SDValue(); if (CC2 != AArch64CC::AL) { SDValue Cmp2 = EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); if (!Cmp2.getNode()) return SDValue(); Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); } Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); if (ShouldInvert) Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); return Cmp; } static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp, SelectionDAG &DAG) { SDValue VecOp = ScalarOp.getOperand(0); auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx, DAG.getConstant(0, DL, MVT::i64)); } SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); // Try to lower fixed length reductions to SVE. EVT SrcVT = Src.getValueType(); bool OverrideNEON = Op.getOpcode() == ISD::VECREDUCE_AND || Op.getOpcode() == ISD::VECREDUCE_OR || Op.getOpcode() == ISD::VECREDUCE_XOR || Op.getOpcode() == ISD::VECREDUCE_FADD || (Op.getOpcode() != ISD::VECREDUCE_ADD && SrcVT.getVectorElementType() == MVT::i64); if (SrcVT.isScalableVector() || useSVEForFixedLengthVectorVT(SrcVT, OverrideNEON)) { if (SrcVT.getVectorElementType() == MVT::i1) return LowerPredReductionToSVE(Op, DAG); switch (Op.getOpcode()) { case ISD::VECREDUCE_ADD: return LowerReductionToSVE(AArch64ISD::UADDV_PRED, Op, DAG); case ISD::VECREDUCE_AND: return LowerReductionToSVE(AArch64ISD::ANDV_PRED, Op, DAG); case ISD::VECREDUCE_OR: return LowerReductionToSVE(AArch64ISD::ORV_PRED, Op, DAG); case ISD::VECREDUCE_SMAX: return LowerReductionToSVE(AArch64ISD::SMAXV_PRED, Op, DAG); case ISD::VECREDUCE_SMIN: return LowerReductionToSVE(AArch64ISD::SMINV_PRED, Op, DAG); case ISD::VECREDUCE_UMAX: return LowerReductionToSVE(AArch64ISD::UMAXV_PRED, Op, DAG); case ISD::VECREDUCE_UMIN: return LowerReductionToSVE(AArch64ISD::UMINV_PRED, Op, DAG); case ISD::VECREDUCE_XOR: return LowerReductionToSVE(AArch64ISD::EORV_PRED, Op, DAG); case ISD::VECREDUCE_FADD: return LowerReductionToSVE(AArch64ISD::FADDV_PRED, Op, DAG); case ISD::VECREDUCE_FMAX: return LowerReductionToSVE(AArch64ISD::FMAXNMV_PRED, Op, DAG); case ISD::VECREDUCE_FMIN: return LowerReductionToSVE(AArch64ISD::FMINNMV_PRED, Op, DAG); default: llvm_unreachable("Unhandled fixed length reduction"); } } // Lower NEON reductions. SDLoc dl(Op); switch (Op.getOpcode()) { case ISD::VECREDUCE_ADD: return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG); case ISD::VECREDUCE_SMAX: return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG); case ISD::VECREDUCE_SMIN: return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG); case ISD::VECREDUCE_UMAX: return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG); case ISD::VECREDUCE_UMIN: return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG); case ISD::VECREDUCE_FMAX: { return DAG.getNode( ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32), Src); } case ISD::VECREDUCE_FMIN: { return DAG.getNode( ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32), Src); } default: llvm_unreachable("Unhandled reduction"); } } SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const { auto &Subtarget = static_cast(DAG.getSubtarget()); if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics()) return SDValue(); // LSE has an atomic load-add instruction, but not a load-sub. SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); SDValue RHS = Op.getOperand(2); AtomicSDNode *AN = cast(Op.getNode()); RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS); return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(), Op.getOperand(0), Op.getOperand(1), RHS, AN->getMemOperand()); } SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op, SelectionDAG &DAG) const { auto &Subtarget = static_cast(DAG.getSubtarget()); if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics()) return SDValue(); // LSE has an atomic load-clear instruction, but not a load-and. SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); SDValue RHS = Op.getOperand(2); AtomicSDNode *AN = cast(Op.getNode()); RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS); return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(), Op.getOperand(0), Op.getOperand(1), RHS, AN->getMemOperand()); } SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC( SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const { SDLoc dl(Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0); const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask(); if (Subtarget->hasCustomCallingConv()) TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size, DAG.getConstant(4, dl, MVT::i64)); Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue()); Chain = DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue), Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64), DAG.getRegisterMask(Mask), Chain.getValue(1)); // To match the actual intent better, we should read the output from X15 here // again (instead of potentially spilling it to the stack), but rereading Size // from X15 here doesn't work at -O0, since it thinks that X15 is undefined // here. Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size, DAG.getConstant(4, dl, MVT::i64)); return Chain; } SDValue AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "Only Windows alloca probing supported"); SDLoc dl(Op); // Get the inputs. SDNode *Node = Op.getNode(); SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); MaybeAlign Align = cast(Op.getOperand(2))->getMaybeAlignValue(); EVT VT = Node->getValueType(0); if (DAG.getMachineFunction().getFunction().hasFnAttribute( "no-stack-arg-probe")) { SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); Chain = SP.getValue(1); SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); if (Align) SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); SDValue Ops[2] = {SP, Chain}; return DAG.getMergeValues(Ops, dl); } Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG); SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); Chain = SP.getValue(1); SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); if (Align) SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); SDValue Ops[2] = {SP, Chain}; return DAG.getMergeValues(Ops, dl); } SDValue AArch64TargetLowering::LowerVSCALE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT != MVT::i64 && "Expected illegal VSCALE node"); SDLoc DL(Op); APInt MulImm = cast(Op.getOperand(0))->getAPIntValue(); return DAG.getZExtOrTrunc(DAG.getVScale(DL, MVT::i64, MulImm.sextOrSelf(64)), DL, VT); } /// Set the IntrinsicInfo for the `aarch64_sve_st` intrinsics. template static bool setInfoSVEStN(const AArch64TargetLowering &TLI, const DataLayout &DL, AArch64TargetLowering::IntrinsicInfo &Info, const CallInst &CI) { Info.opc = ISD::INTRINSIC_VOID; // Retrieve EC from first vector argument. const EVT VT = TLI.getMemValueType(DL, CI.getArgOperand(0)->getType()); ElementCount EC = VT.getVectorElementCount(); #ifndef NDEBUG // Check the assumption that all input vectors are the same type. for (unsigned I = 0; I < NumVecs; ++I) assert(VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) && "Invalid type."); #endif // memVT is `NumVecs * VT`. Info.memVT = EVT::getVectorVT(CI.getType()->getContext(), VT.getScalarType(), EC * NumVecs); Info.ptrVal = CI.getArgOperand(CI.getNumArgOperands() - 1); Info.offset = 0; Info.align.reset(); Info.flags = MachineMemOperand::MOStore; return true; } /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment /// specified in the intrinsic calls. bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { auto &DL = I.getModule()->getDataLayout(); switch (Intrinsic) { case Intrinsic::aarch64_sve_st2: return setInfoSVEStN<2>(*this, DL, Info, I); case Intrinsic::aarch64_sve_st3: return setInfoSVEStN<3>(*this, DL, Info, I); case Intrinsic::aarch64_sve_st4: return setInfoSVEStN<4>(*this, DL, Info, I); case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: case Intrinsic::aarch64_neon_ld1x2: case Intrinsic::aarch64_neon_ld1x3: case Intrinsic::aarch64_neon_ld1x4: case Intrinsic::aarch64_neon_ld2lane: case Intrinsic::aarch64_neon_ld3lane: case Intrinsic::aarch64_neon_ld4lane: case Intrinsic::aarch64_neon_ld2r: case Intrinsic::aarch64_neon_ld3r: case Intrinsic::aarch64_neon_ld4r: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); Info.offset = 0; Info.align.reset(); // volatile loads with NEON intrinsics not supported Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: case Intrinsic::aarch64_neon_st1x2: case Intrinsic::aarch64_neon_st1x3: case Intrinsic::aarch64_neon_st1x4: case Intrinsic::aarch64_neon_st2lane: case Intrinsic::aarch64_neon_st3lane: case Intrinsic::aarch64_neon_st4lane: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. unsigned NumElts = 0; for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { Type *ArgTy = I.getArgOperand(ArgI)->getType(); if (!ArgTy->isVectorTy()) break; NumElts += DL.getTypeSizeInBits(ArgTy) / 64; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); Info.offset = 0; Info.align.reset(); // volatile stores with NEON intrinsics not supported Info.flags = MachineMemOperand::MOStore; return true; } case Intrinsic::aarch64_ldaxr: case Intrinsic::aarch64_ldxr: { PointerType *PtrTy = cast(I.getArgOperand(0)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = DL.getABITypeAlign(PtrTy->getElementType()); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; return true; } case Intrinsic::aarch64_stlxr: case Intrinsic::aarch64_stxr: { PointerType *PtrTy = cast(I.getArgOperand(1)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = DL.getABITypeAlign(PtrTy->getElementType()); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } case Intrinsic::aarch64_ldaxp: case Intrinsic::aarch64_ldxp: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(16); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; return true; case Intrinsic::aarch64_stlxp: case Intrinsic::aarch64_stxp: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = Align(16); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; case Intrinsic::aarch64_sve_ldnt1: { PointerType *PtrTy = cast(I.getArgOperand(1)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(I.getType()); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = DL.getABITypeAlign(PtrTy->getElementType()); Info.flags = MachineMemOperand::MOLoad; if (Intrinsic == Intrinsic::aarch64_sve_ldnt1) Info.flags |= MachineMemOperand::MONonTemporal; return true; } case Intrinsic::aarch64_sve_stnt1: { PointerType *PtrTy = cast(I.getArgOperand(2)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(I.getOperand(0)->getType()); Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = DL.getABITypeAlign(PtrTy->getElementType()); Info.flags = MachineMemOperand::MOStore; if (Intrinsic == Intrinsic::aarch64_sve_stnt1) Info.flags |= MachineMemOperand::MONonTemporal; return true; } default: break; } return false; } bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const { // TODO: This may be worth removing. Check regression tests for diffs. if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) return false; // If we're reducing the load width in order to avoid having to use an extra // instruction to do extension then it's probably a good idea. if (ExtTy != ISD::NON_EXTLOAD) return true; // Don't reduce load width if it would prevent us from combining a shift into // the offset. MemSDNode *Mem = dyn_cast(Load); assert(Mem); const SDValue &Base = Mem->getBasePtr(); if (Base.getOpcode() == ISD::ADD && Base.getOperand(1).getOpcode() == ISD::SHL && Base.getOperand(1).hasOneUse() && Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) { // The shift can be combined if it matches the size of the value being // loaded (and so reducing the width would make it not match). uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1); uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8; if (ShiftAmount == Log2_32(LoadBytes)) return false; } // We have no reason to disallow reducing the load width, so allow it. return true; } // Truncations from 64-bit GPR to 32-bit GPR is free. bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; uint64_t NumBits1 = Ty1->getPrimitiveSizeInBits().getFixedSize(); uint64_t NumBits2 = Ty2->getPrimitiveSizeInBits().getFixedSize(); return NumBits1 > NumBits2; } bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) return false; uint64_t NumBits1 = VT1.getFixedSizeInBits(); uint64_t NumBits2 = VT2.getFixedSizeInBits(); return NumBits1 > NumBits2; } /// Check if it is profitable to hoist instruction in then/else to if. /// Not profitable if I and it's user can form a FMA instruction /// because we prefer FMSUB/FMADD. bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { if (I->getOpcode() != Instruction::FMul) return true; if (!I->hasOneUse()) return true; Instruction *User = I->user_back(); if (User && !(User->getOpcode() == Instruction::FSub || User->getOpcode() == Instruction::FAdd)) return true; const TargetOptions &Options = getTargetMachine().Options; const Function *F = I->getFunction(); const DataLayout &DL = F->getParent()->getDataLayout(); Type *Ty = User->getOperand(0)->getType(); return !(isFMAFasterThanFMulAndFAdd(*F, Ty) && isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); } // All 32-bit GPR operations implicitly zero the high-half of the corresponding // 64-bit GPR. bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { EVT VT1 = Val.getValueType(); if (isZExtFree(VT1, VT2)) { return true; } if (Val.getOpcode() != ISD::LOAD) return false; // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && VT1.getSizeInBits() <= 32); } bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { if (isa(Ext)) return false; // Vector types are not free. if (Ext->getType()->isVectorTy()) return false; for (const Use &U : Ext->uses()) { // The extension is free if we can fold it with a left shift in an // addressing mode or an arithmetic operation: add, sub, and cmp. // Is there a shift? const Instruction *Instr = cast(U.getUser()); // Is this a constant shift? switch (Instr->getOpcode()) { case Instruction::Shl: if (!isa(Instr->getOperand(1))) return false; break; case Instruction::GetElementPtr: { gep_type_iterator GTI = gep_type_begin(Instr); auto &DL = Ext->getModule()->getDataLayout(); std::advance(GTI, U.getOperandNo()-1); Type *IdxTy = GTI.getIndexedType(); // This extension will end up with a shift because of the scaling factor. // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. // Get the shift amount based on the scaling factor: // log2(sizeof(IdxTy)) - log2(8). uint64_t ShiftAmt = countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3; // Is the constant foldable in the shift of the addressing mode? // I.e., shift amount is between 1 and 4 inclusive. if (ShiftAmt == 0 || ShiftAmt > 4) return false; break; } case Instruction::Trunc: // Check if this is a noop. // trunc(sext ty1 to ty2) to ty1. if (Instr->getType() == Ext->getOperand(0)->getType()) continue; LLVM_FALLTHROUGH; default: return false; } // At this point we can use the bfm family, so this extension is free // for that use. } return true; } /// Check if both Op1 and Op2 are shufflevector extracts of either the lower /// or upper half of the vector elements. static bool areExtractShuffleVectors(Value *Op1, Value *Op2) { auto areTypesHalfed = [](Value *FullV, Value *HalfV) { auto *FullTy = FullV->getType(); auto *HalfTy = HalfV->getType(); return FullTy->getPrimitiveSizeInBits().getFixedSize() == 2 * HalfTy->getPrimitiveSizeInBits().getFixedSize(); }; auto extractHalf = [](Value *FullV, Value *HalfV) { auto *FullVT = cast(FullV->getType()); auto *HalfVT = cast(HalfV->getType()); return FullVT->getNumElements() == 2 * HalfVT->getNumElements(); }; ArrayRef M1, M2; Value *S1Op1, *S2Op1; if (!match(Op1, m_Shuffle(m_Value(S1Op1), m_Undef(), m_Mask(M1))) || !match(Op2, m_Shuffle(m_Value(S2Op1), m_Undef(), m_Mask(M2)))) return false; // Check that the operands are half as wide as the result and we extract // half of the elements of the input vectors. if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) || !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2)) return false; // Check the mask extracts either the lower or upper half of vector // elements. int M1Start = -1; int M2Start = -1; int NumElements = cast(Op1->getType())->getNumElements() * 2; if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) || !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) || M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2))) return false; return true; } /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth /// of the vector elements. static bool areExtractExts(Value *Ext1, Value *Ext2) { auto areExtDoubled = [](Instruction *Ext) { return Ext->getType()->getScalarSizeInBits() == 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); }; if (!match(Ext1, m_ZExtOrSExt(m_Value())) || !match(Ext2, m_ZExtOrSExt(m_Value())) || !areExtDoubled(cast(Ext1)) || !areExtDoubled(cast(Ext2))) return false; return true; } /// Check if Op could be used with vmull_high_p64 intrinsic. static bool isOperandOfVmullHighP64(Value *Op) { Value *VectorOperand = nullptr; ConstantInt *ElementIndex = nullptr; return match(Op, m_ExtractElt(m_Value(VectorOperand), m_ConstantInt(ElementIndex))) && ElementIndex->getValue() == 1 && isa(VectorOperand->getType()) && cast(VectorOperand->getType())->getNumElements() == 2; } /// Check if Op1 and Op2 could be used with vmull_high_p64 intrinsic. static bool areOperandsOfVmullHighP64(Value *Op1, Value *Op2) { return isOperandOfVmullHighP64(Op1) && isOperandOfVmullHighP64(Op2); } /// Check if sinking \p I's operands to I's basic block is profitable, because /// the operands can be folded into a target instruction, e.g. /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2). bool AArch64TargetLowering::shouldSinkOperands( Instruction *I, SmallVectorImpl &Ops) const { if (!I->getType()->isVectorTy()) return false; if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { case Intrinsic::aarch64_neon_umull: if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) return false; Ops.push_back(&II->getOperandUse(0)); Ops.push_back(&II->getOperandUse(1)); return true; case Intrinsic::aarch64_neon_pmull64: if (!areOperandsOfVmullHighP64(II->getArgOperand(0), II->getArgOperand(1))) return false; Ops.push_back(&II->getArgOperandUse(0)); Ops.push_back(&II->getArgOperandUse(1)); return true; default: return false; } } switch (I->getOpcode()) { case Instruction::Sub: case Instruction::Add: { if (!areExtractExts(I->getOperand(0), I->getOperand(1))) return false; // If the exts' operands extract either the lower or upper elements, we // can sink them too. auto Ext1 = cast(I->getOperand(0)); auto Ext2 = cast(I->getOperand(1)); if (areExtractShuffleVectors(Ext1, Ext2)) { Ops.push_back(&Ext1->getOperandUse(0)); Ops.push_back(&Ext2->getOperandUse(0)); } Ops.push_back(&I->getOperandUse(0)); Ops.push_back(&I->getOperandUse(1)); return true; } default: return false; } return false; } bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, Align &RequiredAligment) const { if (!LoadedType.isSimple() || (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) return false; // Cyclone supports unaligned accesses. RequiredAligment = Align(1); unsigned NumBits = LoadedType.getSizeInBits(); return NumBits == 32 || NumBits == 64; } /// A helper function for determining the number of interleaved accesses we /// will generate when lowering accesses of the given type. unsigned AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL) const { return (DL.getTypeSizeInBits(VecTy) + 127) / 128; } MachineMemOperand::Flags AArch64TargetLowering::getTargetMMOFlags(const Instruction &I) const { if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor && I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr) return MOStridedAccess; return MachineMemOperand::MONone; } bool AArch64TargetLowering::isLegalInterleavedAccessType( VectorType *VecTy, const DataLayout &DL) const { unsigned VecSize = DL.getTypeSizeInBits(VecTy); unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); // Ensure the number of vector elements is greater than 1. if (cast(VecTy)->getNumElements() < 2) return false; // Ensure the element type is legal. if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64) return false; // Ensure the total vector size is 64 or a multiple of 128. Types larger than // 128 will be split into multiple interleaved accesses. return VecSize == 64 || VecSize % 128 == 0; } /// Lower an interleaved load into a ldN intrinsic. /// /// E.g. Lower an interleaved load (Factor = 2): /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements /// /// Into: /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 bool AArch64TargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); const DataLayout &DL = LI->getModule()->getDataLayout(); VectorType *VTy = Shuffles[0]->getType(); // Skip if we do not have NEON and skip illegal vector types. We can // "legalize" wide vector types into multiple interleaved accesses as long as // the vector types are divisible by 128. if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VTy, DL)) return false; unsigned NumLoads = getNumInterleavedAccesses(VTy, DL); auto *FVTy = cast(VTy); // A pointer vector can not be the return type of the ldN intrinsics. Need to // load integer vectors first and then convert to pointer vectors. Type *EltTy = FVTy->getElementType(); if (EltTy->isPointerTy()) FVTy = FixedVectorType::get(DL.getIntPtrType(EltTy), FVTy->getNumElements()); IRBuilder<> Builder(LI); // The base address of the load. Value *BaseAddr = LI->getPointerOperand(); if (NumLoads > 1) { // If we're going to generate more than one load, reset the sub-vector type // to something legal. FVTy = FixedVectorType::get(FVTy->getElementType(), FVTy->getNumElements() / NumLoads); // We will compute the pointer operand of each load from the original base // address using GEPs. Cast the base address to a pointer to the scalar // element type. BaseAddr = Builder.CreateBitCast( BaseAddr, FVTy->getElementType()->getPointerTo(LI->getPointerAddressSpace())); } Type *PtrTy = FVTy->getPointerTo(LI->getPointerAddressSpace()); Type *Tys[2] = {FVTy, PtrTy}; static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2, Intrinsic::aarch64_neon_ld3, Intrinsic::aarch64_neon_ld4}; Function *LdNFunc = Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); // Holds sub-vectors extracted from the load intrinsic return values. The // sub-vectors are associated with the shufflevector instructions they will // replace. DenseMap> SubVecs; for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { // If we're generating more than one load, compute the base address of // subsequent loads as an offset from the previous. if (LoadCount > 0) BaseAddr = Builder.CreateConstGEP1_32(FVTy->getElementType(), BaseAddr, FVTy->getNumElements() * Factor); CallInst *LdN = Builder.CreateCall( LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN"); // Extract and store the sub-vectors returned by the load intrinsic. for (unsigned i = 0; i < Shuffles.size(); i++) { ShuffleVectorInst *SVI = Shuffles[i]; unsigned Index = Indices[i]; Value *SubVec = Builder.CreateExtractValue(LdN, Index); // Convert the integer vector to pointer vector if the element is pointer. if (EltTy->isPointerTy()) SubVec = Builder.CreateIntToPtr( SubVec, FixedVectorType::get(SVI->getType()->getElementType(), FVTy->getNumElements())); SubVecs[SVI].push_back(SubVec); } } // Replace uses of the shufflevector instructions with the sub-vectors // returned by the load intrinsic. If a shufflevector instruction is // associated with more than one sub-vector, those sub-vectors will be // concatenated into a single wide vector. for (ShuffleVectorInst *SVI : Shuffles) { auto &SubVec = SubVecs[SVI]; auto *WideVec = SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; SVI->replaceAllUsesWith(WideVec); } return true; } /// Lower an interleaved store into a stN intrinsic. /// /// E.g. Lower an interleaved store (Factor = 3): /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> /// store <12 x i32> %i.vec, <12 x i32>* %ptr /// /// Into: /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) /// /// Note that the new shufflevectors will be removed and we'll only generate one /// st3 instruction in CodeGen. /// /// Example for a more general valid mask (Factor 3). Lower: /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> /// store <12 x i32> %i.vec, <12 x i32>* %ptr /// /// Into: /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); auto *VecTy = cast(SVI->getType()); assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store"); unsigned LaneLen = VecTy->getNumElements() / Factor; Type *EltTy = VecTy->getElementType(); auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen); const DataLayout &DL = SI->getModule()->getDataLayout(); // Skip if we do not have NEON and skip illegal vector types. We can // "legalize" wide vector types into multiple interleaved accesses as long as // the vector types are divisible by 128. if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL)) return false; unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); IRBuilder<> Builder(SI); // StN intrinsics don't support pointer vectors as arguments. Convert pointer // vectors to integer vectors. if (EltTy->isPointerTy()) { Type *IntTy = DL.getIntPtrType(EltTy); unsigned NumOpElts = cast(Op0->getType())->getNumElements(); // Convert to the corresponding integer vector. auto *IntVecTy = FixedVectorType::get(IntTy, NumOpElts); Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); SubVecTy = FixedVectorType::get(IntTy, LaneLen); } // The base address of the store. Value *BaseAddr = SI->getPointerOperand(); if (NumStores > 1) { // If we're going to generate more than one store, reset the lane length // and sub-vector type to something legal. LaneLen /= NumStores; SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen); // We will compute the pointer operand of each store from the original base // address using GEPs. Cast the base address to a pointer to the scalar // element type. BaseAddr = Builder.CreateBitCast( BaseAddr, SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace())); } auto Mask = SVI->getShuffleMask(); Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace()); Type *Tys[2] = {SubVecTy, PtrTy}; static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2, Intrinsic::aarch64_neon_st3, Intrinsic::aarch64_neon_st4}; Function *StNFunc = Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { SmallVector Ops; // Split the shufflevector operands into sub vectors for the new stN call. for (unsigned i = 0; i < Factor; i++) { unsigned IdxI = StoreCount * LaneLen * Factor + i; if (Mask[IdxI] >= 0) { Ops.push_back(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0))); } else { unsigned StartMask = 0; for (unsigned j = 1; j < LaneLen; j++) { unsigned IdxJ = StoreCount * LaneLen * Factor + j; if (Mask[IdxJ * Factor + IdxI] >= 0) { StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; break; } } // Note: Filling undef gaps with random elements is ok, since // those elements were being written anyway (with undefs). // In the case of all undefs we're defaulting to using elems from 0 // Note: StartMask cannot be negative, it's checked in // isReInterleaveMask Ops.push_back(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(StartMask, LaneLen, 0))); } } // If we generating more than one store, we compute the base address of // subsequent stores as an offset from the previous. if (StoreCount > 0) BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(), BaseAddr, LaneLen * Factor); Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy)); Builder.CreateCall(StNFunc, Ops); } return true; } // Lower an SVE structured load intrinsic returning a tuple type to target // specific intrinsic taking the same input but returning a multi-result value // of the split tuple type. // // E.g. Lowering an LD3: // // call @llvm.aarch64.sve.ld3.nxv12i32( // %pred, // * %addr) // // Output DAG: // // t0: ch = EntryToken // t2: nxv4i1,ch = CopyFromReg t0, Register:nxv4i1 %0 // t4: i64,ch = CopyFromReg t0, Register:i64 %1 // t5: nxv4i32,nxv4i32,nxv4i32,ch = AArch64ISD::SVE_LD3 t0, t2, t4 // t6: nxv12i32 = concat_vectors t5, t5:1, t5:2 // // This is called pre-legalization to avoid widening/splitting issues with // non-power-of-2 tuple types used for LD3, such as nxv12i32. SDValue AArch64TargetLowering::LowerSVEStructLoad(unsigned Intrinsic, ArrayRef LoadOps, EVT VT, SelectionDAG &DAG, const SDLoc &DL) const { assert(VT.isScalableVector() && "Can only lower scalable vectors"); unsigned N, Opcode; static std::map> IntrinsicMap = { {Intrinsic::aarch64_sve_ld2, {2, AArch64ISD::SVE_LD2_MERGE_ZERO}}, {Intrinsic::aarch64_sve_ld3, {3, AArch64ISD::SVE_LD3_MERGE_ZERO}}, {Intrinsic::aarch64_sve_ld4, {4, AArch64ISD::SVE_LD4_MERGE_ZERO}}}; std::tie(N, Opcode) = IntrinsicMap[Intrinsic]; assert(VT.getVectorElementCount().getKnownMinValue() % N == 0 && "invalid tuple vector type!"); EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), VT.getVectorElementCount().divideCoefficientBy(N)); assert(isTypeLegal(SplitVT)); SmallVector VTs(N, SplitVT); VTs.push_back(MVT::Other); // Chain SDVTList NodeTys = DAG.getVTList(VTs); SDValue PseudoLoad = DAG.getNode(Opcode, DL, NodeTys, LoadOps); SmallVector PseudoLoadOps; for (unsigned I = 0; I < N; ++I) PseudoLoadOps.push_back(SDValue(PseudoLoad.getNode(), I)); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, PseudoLoadOps); } EVT AArch64TargetLowering::getOptimalMemOpType( const MemOp &Op, const AttributeList &FuncAttributes) const { bool CanImplicitFloat = !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; // Only use AdvSIMD to implement memset of 32-byte and above. It would have // taken one instruction to materialize the v2i64 zero and one store (with // restrictive addressing mode). Just do i64 stores. bool IsSmallMemset = Op.isMemset() && Op.size() < 32; auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { if (Op.isAligned(AlignCheck)) return true; bool Fast; return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, &Fast) && Fast; }; if (CanUseNEON && Op.isMemset() && !IsSmallMemset && AlignmentIsAcceptable(MVT::v2i64, Align(16))) return MVT::v2i64; if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) return MVT::f128; if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) return MVT::i64; if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) return MVT::i32; return MVT::Other; } LLT AArch64TargetLowering::getOptimalMemOpLLT( const MemOp &Op, const AttributeList &FuncAttributes) const { bool CanImplicitFloat = !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; // Only use AdvSIMD to implement memset of 32-byte and above. It would have // taken one instruction to materialize the v2i64 zero and one store (with // restrictive addressing mode). Just do i64 stores. bool IsSmallMemset = Op.isMemset() && Op.size() < 32; auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { if (Op.isAligned(AlignCheck)) return true; bool Fast; return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, &Fast) && Fast; }; if (CanUseNEON && Op.isMemset() && !IsSmallMemset && AlignmentIsAcceptable(MVT::v2i64, Align(16))) return LLT::vector(2, 64); if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) return LLT::scalar(128); if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) return LLT::scalar(64); if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) return LLT::scalar(32); return LLT(); } // 12-bit optionally shifted immediates are legal for adds. bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { if (Immed == std::numeric_limits::min()) { LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed << ": avoid UB for INT64_MIN\n"); return false; } // Same encoding for add/sub, just flip the sign. Immed = std::abs(Immed); bool IsLegal = ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); LLVM_DEBUG(dbgs() << "Is " << Immed << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"); return IsLegal; } // Integer comparisons are implemented with ADDS/SUBS, so the range of valid // immediates is the same as for an add or a sub. bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { return isLegalAddImmediate(Immed); } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // AArch64 has five basic addressing modes: // reg // reg + 9-bit signed offset // reg + SIZE_IN_BYTES * 12-bit unsigned offset // reg1 + reg2 // reg + SIZE_IN_BYTES * reg // No global is ever allowed as a base. if (AM.BaseGV) return false; // No reg+reg+imm addressing. if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) return false; // FIXME: Update this method to support scalable addressing modes. if (isa(Ty)) return AM.HasBaseReg && !AM.BaseOffs && !AM.Scale; // check reg + imm case: // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 uint64_t NumBytes = 0; if (Ty->isSized()) { uint64_t NumBits = DL.getTypeSizeInBits(Ty); NumBytes = NumBits / 8; if (!isPowerOf2_64(NumBits)) NumBytes = 0; } if (!AM.Scale) { int64_t Offset = AM.BaseOffs; // 9-bit signed offset if (isInt<9>(Offset)) return true; // 12-bit unsigned offset unsigned shift = Log2_64(NumBytes); if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && // Must be a multiple of NumBytes (NumBytes is a power of 2) (Offset >> shift) << shift == Offset) return true; return false; } // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes); } bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const { // Consider splitting large offset of struct or array. return true; } int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { // Scaling factors are not free at all. // Operands | Rt Latency // ------------------------------------------- // Rt, [Xn, Xm] | 4 // ------------------------------------------- // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 // Rt, [Xn, Wm, #imm] | if (isLegalAddressingMode(DL, AM, Ty, AS)) // Scale represents reg2 * scale, thus account for 1 if // it is not equal to 0 or 1. return AM.Scale != 0 && AM.Scale != 1; return -1; } bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd( const MachineFunction &MF, EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: case MVT::f64: return true; default: break; } return false; } bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const { switch (Ty->getScalarType()->getTypeID()) { case Type::FloatTyID: case Type::DoubleTyID: return true; default: return false; } } const MCPhysReg * AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { // LR is a callee-save register, but we must treat it as clobbered by any call // site. Hence we include LR in the scratch registers, which are in turn added // as implicit-defs for stackmaps and patchpoints. static const MCPhysReg ScratchRegs[] = { AArch64::X16, AArch64::X17, AArch64::LR, 0 }; return ScratchRegs; } bool AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const { N = N->getOperand(0).getNode(); EVT VT = N->getValueType(0); // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine // it with shift to let it be lowered to UBFX. if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && isa(N->getOperand(1))) { uint64_t TruncMask = N->getConstantOperandVal(1); if (isMask_64(TruncMask) && N->getOperand(0).getOpcode() == ISD::SRL && isa(N->getOperand(0)->getOperand(1))) return false; } return true; } bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return false; int64_t Val = Imm.getSExtValue(); if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) return true; if ((int64_t)Val < 0) Val = ~Val; if (BitSize == 32) Val &= (1LL << 32) - 1; unsigned LZ = countLeadingZeros((uint64_t)Val); unsigned Shift = (63 - LZ) / 16; // MOVZ is free so return true for one or fewer MOVK. return Shift < 3; } bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; return (Index == 0 || Index == ResVT.getVectorNumElements()); } /// Turn vector tests of the signbit in the form of: /// xor (sra X, elt_size(X)-1), -1 /// into: /// cmge X, X, #0 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!Subtarget->hasNEON() || !VT.isVector()) return SDValue(); // There must be a shift right algebraic before the xor, and the xor must be a // 'not' operation. SDValue Shift = N->getOperand(0); SDValue Ones = N->getOperand(1); if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || !ISD::isBuildVectorAllOnes(Ones.getNode())) return SDValue(); // The shift should be smearing the sign bit across each vector element. auto *ShiftAmt = dyn_cast(Shift.getOperand(1)); EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) return SDValue(); return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); } // VECREDUCE_ADD( EXTEND(v16i8_type) ) to // VECREDUCE_ADD( DOTv16i8(v16i8_type) ) static SDValue performVecReduceAddCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *ST) { SDValue Op0 = N->getOperand(0); if (!ST->hasDotProd() || N->getValueType(0) != MVT::i32) return SDValue(); if (Op0.getValueType().getVectorElementType() != MVT::i32) return SDValue(); unsigned ExtOpcode = Op0.getOpcode(); if (ExtOpcode != ISD::ZERO_EXTEND && ExtOpcode != ISD::SIGN_EXTEND) return SDValue(); EVT Op0VT = Op0.getOperand(0).getValueType(); if (Op0VT != MVT::v16i8) return SDValue(); SDLoc DL(Op0); SDValue Ones = DAG.getConstant(1, DL, Op0VT); SDValue Zeros = DAG.getConstant(0, DL, MVT::v4i32); auto DotIntrisic = (ExtOpcode == ISD::ZERO_EXTEND) ? Intrinsic::aarch64_neon_udot : Intrinsic::aarch64_neon_sdot; SDValue Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Zeros.getValueType(), DAG.getConstant(DotIntrisic, DL, MVT::i32), Zeros, Ones, Op0.getOperand(0)); return DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot); } // Given a ABS node, detect the following pattern: // (ABS (SUB (EXTEND a), (EXTEND b))). // Generates UABD/SABD instruction. static SDValue performABSCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SDValue AbsOp1 = N->getOperand(0); SDValue Op0, Op1; if (AbsOp1.getOpcode() != ISD::SUB) return SDValue(); Op0 = AbsOp1.getOperand(0); Op1 = AbsOp1.getOperand(1); unsigned Opc0 = Op0.getOpcode(); // Check if the operands of the sub are (zero|sign)-extended. if (Opc0 != Op1.getOpcode() || (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) return SDValue(); EVT VectorT1 = Op0.getOperand(0).getValueType(); EVT VectorT2 = Op1.getOperand(0).getValueType(); // Check if vectors are of same type and valid size. uint64_t Size = VectorT1.getFixedSizeInBits(); if (VectorT1 != VectorT2 || (Size != 64 && Size != 128)) return SDValue(); // Check if vector element types are valid. EVT VT1 = VectorT1.getVectorElementType(); if (VT1 != MVT::i8 && VT1 != MVT::i16 && VT1 != MVT::i32) return SDValue(); Op0 = Op0.getOperand(0); Op1 = Op1.getOperand(0); unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? AArch64ISD::SABD : AArch64ISD::UABD; SDValue ABD = DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1); return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD); } static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); return foldVectorXorShiftIntoCmp(N, DAG, Subtarget); } SDValue AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const { AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); if (isIntDivCheap(N->getValueType(0), Attr)) return SDValue(N,0); // Lower SDIV as SDIV // fold (sdiv X, pow2) EVT VT = N->getValueType(0); if ((VT != MVT::i32 && VT != MVT::i64) || !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) return SDValue(); SDLoc DL(N); SDValue N0 = N->getOperand(0); unsigned Lg2 = Divisor.countTrailingZeros(); SDValue Zero = DAG.getConstant(0, DL, VT); SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); // Add (N0 < 0) ? Pow2 - 1 : 0; SDValue CCVal; SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); Created.push_back(Cmp.getNode()); Created.push_back(Add.getNode()); Created.push_back(CSel.getNode()); // Divide by pow2. SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); // If we're dividing by a positive value, we're done. Otherwise, we must // negate the result. if (Divisor.isNonNegative()) return SRA; Created.push_back(SRA.getNode()); return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); } static bool IsSVECntIntrinsic(SDValue S) { switch(getIntrinsicID(S.getNode())) { default: break; case Intrinsic::aarch64_sve_cntb: case Intrinsic::aarch64_sve_cnth: case Intrinsic::aarch64_sve_cntw: case Intrinsic::aarch64_sve_cntd: return true; } return false; } static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); // The below optimizations require a constant RHS. if (!isa(N->getOperand(1))) return SDValue(); SDValue N0 = N->getOperand(0); ConstantSDNode *C = cast(N->getOperand(1)); const APInt &ConstValue = C->getAPIntValue(); // Allow the scaling to be folded into the `cnt` instruction by preventing // the scaling to be obscured here. This makes it easier to pattern match. if (IsSVECntIntrinsic(N0) || (N0->getOpcode() == ISD::TRUNCATE && (IsSVECntIntrinsic(N0->getOperand(0))))) if (ConstValue.sge(1) && ConstValue.sle(16)) return SDValue(); // Multiplication of a power of two plus/minus one can be done more // cheaply as as shift+add/sub. For now, this is true unilaterally. If // future CPUs have a cheaper MADD instruction, this may need to be // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and // 64-bit is 5 cycles, so this is always a win. // More aggressively, some multiplications N0 * C can be lowered to // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, // e.g. 6=3*2=(2+1)*2. // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45 // which equals to (1+2)*16-(1+2). // TrailingZeroes is used to test if the mul can be lowered to // shift+add+shift. unsigned TrailingZeroes = ConstValue.countTrailingZeros(); if (TrailingZeroes) { // Conservatively do not lower to shift+add+shift if the mul might be // folded into smul or umul. if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) || isZeroExtended(N0.getNode(), DAG))) return SDValue(); // Conservatively do not lower to shift+add+shift if the mul might be // folded into madd or msub. if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || N->use_begin()->getOpcode() == ISD::SUB)) return SDValue(); } // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub // and shift+add+shift. APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); unsigned ShiftAmt, AddSubOpc; // Is the shifted value the LHS operand of the add/sub? bool ShiftValUseIsN0 = true; // Do we need to negate the result? bool NegateResult = false; if (ConstValue.isNonNegative()) { // (mul x, 2^N + 1) => (add (shl x, N), x) // (mul x, 2^N - 1) => (sub (shl x, N), x) // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) APInt SCVMinus1 = ShiftedConstValue - 1; APInt CVPlus1 = ConstValue + 1; if (SCVMinus1.isPowerOf2()) { ShiftAmt = SCVMinus1.logBase2(); AddSubOpc = ISD::ADD; } else if (CVPlus1.isPowerOf2()) { ShiftAmt = CVPlus1.logBase2(); AddSubOpc = ISD::SUB; } else return SDValue(); } else { // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) // (mul x, -(2^N + 1)) => - (add (shl x, N), x) APInt CVNegPlus1 = -ConstValue + 1; APInt CVNegMinus1 = -ConstValue - 1; if (CVNegPlus1.isPowerOf2()) { ShiftAmt = CVNegPlus1.logBase2(); AddSubOpc = ISD::SUB; ShiftValUseIsN0 = false; } else if (CVNegMinus1.isPowerOf2()) { ShiftAmt = CVNegMinus1.logBase2(); AddSubOpc = ISD::ADD; NegateResult = true; } else return SDValue(); } SDLoc DL(N); EVT VT = N->getValueType(0); SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShiftAmt, DL, MVT::i64)); SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0; SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal; SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1); assert(!(NegateResult && TrailingZeroes) && "NegateResult and TrailingZeroes cannot both be true for now."); // Negate the result. if (NegateResult) return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); // Shift the result. if (TrailingZeroes) return DAG.getNode(ISD::SHL, DL, VT, Res, DAG.getConstant(TrailingZeroes, DL, MVT::i64)); return Res; } static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, SelectionDAG &DAG) { // Take advantage of vector comparisons producing 0 or -1 in each lane to // optimize away operation when it's from a constant. // // The general transformation is: // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> // AND(VECTOR_CMP(x,y), constant2) // constant2 = UNARYOP(constant) // Early exit if this isn't a vector operation, the operand of the // unary operation isn't a bitwise AND, or if the sizes of the operations // aren't the same. EVT VT = N->getValueType(0); if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) return SDValue(); // Now check that the other operand of the AND is a constant. We could // make the transformation for non-constant splats as well, but it's unclear // that would be a benefit as it would not eliminate any operations, just // perform one more step in scalar code before moving to the vector unit. if (BuildVectorSDNode *BV = dyn_cast(N->getOperand(0)->getOperand(1))) { // Bail out if the vector isn't a constant. if (!BV->isConstant()) return SDValue(); // Everything checks out. Build up the new and improved node. SDLoc DL(N); EVT IntVT = BV->getValueType(0); // Create a new constant of the appropriate type for the transformed // DAG. SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); // The AND node needs bitcasts to/from an integer vector type around it. SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, N->getOperand(0)->getOperand(0), MaskConst); SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); return Res; } return SDValue(); } static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { // First try to optimize away the conversion when it's conditionally from // a constant. Vectors only. if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) return Res; EVT VT = N->getValueType(0); if (VT != MVT::f32 && VT != MVT::f64) return SDValue(); // Only optimize when the source and destination types have the same width. if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) return SDValue(); // If the result of an integer load is only used by an integer-to-float // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. // This eliminates an "integer-to-vector-move" UOP and improves throughput. SDValue N0 = N->getOperand(0); if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && // Do not change the width of a volatile load. !cast(N0)->isVolatile()) { LoadSDNode *LN0 = cast(N0); SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->getAlignment(), LN0->getMemOperand()->getFlags()); // Make sure successors of the original load stay after it by updating them // to use the new Chain. DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); unsigned Opcode = (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; return DAG.getNode(Opcode, SDLoc(N), VT, Load); } return SDValue(); } /// Fold a floating-point multiply by power of two into floating-point to /// fixed-point conversion. static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (!Subtarget->hasNEON()) return SDValue(); if (!N->getValueType(0).isSimple()) return SDValue(); SDValue Op = N->getOperand(0); if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || Op.getOpcode() != ISD::FMUL) return SDValue(); SDValue ConstVec = Op->getOperand(1); if (!isa(ConstVec)) return SDValue(); MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); uint32_t FloatBits = FloatTy.getSizeInBits(); if (FloatBits != 32 && FloatBits != 64) return SDValue(); MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); uint32_t IntBits = IntTy.getSizeInBits(); if (IntBits != 16 && IntBits != 32 && IntBits != 64) return SDValue(); // Avoid conversions where iN is larger than the float (e.g., float -> i64). if (IntBits > FloatBits) return SDValue(); BitVector UndefElements; BuildVectorSDNode *BV = cast(ConstVec); int32_t Bits = IntBits == 64 ? 64 : 32; int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); if (C == -1 || C == 0 || C > Bits) return SDValue(); MVT ResTy; unsigned NumLanes = Op.getValueType().getVectorNumElements(); switch (NumLanes) { default: return SDValue(); case 2: ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; break; case 4: ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; break; } if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) return SDValue(); assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) && "Illegal vector type after legalization"); SDLoc DL(N); bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs : Intrinsic::aarch64_neon_vcvtfp2fxu; SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); // We can handle smaller integers by generating an extra trunc. if (IntBits < FloatBits) FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); return FixConv; } /// Fold a floating-point divide by power of two into fixed-point to /// floating-point conversion. static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (!Subtarget->hasNEON()) return SDValue(); SDValue Op = N->getOperand(0); unsigned Opc = Op->getOpcode(); if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || !Op.getOperand(0).getValueType().isSimple() || (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) return SDValue(); SDValue ConstVec = N->getOperand(1); if (!isa(ConstVec)) return SDValue(); MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); int32_t IntBits = IntTy.getSizeInBits(); if (IntBits != 16 && IntBits != 32 && IntBits != 64) return SDValue(); MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); int32_t FloatBits = FloatTy.getSizeInBits(); if (FloatBits != 32 && FloatBits != 64) return SDValue(); // Avoid conversions where iN is larger than the float (e.g., i64 -> float). if (IntBits > FloatBits) return SDValue(); BitVector UndefElements; BuildVectorSDNode *BV = cast(ConstVec); int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); if (C == -1 || C == 0 || C > FloatBits) return SDValue(); MVT ResTy; unsigned NumLanes = Op.getValueType().getVectorNumElements(); switch (NumLanes) { default: return SDValue(); case 2: ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; break; case 4: ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; break; } if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) return SDValue(); SDLoc DL(N); SDValue ConvInput = Op.getOperand(0); bool IsSigned = Opc == ISD::SINT_TO_FP; if (IntBits < FloatBits) ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, ResTy, ConvInput); unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp : Intrinsic::aarch64_neon_vcvtfxu2fp; return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, DAG.getConstant(C, DL, MVT::i32)); } /// An EXTR instruction is made up of two shifts, ORed together. This helper /// searches for and classifies those shifts. static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, bool &FromHi) { if (N.getOpcode() == ISD::SHL) FromHi = false; else if (N.getOpcode() == ISD::SRL) FromHi = true; else return false; if (!isa(N.getOperand(1))) return false; ShiftAmount = N->getConstantOperandVal(1); Src = N->getOperand(0); return true; } /// EXTR instruction extracts a contiguous chunk of bits from two existing /// registers viewed as a high/low pair. This function looks for the pattern: /// (or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N)) and replaces it /// with an EXTR. Can't quite be done in TableGen because the two immediates /// aren't independent. static SDValue tryCombineToEXTR(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); assert(N->getOpcode() == ISD::OR && "Unexpected root"); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); SDValue LHS; uint32_t ShiftLHS = 0; bool LHSFromHi = false; if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) return SDValue(); SDValue RHS; uint32_t ShiftRHS = 0; bool RHSFromHi = false; if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) return SDValue(); // If they're both trying to come from the high part of the register, they're // not really an EXTR. if (LHSFromHi == RHSFromHi) return SDValue(); if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) return SDValue(); if (LHSFromHi) { std::swap(LHS, RHS); std::swap(ShiftLHS, ShiftRHS); } return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, DAG.getConstant(ShiftRHS, DL, MVT::i64)); } static SDValue tryCombineToBSL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); if (!VT.isVector()) return SDValue(); SDValue N0 = N->getOperand(0); if (N0.getOpcode() != ISD::AND) return SDValue(); SDValue N1 = N->getOperand(1); if (N1.getOpcode() != ISD::AND) return SDValue(); // We only have to look for constant vectors here since the general, variable // case can be handled in TableGen. unsigned Bits = VT.getScalarSizeInBits(); uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); for (int i = 1; i >= 0; --i) for (int j = 1; j >= 0; --j) { BuildVectorSDNode *BVN0 = dyn_cast(N0->getOperand(i)); BuildVectorSDNode *BVN1 = dyn_cast(N1->getOperand(j)); if (!BVN0 || !BVN1) continue; bool FoundMatch = true; for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { ConstantSDNode *CN0 = dyn_cast(BVN0->getOperand(k)); ConstantSDNode *CN1 = dyn_cast(BVN1->getOperand(k)); if (!CN0 || !CN1 || CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { FoundMatch = false; break; } } if (FoundMatch) return DAG.getNode(AArch64ISD::BSP, DL, VT, SDValue(BVN0, 0), N0->getOperand(1 - i), N1->getOperand(1 - j)); } return SDValue(); } static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (SDValue Res = tryCombineToEXTR(N, DCI)) return Res; if (SDValue Res = tryCombineToBSL(N, DCI)) return Res; return SDValue(); } static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) { if (!MemVT.getVectorElementType().isSimple()) return false; uint64_t MaskForTy = 0ull; switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) { case MVT::i8: MaskForTy = 0xffull; break; case MVT::i16: MaskForTy = 0xffffull; break; case MVT::i32: MaskForTy = 0xffffffffull; break; default: return false; break; } if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR) if (auto *Op0 = dyn_cast(N->getOperand(0))) return Op0->getAPIntValue().getLimitedValue() == MaskForTy; return false; } static SDValue performSVEAndCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue Src = N->getOperand(0); unsigned Opc = Src->getOpcode(); // Zero/any extend of an unsigned unpack if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { SDValue UnpkOp = Src->getOperand(0); SDValue Dup = N->getOperand(1); if (Dup.getOpcode() != AArch64ISD::DUP) return SDValue(); SDLoc DL(N); ConstantSDNode *C = dyn_cast(Dup->getOperand(0)); uint64_t ExtVal = C->getZExtValue(); // If the mask is fully covered by the unpack, we don't need to push // a new AND onto the operand EVT EltTy = UnpkOp->getValueType(0).getVectorElementType(); if ((ExtVal == 0xFF && EltTy == MVT::i8) || (ExtVal == 0xFFFF && EltTy == MVT::i16) || (ExtVal == 0xFFFFFFFF && EltTy == MVT::i32)) return Src; // Truncate to prevent a DUP with an over wide constant APInt Mask = C->getAPIntValue().trunc(EltTy.getSizeInBits()); // Otherwise, make sure we propagate the AND to the operand // of the unpack Dup = DAG.getNode(AArch64ISD::DUP, DL, UnpkOp->getValueType(0), DAG.getConstant(Mask.zextOrTrunc(32), DL, MVT::i32)); SDValue And = DAG.getNode(ISD::AND, DL, UnpkOp->getValueType(0), UnpkOp, Dup); return DAG.getNode(Opc, DL, N->getValueType(0), And); } if (!EnableCombineMGatherIntrinsics) return SDValue(); SDValue Mask = N->getOperand(1); if (!Src.hasOneUse()) return SDValue(); EVT MemVT; // SVE load instructions perform an implicit zero-extend, which makes them // perfect candidates for combining. switch (Opc) { case AArch64ISD::LD1_MERGE_ZERO: case AArch64ISD::LDNF1_MERGE_ZERO: case AArch64ISD::LDFF1_MERGE_ZERO: MemVT = cast(Src->getOperand(3))->getVT(); break; case AArch64ISD::GLD1_MERGE_ZERO: case AArch64ISD::GLD1_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_SXTW_MERGE_ZERO: case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_UXTW_MERGE_ZERO: case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_IMM_MERGE_ZERO: case AArch64ISD::GLDFF1_MERGE_ZERO: case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: case AArch64ISD::GLDNT1_MERGE_ZERO: MemVT = cast(Src->getOperand(4))->getVT(); break; default: return SDValue(); } if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT)) return Src; return SDValue(); } static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); EVT VT = N->getValueType(0); if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (VT.isScalableVector()) return performSVEAndCombine(N, DCI); // The combining code below works only for NEON vectors. In particular, it // does not work for SVE when dealing with vectors wider than 128 bits. if (!(VT.is64BitVector() || VT.is128BitVector())) return SDValue(); BuildVectorSDNode *BVN = dyn_cast(N->getOperand(1).getNode()); if (!BVN) return SDValue(); // AND does not accept an immediate, so check if we can use a BIC immediate // instruction instead. We do this here instead of using a (and x, (mvni imm)) // pattern in isel, because some immediates may be lowered to the preferred // (and x, (movi imm)) form, even though an mvni representation also exists. APInt DefBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); if (resolveBuildVector(BVN, DefBits, UndefBits)) { SDValue NewOp; DefBits = ~DefBits; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, DefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, DefBits, &LHS))) return NewOp; UndefBits = ~UndefBits; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, UndefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, UndefBits, &LHS))) return NewOp; } return SDValue(); } static SDValue performSRLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero. SDValue N0 = N->getOperand(0); if (N0.getOpcode() == ISD::BSWAP) { SDLoc DL(N); SDValue N1 = N->getOperand(1); SDValue N00 = N0.getOperand(0); if (ConstantSDNode *C = dyn_cast(N1)) { uint64_t ShiftAmt = C->getZExtValue(); if (VT == MVT::i32 && ShiftAmt == 16 && DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16))) return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); if (VT == MVT::i64 && ShiftAmt == 32 && DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32))) return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); } } return SDValue(); } // Attempt to form urhadd(OpA, OpB) from // truncate(vlshr(sub(zext(OpB), xor(zext(OpA), Ones(ElemSizeInBits))), 1)) // or uhadd(OpA, OpB) from truncate(vlshr(add(zext(OpA), zext(OpB)), 1)). // The original form of the first expression is // truncate(srl(add(zext(OpB), add(zext(OpA), 1)), 1)) and the // (OpA + OpB + 1) subexpression will have been changed to (OpB - (~OpA)). // Before this function is called the srl will have been lowered to // AArch64ISD::VLSHR. // This pass can also recognize signed variants of the patterns that use sign // extension instead of zero extension and form a srhadd(OpA, OpB) or a // shadd(OpA, OpB) from them. static SDValue performVectorTruncateCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { EVT VT = N->getValueType(0); // Since we are looking for a right shift by a constant value of 1 and we are // operating on types at least 16 bits in length (sign/zero extended OpA and // OpB, which are at least 8 bits), it follows that the truncate will always // discard the shifted-in bit and therefore the right shift will be logical // regardless of the signedness of OpA and OpB. SDValue Shift = N->getOperand(0); if (Shift.getOpcode() != AArch64ISD::VLSHR) return SDValue(); // Is the right shift using an immediate value of 1? uint64_t ShiftAmount = Shift.getConstantOperandVal(1); if (ShiftAmount != 1) return SDValue(); SDValue ExtendOpA, ExtendOpB; SDValue ShiftOp0 = Shift.getOperand(0); unsigned ShiftOp0Opc = ShiftOp0.getOpcode(); if (ShiftOp0Opc == ISD::SUB) { SDValue Xor = ShiftOp0.getOperand(1); if (Xor.getOpcode() != ISD::XOR) return SDValue(); // Is the XOR using a constant amount of all ones in the right hand side? uint64_t C; if (!isAllConstantBuildVector(Xor.getOperand(1), C)) return SDValue(); unsigned ElemSizeInBits = VT.getScalarSizeInBits(); APInt CAsAPInt(ElemSizeInBits, C); if (CAsAPInt != APInt::getAllOnesValue(ElemSizeInBits)) return SDValue(); ExtendOpA = Xor.getOperand(0); ExtendOpB = ShiftOp0.getOperand(0); } else if (ShiftOp0Opc == ISD::ADD) { ExtendOpA = ShiftOp0.getOperand(0); ExtendOpB = ShiftOp0.getOperand(1); } else return SDValue(); unsigned ExtendOpAOpc = ExtendOpA.getOpcode(); unsigned ExtendOpBOpc = ExtendOpB.getOpcode(); if (!(ExtendOpAOpc == ExtendOpBOpc && (ExtendOpAOpc == ISD::ZERO_EXTEND || ExtendOpAOpc == ISD::SIGN_EXTEND))) return SDValue(); // Is the result of the right shift being truncated to the same value type as // the original operands, OpA and OpB? SDValue OpA = ExtendOpA.getOperand(0); SDValue OpB = ExtendOpB.getOperand(0); EVT OpAVT = OpA.getValueType(); assert(ExtendOpA.getValueType() == ExtendOpB.getValueType()); if (!(VT == OpAVT && OpAVT == OpB.getValueType())) return SDValue(); SDLoc DL(N); bool IsSignExtend = ExtendOpAOpc == ISD::SIGN_EXTEND; bool IsRHADD = ShiftOp0Opc == ISD::SUB; unsigned HADDOpc = IsSignExtend ? (IsRHADD ? AArch64ISD::SRHADD : AArch64ISD::SHADD) : (IsRHADD ? AArch64ISD::URHADD : AArch64ISD::UHADD); SDValue ResultHADD = DAG.getNode(HADDOpc, DL, VT, OpA, OpB); return ResultHADD; } static bool hasPairwiseAdd(unsigned Opcode, EVT VT, bool FullFP16) { switch (Opcode) { case ISD::FADD: return (FullFP16 && VT == MVT::f16) || VT == MVT::f32 || VT == MVT::f64; case ISD::ADD: return VT == MVT::i64; default: return false; } } static SDValue performExtractVectorEltCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); ConstantSDNode *ConstantN1 = dyn_cast(N1); EVT VT = N->getValueType(0); const bool FullFP16 = static_cast(DAG.getSubtarget()).hasFullFP16(); // Rewrite for pairwise fadd pattern // (f32 (extract_vector_elt // (fadd (vXf32 Other) // (vector_shuffle (vXf32 Other) undef <1,X,...> )) 0)) // -> // (f32 (fadd (extract_vector_elt (vXf32 Other) 0) // (extract_vector_elt (vXf32 Other) 1)) if (ConstantN1 && ConstantN1->getZExtValue() == 0 && hasPairwiseAdd(N0->getOpcode(), VT, FullFP16)) { SDLoc DL(N0); SDValue N00 = N0->getOperand(0); SDValue N01 = N0->getOperand(1); ShuffleVectorSDNode *Shuffle = dyn_cast(N01); SDValue Other = N00; // And handle the commutative case. if (!Shuffle) { Shuffle = dyn_cast(N00); Other = N01; } if (Shuffle && Shuffle->getMaskElt(0) == 1 && Other == Shuffle->getOperand(0)) { return DAG.getNode(N0->getOpcode(), DL, VT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other, DAG.getConstant(0, DL, MVT::i64)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other, DAG.getConstant(1, DL, MVT::i64))); } } return SDValue(); } static SDValue performConcatVectorsCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { SDLoc dl(N); EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); unsigned N0Opc = N0->getOpcode(), N1Opc = N1->getOpcode(); // Optimize concat_vectors of truncated vectors, where the intermediate // type is illegal, to avoid said illegality, e.g., // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), // (v2i16 (truncate (v2i64))))) // -> // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), // (v4i32 (bitcast (v2i64))), // <0, 2, 4, 6>))) // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed // on both input and result type, so we might generate worse code. // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE && N1Opc == ISD::TRUNCATE) { SDValue N00 = N0->getOperand(0); SDValue N10 = N1->getOperand(0); EVT N00VT = N00.getValueType(); if (N00VT == N10.getValueType() && (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); SmallVector Mask(MidVT.getVectorNumElements()); for (size_t i = 0; i < Mask.size(); ++i) Mask[i] = i * 2; return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getVectorShuffle( MidVT, dl, DAG.getNode(ISD::BITCAST, dl, MidVT, N00), DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); } } // Wait 'til after everything is legalized to try this. That way we have // legal vector types and such. if (DCI.isBeforeLegalizeOps()) return SDValue(); // Optimise concat_vectors of two [us]rhadds or [us]hadds that use extracted // subvectors from the same original vectors. Combine these into a single // [us]rhadd or [us]hadd that operates on the two original vectors. Example: // (v16i8 (concat_vectors (v8i8 (urhadd (extract_subvector (v16i8 OpA, <0>), // extract_subvector (v16i8 OpB, // <0>))), // (v8i8 (urhadd (extract_subvector (v16i8 OpA, <8>), // extract_subvector (v16i8 OpB, // <8>))))) // -> // (v16i8(urhadd(v16i8 OpA, v16i8 OpB))) if (N->getNumOperands() == 2 && N0Opc == N1Opc && (N0Opc == AArch64ISD::URHADD || N0Opc == AArch64ISD::SRHADD || N0Opc == AArch64ISD::UHADD || N0Opc == AArch64ISD::SHADD)) { SDValue N00 = N0->getOperand(0); SDValue N01 = N0->getOperand(1); SDValue N10 = N1->getOperand(0); SDValue N11 = N1->getOperand(1); EVT N00VT = N00.getValueType(); EVT N10VT = N10.getValueType(); if (N00->getOpcode() == ISD::EXTRACT_SUBVECTOR && N01->getOpcode() == ISD::EXTRACT_SUBVECTOR && N10->getOpcode() == ISD::EXTRACT_SUBVECTOR && N11->getOpcode() == ISD::EXTRACT_SUBVECTOR && N00VT == N10VT) { SDValue N00Source = N00->getOperand(0); SDValue N01Source = N01->getOperand(0); SDValue N10Source = N10->getOperand(0); SDValue N11Source = N11->getOperand(0); if (N00Source == N10Source && N01Source == N11Source && N00Source.getValueType() == VT && N01Source.getValueType() == VT) { assert(N0.getValueType() == N1.getValueType()); uint64_t N00Index = N00.getConstantOperandVal(1); uint64_t N01Index = N01.getConstantOperandVal(1); uint64_t N10Index = N10.getConstantOperandVal(1); uint64_t N11Index = N11.getConstantOperandVal(1); if (N00Index == N01Index && N10Index == N11Index && N00Index == 0 && N10Index == N00VT.getVectorNumElements()) return DAG.getNode(N0Opc, dl, VT, N00Source, N01Source); } } } // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector // splat. The indexed instructions are going to be expecting a DUPLANE64, so // canonicalise to that. if (N0 == N1 && VT.getVectorNumElements() == 2) { assert(VT.getScalarSizeInBits() == 64); return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), DAG.getConstant(0, dl, MVT::i64)); } // Canonicalise concat_vectors so that the right-hand vector has as few // bit-casts as possible before its real operation. The primary matching // destination for these operations will be the narrowing "2" instructions, // which depend on the operation being performed on this right-hand vector. // For example, // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) // becomes // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) if (N1Opc != ISD::BITCAST) return SDValue(); SDValue RHS = N1->getOperand(0); MVT RHSTy = RHS.getValueType().getSimpleVT(); // If the RHS is not a vector, this is not the pattern we're looking for. if (!RHSTy.isVector()) return SDValue(); LLVM_DEBUG( dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), RHSTy.getVectorNumElements() * 2); return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), RHS)); } static SDValue tryCombineFixedPointConvert(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // Wait until after everything is legalized to try this. That way we have // legal vector types and such. if (DCI.isBeforeLegalizeOps()) return SDValue(); // Transform a scalar conversion of a value from a lane extract into a // lane extract of a vector conversion. E.g., from foo1 to foo2: // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } // // The second form interacts better with instruction selection and the // register allocator to avoid cross-class register copies that aren't // coalescable due to a lane reference. // Check the operand and see if it originates from a lane extract. SDValue Op1 = N->getOperand(1); if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { // Yep, no additional predication needed. Perform the transform. SDValue IID = N->getOperand(0); SDValue Shift = N->getOperand(2); SDValue Vec = Op1.getOperand(0); SDValue Lane = Op1.getOperand(1); EVT ResTy = N->getValueType(0); EVT VecResTy; SDLoc DL(N); // The vector width should be 128 bits by the time we get here, even // if it started as 64 bits (the extract_vector handling will have // done so). assert(Vec.getValueSizeInBits() == 128 && "unexpected vector size on extract_vector_elt!"); if (Vec.getValueType() == MVT::v4i32) VecResTy = MVT::v4f32; else if (Vec.getValueType() == MVT::v2i64) VecResTy = MVT::v2f64; else llvm_unreachable("unexpected vector type!"); SDValue Convert = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); } return SDValue(); } // AArch64 high-vector "long" operations are formed by performing the non-high // version on an extract_subvector of each operand which gets the high half: // // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) // // However, there are cases which don't have an extract_high explicitly, but // have another operation that can be made compatible with one for free. For // example: // // (dupv64 scalar) --> (extract_high (dup128 scalar)) // // This routine does the actual conversion of such DUPs, once outer routines // have determined that everything else is in order. // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold // similarly here. static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { switch (N.getOpcode()) { case AArch64ISD::DUP: case AArch64ISD::DUPLANE8: case AArch64ISD::DUPLANE16: case AArch64ISD::DUPLANE32: case AArch64ISD::DUPLANE64: case AArch64ISD::MOVI: case AArch64ISD::MOVIshift: case AArch64ISD::MOVIedit: case AArch64ISD::MOVImsl: case AArch64ISD::MVNIshift: case AArch64ISD::MVNImsl: break; default: // FMOV could be supported, but isn't very useful, as it would only occur // if you passed a bitcast' floating point immediate to an eligible long // integer op (addl, smull, ...). return SDValue(); } MVT NarrowTy = N.getSimpleValueType(); if (!NarrowTy.is64BitVector()) return SDValue(); MVT ElementTy = NarrowTy.getVectorElementType(); unsigned NumElems = NarrowTy.getVectorNumElements(); MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); SDLoc dl(N); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()), DAG.getConstant(NumElems, dl, MVT::i64)); } static bool isEssentiallyExtractHighSubvector(SDValue N) { if (N.getOpcode() == ISD::BITCAST) N = N.getOperand(0); if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR) return false; return cast(N.getOperand(1))->getAPIntValue() == N.getOperand(0).getValueType().getVectorNumElements() / 2; } /// Helper structure to keep track of ISD::SET_CC operands. struct GenericSetCCInfo { const SDValue *Opnd0; const SDValue *Opnd1; ISD::CondCode CC; }; /// Helper structure to keep track of a SET_CC lowered into AArch64 code. struct AArch64SetCCInfo { const SDValue *Cmp; AArch64CC::CondCode CC; }; /// Helper structure to keep track of SetCC information. union SetCCInfo { GenericSetCCInfo Generic; AArch64SetCCInfo AArch64; }; /// Helper structure to be able to read SetCC information. If set to /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a /// GenericSetCCInfo. struct SetCCInfoAndKind { SetCCInfo Info; bool IsAArch64; }; /// Check whether or not \p Op is a SET_CC operation, either a generic or /// an /// AArch64 lowered one. /// \p SetCCInfo is filled accordingly. /// \post SetCCInfo is meanginfull only when this function returns true. /// \return True when Op is a kind of SET_CC operation. static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { // If this is a setcc, this is straight forward. if (Op.getOpcode() == ISD::SETCC) { SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); SetCCInfo.Info.Generic.CC = cast(Op.getOperand(2))->get(); SetCCInfo.IsAArch64 = false; return true; } // Otherwise, check if this is a matching csel instruction. // In other words: // - csel 1, 0, cc // - csel 0, 1, !cc if (Op.getOpcode() != AArch64ISD::CSEL) return false; // Set the information about the operands. // TODO: we want the operands of the Cmp not the csel SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); SetCCInfo.IsAArch64 = true; SetCCInfo.Info.AArch64.CC = static_cast( cast(Op.getOperand(2))->getZExtValue()); // Check that the operands matches the constraints: // (1) Both operands must be constants. // (2) One must be 1 and the other must be 0. ConstantSDNode *TValue = dyn_cast(Op.getOperand(0)); ConstantSDNode *FValue = dyn_cast(Op.getOperand(1)); // Check (1). if (!TValue || !FValue) return false; // Check (2). if (!TValue->isOne()) { // Update the comparison when we are interested in !cc. std::swap(TValue, FValue); SetCCInfo.Info.AArch64.CC = AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); } return TValue->isOne() && FValue->isNullValue(); } // Returns true if Op is setcc or zext of setcc. static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { if (isSetCC(Op, Info)) return true; return ((Op.getOpcode() == ISD::ZERO_EXTEND) && isSetCC(Op->getOperand(0), Info)); } // The folding we want to perform is: // (add x, [zext] (setcc cc ...) ) // --> // (csel x, (add x, 1), !cc ...) // // The latter will get matched to a CSINC instruction. static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); SDValue LHS = Op->getOperand(0); SDValue RHS = Op->getOperand(1); SetCCInfoAndKind InfoAndKind; // If neither operand is a SET_CC, give up. if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { std::swap(LHS, RHS); if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) return SDValue(); } // FIXME: This could be generatized to work for FP comparisons. EVT CmpVT = InfoAndKind.IsAArch64 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() : InfoAndKind.Info.Generic.Opnd0->getValueType(); if (CmpVT != MVT::i32 && CmpVT != MVT::i64) return SDValue(); SDValue CCVal; SDValue Cmp; SDLoc dl(Op); if (InfoAndKind.IsAArch64) { CCVal = DAG.getConstant( AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, MVT::i32); Cmp = *InfoAndKind.Info.AArch64.Cmp; } else Cmp = getAArch64Cmp( *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1, ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG, dl); EVT VT = Op->getValueType(0); LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); } // ADD(UADDV a, UADDV b) --> UADDV(ADD a, b) static SDValue performUADDVCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); // Only scalar integer and vector types. if (N->getOpcode() != ISD::ADD || !VT.isScalarInteger()) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || LHS.getValueType() != VT) return SDValue(); auto *LHSN1 = dyn_cast(LHS->getOperand(1)); auto *RHSN1 = dyn_cast(RHS->getOperand(1)); if (!LHSN1 || LHSN1 != RHSN1 || !RHSN1->isNullValue()) return SDValue(); SDValue Op1 = LHS->getOperand(0); SDValue Op2 = RHS->getOperand(0); EVT OpVT1 = Op1.getValueType(); EVT OpVT2 = Op2.getValueType(); if (Op1.getOpcode() != AArch64ISD::UADDV || OpVT1 != OpVT2 || Op2.getOpcode() != AArch64ISD::UADDV || OpVT1.getVectorElementType() != VT) return SDValue(); SDValue Val1 = Op1.getOperand(0); SDValue Val2 = Op2.getOperand(0); EVT ValVT = Val1->getValueType(0); SDLoc DL(N); SDValue AddVal = DAG.getNode(ISD::ADD, DL, ValVT, Val1, Val2); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, DAG.getNode(AArch64ISD::UADDV, DL, ValVT, AddVal), DAG.getConstant(0, DL, MVT::i64)); } // The basic add/sub long vector instructions have variants with "2" on the end // which act on the high-half of their inputs. They are normally matched by // patterns like: // // (add (zeroext (extract_high LHS)), // (zeroext (extract_high RHS))) // -> uaddl2 vD, vN, vM // // However, if one of the extracts is something like a duplicate, this // instruction can still be used profitably. This function puts the DAG into a // more appropriate form for those patterns to trigger. static SDValue performAddSubLongCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); MVT VT = N->getSimpleValueType(0); if (!VT.is128BitVector()) { if (N->getOpcode() == ISD::ADD) return performSetccAddFolding(N, DAG); return SDValue(); } // Make sure both branches are extended in the same way. SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if ((LHS.getOpcode() != ISD::ZERO_EXTEND && LHS.getOpcode() != ISD::SIGN_EXTEND) || LHS.getOpcode() != RHS.getOpcode()) return SDValue(); unsigned ExtType = LHS.getOpcode(); // It's not worth doing if at least one of the inputs isn't already an // extract, but we don't know which it'll be so we have to try both. if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) { RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); if (!RHS.getNode()) return SDValue(); RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) { LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); if (!LHS.getNode()) return SDValue(); LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); } return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); } static SDValue performAddSubCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // Try to change sum of two reductions. if (SDValue Val = performUADDVCombine(N, DAG)) return Val; return performAddSubLongCombine(N, DCI, DAG); } // Massage DAGs which we can use the high-half "long" operations on into // something isel will recognize better. E.g. // // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> // (aarch64_neon_umull (extract_high (v2i64 vec))) // (extract_high (v2i64 (dup128 scalar))))) // static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue LHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 0 : 1); SDValue RHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 1 : 2); assert(LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && "unexpected shape for long operation"); // Either node could be a DUP, but it's not worth doing both of them (you'd // just as well use the non-high version) so look for a corresponding extract // operation on the other "wing". if (isEssentiallyExtractHighSubvector(LHS)) { RHS = tryExtendDUPToExtractHigh(RHS, DAG); if (!RHS.getNode()) return SDValue(); } else if (isEssentiallyExtractHighSubvector(RHS)) { LHS = tryExtendDUPToExtractHigh(LHS, DAG); if (!LHS.getNode()) return SDValue(); } if (IID == Intrinsic::not_intrinsic) return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), LHS, RHS); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), N->getOperand(0), LHS, RHS); } static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { MVT ElemTy = N->getSimpleValueType(0).getScalarType(); unsigned ElemBits = ElemTy.getSizeInBits(); int64_t ShiftAmount; if (BuildVectorSDNode *BVN = dyn_cast(N->getOperand(2))) { APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, ElemBits) || SplatBitSize != ElemBits) return SDValue(); ShiftAmount = SplatValue.getSExtValue(); } else if (ConstantSDNode *CVN = dyn_cast(N->getOperand(2))) { ShiftAmount = CVN->getSExtValue(); } else return SDValue(); unsigned Opcode; bool IsRightShift; switch (IID) { default: llvm_unreachable("Unknown shift intrinsic"); case Intrinsic::aarch64_neon_sqshl: Opcode = AArch64ISD::SQSHL_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_uqshl: Opcode = AArch64ISD::UQSHL_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_srshl: Opcode = AArch64ISD::SRSHR_I; IsRightShift = true; break; case Intrinsic::aarch64_neon_urshl: Opcode = AArch64ISD::URSHR_I; IsRightShift = true; break; case Intrinsic::aarch64_neon_sqshlu: Opcode = AArch64ISD::SQSHLU_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_sshl: case Intrinsic::aarch64_neon_ushl: // For positive shift amounts we can use SHL, as ushl/sshl perform a regular // left shift for positive shift amounts. Below, we only replace the current // node with VSHL, if this condition is met. Opcode = AArch64ISD::VSHL; IsRightShift = false; break; } if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { SDLoc dl(N); return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), DAG.getConstant(-ShiftAmount, dl, MVT::i32)); } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { SDLoc dl(N); return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), DAG.getConstant(ShiftAmount, dl, MVT::i32)); } return SDValue(); } // The CRC32[BH] instructions ignore the high bits of their data operand. Since // the intrinsics must be legal and take an i32, this means there's almost // certainly going to be a zext in the DAG which we can eliminate. static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { SDValue AndN = N->getOperand(2); if (AndN.getOpcode() != ISD::AND) return SDValue(); ConstantSDNode *CMask = dyn_cast(AndN.getOperand(1)); if (!CMask || CMask->getZExtValue() != Mask) return SDValue(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); } static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, SelectionDAG &DAG) { SDLoc dl(N); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), DAG.getNode(Opc, dl, N->getOperand(1).getSimpleValueType(), N->getOperand(1)), DAG.getConstant(0, dl, MVT::i64)); } static SDValue LowerSVEIntrinsicIndex(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Op1 = N->getOperand(1); SDValue Op2 = N->getOperand(2); EVT ScalarTy = Op1.getValueType(); if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) { Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1); Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2); } return DAG.getNode(AArch64ISD::INDEX_VECTOR, DL, N->getValueType(0), Op1, Op2); } static SDValue LowerSVEIntrinsicDUP(SDNode *N, SelectionDAG &DAG) { SDLoc dl(N); SDValue Scalar = N->getOperand(3); EVT ScalarTy = Scalar.getValueType(); if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); SDValue Passthru = N->getOperand(1); SDValue Pred = N->getOperand(2); return DAG.getNode(AArch64ISD::DUP_MERGE_PASSTHRU, dl, N->getValueType(0), Pred, Scalar, Passthru); } static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) { SDLoc dl(N); LLVMContext &Ctx = *DAG.getContext(); EVT VT = N->getValueType(0); assert(VT.isScalableVector() && "Expected a scalable vector."); // Current lowering only supports the SVE-ACLE types. if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) return SDValue(); unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8; unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8; EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, ElementCount::getScalable(ByteSize)); // Convert everything to the domain of EXT (i.e bytes). SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1)); SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2)); SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3), DAG.getConstant(ElemSize, dl, MVT::i32)); SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2); return DAG.getNode(ISD::BITCAST, dl, VT, EXT); } static SDValue tryConvertSVEWideCompare(SDNode *N, ISD::CondCode CC, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalize()) return SDValue(); SDValue Comparator = N->getOperand(3); if (Comparator.getOpcode() == AArch64ISD::DUP || Comparator.getOpcode() == ISD::SPLAT_VECTOR) { unsigned IID = getIntrinsicID(N); EVT VT = N->getValueType(0); EVT CmpVT = N->getOperand(2).getValueType(); SDValue Pred = N->getOperand(1); SDValue Imm; SDLoc DL(N); switch (IID) { default: llvm_unreachable("Called with wrong intrinsic!"); break; // Signed comparisons case Intrinsic::aarch64_sve_cmpeq_wide: case Intrinsic::aarch64_sve_cmpne_wide: case Intrinsic::aarch64_sve_cmpge_wide: case Intrinsic::aarch64_sve_cmpgt_wide: case Intrinsic::aarch64_sve_cmplt_wide: case Intrinsic::aarch64_sve_cmple_wide: { if (auto *CN = dyn_cast(Comparator.getOperand(0))) { int64_t ImmVal = CN->getSExtValue(); if (ImmVal >= -16 && ImmVal <= 15) Imm = DAG.getConstant(ImmVal, DL, MVT::i32); else return SDValue(); } break; } // Unsigned comparisons case Intrinsic::aarch64_sve_cmphs_wide: case Intrinsic::aarch64_sve_cmphi_wide: case Intrinsic::aarch64_sve_cmplo_wide: case Intrinsic::aarch64_sve_cmpls_wide: { if (auto *CN = dyn_cast(Comparator.getOperand(0))) { uint64_t ImmVal = CN->getZExtValue(); if (ImmVal <= 127) Imm = DAG.getConstant(ImmVal, DL, MVT::i32); else return SDValue(); } break; } } if (!Imm) return SDValue(); SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm); return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, VT, Pred, N->getOperand(2), Splat, DAG.getCondCode(CC)); } return SDValue(); } static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, AArch64CC::CondCode Cond) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc DL(Op); assert(Op.getValueType().isScalableVector() && TLI.isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!"); // Ensure target specific opcodes are using legal type. EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue TVal = DAG.getConstant(1, DL, OutVT); SDValue FVal = DAG.getConstant(0, DL, OutVT); // Set condition code (CC) flags. SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op); // Convert CC to integer based on requested condition. // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare. SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32); SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test); return DAG.getZExtOrTrunc(Res, DL, VT); } static SDValue combineSVEReductionInt(SDNode *N, unsigned Opc, SelectionDAG &DAG) { SDLoc DL(N); SDValue Pred = N->getOperand(1); SDValue VecToReduce = N->getOperand(2); // NOTE: The integer reduction's result type is not always linked to the // operand's element type so we construct it from the intrinsic's result type. EVT ReduceVT = getPackedSVEVectorVT(N->getValueType(0)); SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce); // SVE reductions set the whole vector register with the first element // containing the reduction result, which we'll now extract. SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, Zero); } static SDValue combineSVEReductionFP(SDNode *N, unsigned Opc, SelectionDAG &DAG) { SDLoc DL(N); SDValue Pred = N->getOperand(1); SDValue VecToReduce = N->getOperand(2); EVT ReduceVT = VecToReduce.getValueType(); SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce); // SVE reductions set the whole vector register with the first element // containing the reduction result, which we'll now extract. SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, Zero); } static SDValue combineSVEReductionOrderedFP(SDNode *N, unsigned Opc, SelectionDAG &DAG) { SDLoc DL(N); SDValue Pred = N->getOperand(1); SDValue InitVal = N->getOperand(2); SDValue VecToReduce = N->getOperand(3); EVT ReduceVT = VecToReduce.getValueType(); // Ordered reductions use the first lane of the result vector as the // reduction's initial value. SDValue Zero = DAG.getConstant(0, DL, MVT::i64); InitVal = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ReduceVT, DAG.getUNDEF(ReduceVT), InitVal, Zero); SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, InitVal, VecToReduce); // SVE reductions set the whole vector register with the first element // containing the reduction result, which we'll now extract. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, Zero); } // If a merged operation has no inactive lanes we can relax it to a predicated // or unpredicated operation, which potentially allows better isel (perhaps // using immediate forms) or relaxing register reuse requirements. static SDValue convertMergedOpToPredOp(SDNode *N, unsigned PredOpc, SelectionDAG &DAG) { assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Expected intrinsic!"); assert(N->getNumOperands() == 4 && "Expected 3 operand intrinsic!"); SDValue Pg = N->getOperand(1); // ISD way to specify an all active predicate. if ((Pg.getOpcode() == AArch64ISD::PTRUE) && (Pg.getConstantOperandVal(0) == AArch64SVEPredPattern::all)) return DAG.getNode(PredOpc, SDLoc(N), N->getValueType(0), Pg, N->getOperand(2), N->getOperand(3)); // FUTURE: SplatVector(true) return SDValue(); } static SDValue performIntrinsicCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; unsigned IID = getIntrinsicID(N); switch (IID) { default: break; case Intrinsic::aarch64_neon_vcvtfxs2fp: case Intrinsic::aarch64_neon_vcvtfxu2fp: return tryCombineFixedPointConvert(N, DCI, DAG); case Intrinsic::aarch64_neon_saddv: return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); case Intrinsic::aarch64_neon_uaddv: return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); case Intrinsic::aarch64_neon_sminv: return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); case Intrinsic::aarch64_neon_uminv: return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); case Intrinsic::aarch64_neon_smaxv: return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); case Intrinsic::aarch64_neon_umaxv: return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); case Intrinsic::aarch64_neon_fmax: return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_fmin: return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_fmaxnm: return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_fminnm: return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_smull: case Intrinsic::aarch64_neon_umull: case Intrinsic::aarch64_neon_pmull: case Intrinsic::aarch64_neon_sqdmull: return tryCombineLongOpWithDup(IID, N, DCI, DAG); case Intrinsic::aarch64_neon_sqshl: case Intrinsic::aarch64_neon_uqshl: case Intrinsic::aarch64_neon_sqshlu: case Intrinsic::aarch64_neon_srshl: case Intrinsic::aarch64_neon_urshl: case Intrinsic::aarch64_neon_sshl: case Intrinsic::aarch64_neon_ushl: return tryCombineShiftImm(IID, N, DAG); case Intrinsic::aarch64_crc32b: case Intrinsic::aarch64_crc32cb: return tryCombineCRC32(0xff, N, DAG); case Intrinsic::aarch64_crc32h: case Intrinsic::aarch64_crc32ch: return tryCombineCRC32(0xffff, N, DAG); case Intrinsic::aarch64_sve_saddv: // There is no i64 version of SADDV because the sign is irrelevant. if (N->getOperand(2)->getValueType(0).getVectorElementType() == MVT::i64) return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG); else return combineSVEReductionInt(N, AArch64ISD::SADDV_PRED, DAG); case Intrinsic::aarch64_sve_uaddv: return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG); case Intrinsic::aarch64_sve_smaxv: return combineSVEReductionInt(N, AArch64ISD::SMAXV_PRED, DAG); case Intrinsic::aarch64_sve_umaxv: return combineSVEReductionInt(N, AArch64ISD::UMAXV_PRED, DAG); case Intrinsic::aarch64_sve_sminv: return combineSVEReductionInt(N, AArch64ISD::SMINV_PRED, DAG); case Intrinsic::aarch64_sve_uminv: return combineSVEReductionInt(N, AArch64ISD::UMINV_PRED, DAG); case Intrinsic::aarch64_sve_orv: return combineSVEReductionInt(N, AArch64ISD::ORV_PRED, DAG); case Intrinsic::aarch64_sve_eorv: return combineSVEReductionInt(N, AArch64ISD::EORV_PRED, DAG); case Intrinsic::aarch64_sve_andv: return combineSVEReductionInt(N, AArch64ISD::ANDV_PRED, DAG); case Intrinsic::aarch64_sve_index: return LowerSVEIntrinsicIndex(N, DAG); case Intrinsic::aarch64_sve_dup: return LowerSVEIntrinsicDUP(N, DAG); case Intrinsic::aarch64_sve_dup_x: return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), N->getValueType(0), N->getOperand(1)); case Intrinsic::aarch64_sve_ext: return LowerSVEIntrinsicEXT(N, DAG); case Intrinsic::aarch64_sve_smin: return convertMergedOpToPredOp(N, AArch64ISD::SMIN_PRED, DAG); case Intrinsic::aarch64_sve_umin: return convertMergedOpToPredOp(N, AArch64ISD::UMIN_PRED, DAG); case Intrinsic::aarch64_sve_smax: return convertMergedOpToPredOp(N, AArch64ISD::SMAX_PRED, DAG); case Intrinsic::aarch64_sve_umax: return convertMergedOpToPredOp(N, AArch64ISD::UMAX_PRED, DAG); case Intrinsic::aarch64_sve_lsl: return convertMergedOpToPredOp(N, AArch64ISD::SHL_PRED, DAG); case Intrinsic::aarch64_sve_lsr: return convertMergedOpToPredOp(N, AArch64ISD::SRL_PRED, DAG); case Intrinsic::aarch64_sve_asr: return convertMergedOpToPredOp(N, AArch64ISD::SRA_PRED, DAG); case Intrinsic::aarch64_sve_cmphs: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETUGE)); break; case Intrinsic::aarch64_sve_cmphi: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETUGT)); break; case Intrinsic::aarch64_sve_cmpge: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETGE)); break; case Intrinsic::aarch64_sve_cmpgt: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETGT)); break; case Intrinsic::aarch64_sve_cmpeq: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETEQ)); break; case Intrinsic::aarch64_sve_cmpne: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETNE)); break; case Intrinsic::aarch64_sve_fadda: return combineSVEReductionOrderedFP(N, AArch64ISD::FADDA_PRED, DAG); case Intrinsic::aarch64_sve_faddv: return combineSVEReductionFP(N, AArch64ISD::FADDV_PRED, DAG); case Intrinsic::aarch64_sve_fmaxnmv: return combineSVEReductionFP(N, AArch64ISD::FMAXNMV_PRED, DAG); case Intrinsic::aarch64_sve_fmaxv: return combineSVEReductionFP(N, AArch64ISD::FMAXV_PRED, DAG); case Intrinsic::aarch64_sve_fminnmv: return combineSVEReductionFP(N, AArch64ISD::FMINNMV_PRED, DAG); case Intrinsic::aarch64_sve_fminv: return combineSVEReductionFP(N, AArch64ISD::FMINV_PRED, DAG); case Intrinsic::aarch64_sve_sel: return DAG.getNode(ISD::VSELECT, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_cmpeq_wide: return tryConvertSVEWideCompare(N, ISD::SETEQ, DCI, DAG); case Intrinsic::aarch64_sve_cmpne_wide: return tryConvertSVEWideCompare(N, ISD::SETNE, DCI, DAG); case Intrinsic::aarch64_sve_cmpge_wide: return tryConvertSVEWideCompare(N, ISD::SETGE, DCI, DAG); case Intrinsic::aarch64_sve_cmpgt_wide: return tryConvertSVEWideCompare(N, ISD::SETGT, DCI, DAG); case Intrinsic::aarch64_sve_cmplt_wide: return tryConvertSVEWideCompare(N, ISD::SETLT, DCI, DAG); case Intrinsic::aarch64_sve_cmple_wide: return tryConvertSVEWideCompare(N, ISD::SETLE, DCI, DAG); case Intrinsic::aarch64_sve_cmphs_wide: return tryConvertSVEWideCompare(N, ISD::SETUGE, DCI, DAG); case Intrinsic::aarch64_sve_cmphi_wide: return tryConvertSVEWideCompare(N, ISD::SETUGT, DCI, DAG); case Intrinsic::aarch64_sve_cmplo_wide: return tryConvertSVEWideCompare(N, ISD::SETULT, DCI, DAG); case Intrinsic::aarch64_sve_cmpls_wide: return tryConvertSVEWideCompare(N, ISD::SETULE, DCI, DAG); case Intrinsic::aarch64_sve_ptest_any: return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), AArch64CC::ANY_ACTIVE); case Intrinsic::aarch64_sve_ptest_first: return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), AArch64CC::FIRST_ACTIVE); case Intrinsic::aarch64_sve_ptest_last: return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), AArch64CC::LAST_ACTIVE); } return SDValue(); } static SDValue performExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then // we can convert that DUP into another extract_high (of a bigger DUP), which // helps the backend to decide that an sabdl2 would be useful, saving a real // extract_high operation. if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && (N->getOperand(0).getOpcode() == AArch64ISD::UABD || N->getOperand(0).getOpcode() == AArch64ISD::SABD)) { SDNode *ABDNode = N->getOperand(0).getNode(); SDValue NewABD = tryCombineLongOpWithDup(Intrinsic::not_intrinsic, ABDNode, DCI, DAG); if (!NewABD.getNode()) return SDValue(); return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), NewABD); } // This is effectively a custom type legalization for AArch64. // // Type legalization will split an extend of a small, legal, type to a larger // illegal type by first splitting the destination type, often creating // illegal source types, which then get legalized in isel-confusing ways, // leading to really terrible codegen. E.g., // %result = v8i32 sext v8i8 %value // becomes // %losrc = extract_subreg %value, ... // %hisrc = extract_subreg %value, ... // %lo = v4i32 sext v4i8 %losrc // %hi = v4i32 sext v4i8 %hisrc // Things go rapidly downhill from there. // // For AArch64, the [sz]ext vector instructions can only go up one element // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 // take two instructions. // // This implies that the most efficient way to do the extend from v8i8 // to two v4i32 values is to first extend the v8i8 to v8i16, then do // the normal splitting to happen for the v8i16->v8i32. // This is pre-legalization to catch some cases where the default // type legalization will create ill-tempered code. if (!DCI.isBeforeLegalizeOps()) return SDValue(); // We're only interested in cleaning things up for non-legal vector types // here. If both the source and destination are legal, things will just // work naturally without any fiddling. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT ResVT = N->getValueType(0); if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) return SDValue(); // If the vector type isn't a simple VT, it's beyond the scope of what // we're worried about here. Let legalization do its thing and hope for // the best. SDValue Src = N->getOperand(0); EVT SrcVT = Src->getValueType(0); if (!ResVT.isSimple() || !SrcVT.isSimple()) return SDValue(); // If the source VT is a 64-bit fixed or scalable vector, we can play games // and get the better results we want. if (SrcVT.getSizeInBits().getKnownMinSize() != 64) return SDValue(); unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); ElementCount SrcEC = SrcVT.getVectorElementCount(); SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), SrcEC); SDLoc DL(N); Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); // Now split the rest of the operation into two halves, each with a 64 // bit source. EVT LoVT, HiVT; SDValue Lo, Hi; LoVT = HiVT = ResVT.getHalfNumVectorElementsVT(*DAG.getContext()); EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), LoVT.getVectorElementCount()); Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, DAG.getConstant(0, DL, MVT::i64)); Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, DAG.getConstant(InNVT.getVectorMinNumElements(), DL, MVT::i64)); Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); // Now combine the parts back together so we still have a single result // like the combiner expects. return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); } static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, SDValue SplatVal, unsigned NumVecElts) { assert(!St.isTruncatingStore() && "cannot split truncating vector store"); unsigned OrigAlignment = St.getAlignment(); unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; // Create scalar stores. This is at least as good as the code sequence for a // split unaligned store which is a dup.s, ext.b, and two stores. // Most of the time the three stores should be replaced by store pair // instructions (stp). SDLoc DL(&St); SDValue BasePtr = St.getBasePtr(); uint64_t BaseOffset = 0; const MachinePointerInfo &PtrInfo = St.getPointerInfo(); SDValue NewST1 = DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo, OrigAlignment, St.getMemOperand()->getFlags()); // As this in ISel, we will not merge this add which may degrade results. if (BasePtr->getOpcode() == ISD::ADD && isa(BasePtr->getOperand(1))) { BaseOffset = cast(BasePtr->getOperand(1))->getSExtValue(); BasePtr = BasePtr->getOperand(0); } unsigned Offset = EltOffset; while (--NumVecElts) { unsigned Alignment = MinAlign(OrigAlignment, Offset); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, DAG.getConstant(BaseOffset + Offset, DL, MVT::i64)); NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, PtrInfo.getWithOffset(Offset), Alignment, St.getMemOperand()->getFlags()); Offset += EltOffset; } return NewST1; } // Returns an SVE type that ContentTy can be trivially sign or zero extended // into. static MVT getSVEContainerType(EVT ContentTy) { assert(ContentTy.isSimple() && "No SVE containers for extended types"); switch (ContentTy.getSimpleVT().SimpleTy) { default: llvm_unreachable("No known SVE container for this MVT type"); case MVT::nxv2i8: case MVT::nxv2i16: case MVT::nxv2i32: case MVT::nxv2i64: case MVT::nxv2f32: case MVT::nxv2f64: return MVT::nxv2i64; case MVT::nxv4i8: case MVT::nxv4i16: case MVT::nxv4i32: case MVT::nxv4f32: return MVT::nxv4i32; case MVT::nxv8i8: case MVT::nxv8i16: case MVT::nxv8f16: case MVT::nxv8bf16: return MVT::nxv8i16; case MVT::nxv16i8: return MVT::nxv16i8; } } static SDValue performLD1Combine(SDNode *N, SelectionDAG &DAG, unsigned Opc) { SDLoc DL(N); EVT VT = N->getValueType(0); if (VT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) return SDValue(); EVT ContainerVT = VT; if (ContainerVT.isInteger()) ContainerVT = getSVEContainerType(ContainerVT); SDVTList VTs = DAG.getVTList(ContainerVT, MVT::Other); SDValue Ops[] = { N->getOperand(0), // Chain N->getOperand(2), // Pg N->getOperand(3), // Base DAG.getValueType(VT) }; SDValue Load = DAG.getNode(Opc, DL, VTs, Ops); SDValue LoadChain = SDValue(Load.getNode(), 1); if (ContainerVT.isInteger() && (VT != ContainerVT)) Load = DAG.getNode(ISD::TRUNCATE, DL, VT, Load.getValue(0)); return DAG.getMergeValues({ Load, LoadChain }, DL); } static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); EVT VT = N->getValueType(0); EVT PtrTy = N->getOperand(3).getValueType(); if (VT == MVT::nxv8bf16 && !static_cast(DAG.getSubtarget()).hasBF16()) return SDValue(); EVT LoadVT = VT; if (VT.isFloatingPoint()) LoadVT = VT.changeTypeToInteger(); auto *MINode = cast(N); SDValue PassThru = DAG.getConstant(0, DL, LoadVT); SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(), MINode->getOperand(3), DAG.getUNDEF(PtrTy), MINode->getOperand(2), PassThru, MINode->getMemoryVT(), MINode->getMemOperand(), ISD::UNINDEXED, ISD::NON_EXTLOAD, false); if (VT.isFloatingPoint()) { SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) }; return DAG.getMergeValues(Ops, DL); } return L; } template static SDValue performLD1ReplicateCombine(SDNode *N, SelectionDAG &DAG) { static_assert(Opcode == AArch64ISD::LD1RQ_MERGE_ZERO || Opcode == AArch64ISD::LD1RO_MERGE_ZERO, "Unsupported opcode."); SDLoc DL(N); EVT VT = N->getValueType(0); if (VT == MVT::nxv8bf16 && !static_cast(DAG.getSubtarget()).hasBF16()) return SDValue(); EVT LoadVT = VT; if (VT.isFloatingPoint()) LoadVT = VT.changeTypeToInteger(); SDValue Ops[] = {N->getOperand(0), N->getOperand(2), N->getOperand(3)}; SDValue Load = DAG.getNode(Opcode, DL, {LoadVT, MVT::Other}, Ops); SDValue LoadChain = SDValue(Load.getNode(), 1); if (VT.isFloatingPoint()) Load = DAG.getNode(ISD::BITCAST, DL, VT, Load.getValue(0)); return DAG.getMergeValues({Load, LoadChain}, DL); } static SDValue performST1Combine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Data = N->getOperand(2); EVT DataVT = Data.getValueType(); EVT HwSrcVt = getSVEContainerType(DataVT); SDValue InputVT = DAG.getValueType(DataVT); if (DataVT == MVT::nxv8bf16 && !static_cast(DAG.getSubtarget()).hasBF16()) return SDValue(); if (DataVT.isFloatingPoint()) InputVT = DAG.getValueType(HwSrcVt); SDValue SrcNew; if (Data.getValueType().isFloatingPoint()) SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Data); else SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Data); SDValue Ops[] = { N->getOperand(0), // Chain SrcNew, N->getOperand(4), // Base N->getOperand(3), // Pg InputVT }; return DAG.getNode(AArch64ISD::ST1_PRED, DL, N->getValueType(0), Ops); } static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Data = N->getOperand(2); EVT DataVT = Data.getValueType(); EVT PtrTy = N->getOperand(4).getValueType(); if (DataVT == MVT::nxv8bf16 && !static_cast(DAG.getSubtarget()).hasBF16()) return SDValue(); if (DataVT.isFloatingPoint()) Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data); auto *MINode = cast(N); return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4), DAG.getUNDEF(PtrTy), MINode->getOperand(3), MINode->getMemoryVT(), MINode->getMemOperand(), ISD::UNINDEXED, false, false); } /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The /// load store optimizer pass will merge them to store pair stores. This should /// be better than a movi to create the vector zero followed by a vector store /// if the zero constant is not re-used, since one instructions and one register /// live range will be removed. /// /// For example, the final generated code should be: /// /// stp xzr, xzr, [x0] /// /// instead of: /// /// movi v0.2d, #0 /// str q0, [x0] /// static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { SDValue StVal = St.getValue(); EVT VT = StVal.getValueType(); // Avoid scalarizing zero splat stores for scalable vectors. if (VT.isScalableVector()) return SDValue(); // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or // 2, 3 or 4 i32 elements. int NumVecElts = VT.getVectorNumElements(); if (!(((NumVecElts == 2 || NumVecElts == 3) && VT.getVectorElementType().getSizeInBits() == 64) || ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && VT.getVectorElementType().getSizeInBits() == 32))) return SDValue(); if (StVal.getOpcode() != ISD::BUILD_VECTOR) return SDValue(); // If the zero constant has more than one use then the vector store could be // better since the constant mov will be amortized and stp q instructions // should be able to be formed. if (!StVal.hasOneUse()) return SDValue(); // If the store is truncating then it's going down to i16 or smaller, which // means it can be implemented in a single store anyway. if (St.isTruncatingStore()) return SDValue(); // If the immediate offset of the address operand is too large for the stp // instruction, then bail out. if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); if (Offset < -512 || Offset > 504) return SDValue(); } for (int I = 0; I < NumVecElts; ++I) { SDValue EltVal = StVal.getOperand(I); if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) return SDValue(); } // Use a CopyFromReg WZR/XZR here to prevent // DAGCombiner::MergeConsecutiveStores from undoing this transformation. SDLoc DL(&St); unsigned ZeroReg; EVT ZeroVT; if (VT.getVectorElementType().getSizeInBits() == 32) { ZeroReg = AArch64::WZR; ZeroVT = MVT::i32; } else { ZeroReg = AArch64::XZR; ZeroVT = MVT::i64; } SDValue SplatVal = DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT); return splitStoreSplat(DAG, St, SplatVal, NumVecElts); } /// Replace a splat of a scalar to a vector store by scalar stores of the scalar /// value. The load store optimizer pass will merge them to store pair stores. /// This has better performance than a splat of the scalar followed by a split /// vector store. Even if the stores are not merged it is four stores vs a dup, /// followed by an ext.b and two stores. static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { SDValue StVal = St.getValue(); EVT VT = StVal.getValueType(); // Don't replace floating point stores, they possibly won't be transformed to // stp because of the store pair suppress pass. if (VT.isFloatingPoint()) return SDValue(); // We can express a splat as store pair(s) for 2 or 4 elements. unsigned NumVecElts = VT.getVectorNumElements(); if (NumVecElts != 4 && NumVecElts != 2) return SDValue(); // If the store is truncating then it's going down to i16 or smaller, which // means it can be implemented in a single store anyway. if (St.isTruncatingStore()) return SDValue(); // Check that this is a splat. // Make sure that each of the relevant vector element locations are inserted // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); SDValue SplatVal; for (unsigned I = 0; I < NumVecElts; ++I) { // Check for insert vector elements. if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) return SDValue(); // Check that same value is inserted at each vector element. if (I == 0) SplatVal = StVal.getOperand(1); else if (StVal.getOperand(1) != SplatVal) return SDValue(); // Check insert element index. ConstantSDNode *CIndex = dyn_cast(StVal.getOperand(2)); if (!CIndex) return SDValue(); uint64_t IndexVal = CIndex->getZExtValue(); if (IndexVal >= NumVecElts) return SDValue(); IndexNotInserted.reset(IndexVal); StVal = StVal.getOperand(0); } // Check that all vector element locations were inserted to. if (IndexNotInserted.any()) return SDValue(); return splitStoreSplat(DAG, St, SplatVal, NumVecElts); } static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { StoreSDNode *S = cast(N); if (S->isVolatile() || S->isIndexed()) return SDValue(); SDValue StVal = S->getValue(); EVT VT = StVal.getValueType(); if (!VT.isFixedLengthVector()) return SDValue(); // If we get a splat of zeros, convert this vector store to a store of // scalars. They will be merged into store pairs of xzr thereby removing one // instruction and one register. if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) return ReplacedZeroSplat; // FIXME: The logic for deciding if an unaligned store should be split should // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be // a call to that function here. if (!Subtarget->isMisaligned128StoreSlow()) return SDValue(); // Don't split at -Oz. if (DAG.getMachineFunction().getFunction().hasMinSize()) return SDValue(); // Don't split v2i64 vectors. Memcpy lowering produces those and splitting // those up regresses performance on micro-benchmarks and olden/bh. if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) return SDValue(); // Split unaligned 16B stores. They are terrible for performance. // Don't split stores with alignment of 1 or 2. Code that uses clang vector // extensions can use this to mark that it does not want splitting to happen // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of // eliminating alignment hazards is only 1 in 8 for alignment of 2. if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || S->getAlignment() <= 2) return SDValue(); // If we get a splat of a scalar convert this vector store to a store of // scalars. They will be merged into store pairs thereby removing two // instructions. if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) return ReplacedSplat; SDLoc DL(S); // Split VT into two. EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); unsigned NumElts = HalfVT.getVectorNumElements(); SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, DAG.getConstant(0, DL, MVT::i64)); SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, DAG.getConstant(NumElts, DL, MVT::i64)); SDValue BasePtr = S->getBasePtr(); SDValue NewST1 = DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), S->getAlignment(), S->getMemOperand()->getFlags()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, DAG.getConstant(8, DL, MVT::i64)); return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, S->getPointerInfo(), S->getAlignment(), S->getMemOperand()->getFlags()); } static SDValue performUzpCombine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); EVT ResVT = N->getValueType(0); // uzp1(unpklo(uzp1(x, y)), z) => uzp1(x, z) if (Op0.getOpcode() == AArch64ISD::UUNPKLO) { if (Op0.getOperand(0).getOpcode() == AArch64ISD::UZP1) { SDValue X = Op0.getOperand(0).getOperand(0); return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, X, Op1); } } // uzp1(x, unpkhi(uzp1(y, z))) => uzp1(x, z) if (Op1.getOpcode() == AArch64ISD::UUNPKHI) { if (Op1.getOperand(0).getOpcode() == AArch64ISD::UZP1) { SDValue Z = Op1.getOperand(0).getOperand(1); return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Z); } } return SDValue(); } /// Target-specific DAG combine function for post-increment LD1 (lane) and /// post-increment LD1R. static SDValue performPostLD1Combine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, bool IsLaneOp) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (VT.isScalableVector()) return SDValue(); unsigned LoadIdx = IsLaneOp ? 1 : 0; SDNode *LD = N->getOperand(LoadIdx).getNode(); // If it is not LOAD, can not do such combine. if (LD->getOpcode() != ISD::LOAD) return SDValue(); // The vector lane must be a constant in the LD1LANE opcode. SDValue Lane; if (IsLaneOp) { Lane = N->getOperand(2); auto *LaneC = dyn_cast(Lane); if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements()) return SDValue(); } LoadSDNode *LoadSDN = cast(LD); EVT MemVT = LoadSDN->getMemoryVT(); // Check if memory operand is the same type as the vector element. if (MemVT != VT.getVectorElementType()) return SDValue(); // Check if there are other uses. If so, do not combine as it will introduce // an extra load. for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; ++UI) { if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. continue; if (*UI != N) return SDValue(); } SDValue Addr = LD->getOperand(1); SDValue Vector = N->getOperand(0); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast(Inc.getNode())) { uint32_t IncVal = CInc->getZExtValue(); unsigned NumBytes = VT.getScalarSizeInBits() / 8; if (IncVal != NumBytes) continue; Inc = DAG.getRegister(AArch64::XZR, MVT::i64); } // To avoid cycle construction make sure that neither the load nor the add // are predecessors to each other or the Vector. SmallPtrSet Visited; SmallVector Worklist; Visited.insert(Addr.getNode()); Worklist.push_back(User); Worklist.push_back(LD); Worklist.push_back(Vector.getNode()); if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) || SDNode::hasPredecessorHelper(User, Visited, Worklist)) continue; SmallVector Ops; Ops.push_back(LD->getOperand(0)); // Chain if (IsLaneOp) { Ops.push_back(Vector); // The vector to be inserted Ops.push_back(Lane); // The lane to be inserted in the vector } Ops.push_back(Addr); Ops.push_back(Inc); EVT Tys[3] = { VT, MVT::i64, MVT::Other }; SDVTList SDTys = DAG.getVTList(Tys); unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, MemVT, LoadSDN->getMemOperand()); // Update the uses. SDValue NewResults[] = { SDValue(LD, 0), // The result of load SDValue(UpdN.getNode(), 2) // Chain }; DCI.CombineTo(LD, NewResults); DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register break; } return SDValue(); } /// Simplify ``Addr`` given that the top byte of it is ignored by HW during /// address translation. static bool performTBISimplification(SDValue Addr, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { APInt DemandedMask = APInt::getLowBitsSet(64, 56); KnownBits Known; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) { DCI.CommitTargetLoweringOpt(TLO); return true; } return false; } static SDValue performSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) return Split; if (Subtarget->supportsAddressTopByteIgnored() && performTBISimplification(N->getOperand(2), DCI, DAG)) return SDValue(N, 0); return SDValue(); } static SDValue performMSCATTERCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { MaskedScatterSDNode *MSC = cast(N); assert(MSC && "Can only combine scatter store nodes"); SDLoc DL(MSC); SDValue Chain = MSC->getChain(); SDValue Scale = MSC->getScale(); SDValue Index = MSC->getIndex(); SDValue Data = MSC->getValue(); SDValue Mask = MSC->getMask(); SDValue BasePtr = MSC->getBasePtr(); ISD::MemIndexType IndexType = MSC->getIndexType(); EVT IdxVT = Index.getValueType(); if (DCI.isBeforeLegalize()) { // SVE gather/scatter requires indices of i32/i64. Promote anything smaller // prior to legalisation so the result can be split if required. if ((IdxVT.getVectorElementType() == MVT::i8) || (IdxVT.getVectorElementType() == MVT::i16)) { EVT NewIdxVT = IdxVT.changeVectorElementType(MVT::i32); if (MSC->isIndexSigned()) Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); else Index = DAG.getNode(ISD::ZERO_EXTEND, DL, NewIdxVT, Index); SDValue Ops[] = { Chain, Data, Mask, BasePtr, Index, Scale }; return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, MSC->getMemOperand(), IndexType, MSC->isTruncatingStore()); } } return SDValue(); } /// Target-specific DAG combine function for NEON load/store intrinsics /// to merge base address updates. static SDValue performNEONPostLDSTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); unsigned AddrOpIdx = N->getNumOperands() - 1; SDValue Addr = N->getOperand(AddrOpIdx); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. SmallPtrSet Visited; SmallVector Worklist; Visited.insert(Addr.getNode()); Worklist.push_back(N); Worklist.push_back(User); if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || SDNode::hasPredecessorHelper(User, Visited, Worklist)) continue; // Find the new opcode for the updating load/store. bool IsStore = false; bool IsLaneOp = false; bool IsDupOp = false; unsigned NewOpc = 0; unsigned NumVecs = 0; unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for Neon base update"); case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; NumVecs = 2; break; case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; NumVecs = 3; break; case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; NumVecs = 4; break; case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; NumVecs = 2; IsStore = true; break; case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; NumVecs = 3; IsStore = true; break; case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; NumVecs = 4; IsStore = true; break; case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; NumVecs = 2; break; case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; NumVecs = 3; break; case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; NumVecs = 4; break; case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; NumVecs = 2; IsStore = true; break; case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; NumVecs = 3; IsStore = true; break; case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; NumVecs = 4; IsStore = true; break; case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; NumVecs = 2; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; NumVecs = 3; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; NumVecs = 4; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; NumVecs = 2; IsLaneOp = true; break; case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; NumVecs = 3; IsLaneOp = true; break; case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; NumVecs = 4; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; NumVecs = 2; IsStore = true; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; NumVecs = 3; IsStore = true; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; NumVecs = 4; IsStore = true; IsLaneOp = true; break; } EVT VecTy; if (IsStore) VecTy = N->getOperand(2).getValueType(); else VecTy = N->getValueType(0); // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast(Inc.getNode())) { uint32_t IncVal = CInc->getZExtValue(); unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; if (IsLaneOp || IsDupOp) NumBytes /= VecTy.getVectorNumElements(); if (IncVal != NumBytes) continue; Inc = DAG.getRegister(AArch64::XZR, MVT::i64); } SmallVector Ops; Ops.push_back(N->getOperand(0)); // Incoming chain // Load lane and store have vector list as input. if (IsLaneOp || IsStore) for (unsigned i = 2; i < AddrOpIdx; ++i) Ops.push_back(N->getOperand(i)); Ops.push_back(Addr); // Base register Ops.push_back(Inc); // Return Types. EVT Tys[6]; unsigned NumResultVecs = (IsStore ? 0 : NumVecs); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = VecTy; Tys[n++] = MVT::i64; // Type of write back register Tys[n] = MVT::Other; // Type of the chain SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); MemIntrinsicSDNode *MemInt = cast(N); SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, MemInt->getMemoryVT(), MemInt->getMemOperand()); // Update the uses. std::vector NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) { NewResults.push_back(SDValue(UpdN.getNode(), i)); } NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } // Checks to see if the value is the prescribed width and returns information // about its extension mode. static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { ExtType = ISD::NON_EXTLOAD; switch(V.getNode()->getOpcode()) { default: return false; case ISD::LOAD: { LoadSDNode *LoadNode = cast(V.getNode()); if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { ExtType = LoadNode->getExtensionType(); return true; } return false; } case ISD::AssertSext: { VTSDNode *TypeNode = cast(V.getNode()->getOperand(1)); if ((TypeNode->getVT() == MVT::i8 && width == 8) || (TypeNode->getVT() == MVT::i16 && width == 16)) { ExtType = ISD::SEXTLOAD; return true; } return false; } case ISD::AssertZext: { VTSDNode *TypeNode = cast(V.getNode()->getOperand(1)); if ((TypeNode->getVT() == MVT::i8 && width == 8) || (TypeNode->getVT() == MVT::i16 && width == 16)) { ExtType = ISD::ZEXTLOAD; return true; } return false; } case ISD::Constant: case ISD::TargetConstant: { return std::abs(cast(V.getNode())->getSExtValue()) < 1LL << (width - 1); } } return true; } // This function does a whole lot of voodoo to determine if the tests are // equivalent without and with a mask. Essentially what happens is that given a // DAG resembling: // // +-------------+ +-------------+ +-------------+ +-------------+ // | Input | | AddConstant | | CompConstant| | CC | // +-------------+ +-------------+ +-------------+ +-------------+ // | | | | // V V | +----------+ // +-------------+ +----+ | | // | ADD | |0xff| | | // +-------------+ +----+ | | // | | | | // V V | | // +-------------+ | | // | AND | | | // +-------------+ | | // | | | // +-----+ | | // | | | // V V V // +-------------+ // | CMP | // +-------------+ // // The AND node may be safely removed for some combinations of inputs. In // particular we need to take into account the extension type of the Input, // the exact values of AddConstant, CompConstant, and CC, along with the nominal // width of the input (this can work for any width inputs, the above graph is // specific to 8 bits. // // The specific equations were worked out by generating output tables for each // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The // problem was simplified by working with 4 bit inputs, which means we only // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 // patterns present in both extensions (0,7). For every distinct set of // AddConstant and CompConstants bit patterns we can consider the masked and // unmasked versions to be equivalent if the result of this function is true for // all 16 distinct bit patterns of for the current extension type of Input (w0). // // sub w8, w0, w1 // and w10, w8, #0x0f // cmp w8, w2 // cset w9, AArch64CC // cmp w10, w2 // cset w11, AArch64CC // cmp w9, w11 // cset w0, eq // ret // // Since the above function shows when the outputs are equivalent it defines // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and // would be expensive to run during compiles. The equations below were written // in a test harness that confirmed they gave equivalent outputs to the above // for all inputs function, so they can be used determine if the removal is // legal instead. // // isEquivalentMaskless() is the code for testing if the AND can be removed // factored out of the DAG recognition as the DAG can take several forms. static bool isEquivalentMaskless(unsigned CC, unsigned width, ISD::LoadExtType ExtType, int AddConstant, int CompConstant) { // By being careful about our equations and only writing the in term // symbolic values and well known constants (0, 1, -1, MaxUInt) we can // make them generally applicable to all bit widths. int MaxUInt = (1 << width); // For the purposes of these comparisons sign extending the type is // equivalent to zero extending the add and displacing it by half the integer // width. Provided we are careful and make sure our equations are valid over // the whole range we can just adjust the input and avoid writing equations // for sign extended inputs. if (ExtType == ISD::SEXTLOAD) AddConstant -= (1 << (width-1)); switch(CC) { case AArch64CC::LE: case AArch64CC::GT: if ((AddConstant == 0) || (CompConstant == MaxUInt - 1 && AddConstant < 0) || (AddConstant >= 0 && CompConstant < 0) || (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) return true; break; case AArch64CC::LT: case AArch64CC::GE: if ((AddConstant == 0) || (AddConstant >= 0 && CompConstant <= 0) || (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) return true; break; case AArch64CC::HI: case AArch64CC::LS: if ((AddConstant >= 0 && CompConstant < 0) || (AddConstant <= 0 && CompConstant >= -1 && CompConstant < AddConstant + MaxUInt)) return true; break; case AArch64CC::PL: case AArch64CC::MI: if ((AddConstant == 0) || (AddConstant > 0 && CompConstant <= 0) || (AddConstant < 0 && CompConstant <= AddConstant)) return true; break; case AArch64CC::LO: case AArch64CC::HS: if ((AddConstant >= 0 && CompConstant <= 0) || (AddConstant <= 0 && CompConstant >= 0 && CompConstant <= AddConstant + MaxUInt)) return true; break; case AArch64CC::EQ: case AArch64CC::NE: if ((AddConstant > 0 && CompConstant < 0) || (AddConstant < 0 && CompConstant >= 0 && CompConstant < AddConstant + MaxUInt) || (AddConstant >= 0 && CompConstant >= 0 && CompConstant >= AddConstant) || (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) return true; break; case AArch64CC::VS: case AArch64CC::VC: case AArch64CC::AL: case AArch64CC::NV: return true; case AArch64CC::Invalid: break; } return false; } static SDValue performCONDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, unsigned CCIndex, unsigned CmpIndex) { unsigned CC = cast(N->getOperand(CCIndex))->getSExtValue(); SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); unsigned CondOpcode = SubsNode->getOpcode(); if (CondOpcode != AArch64ISD::SUBS) return SDValue(); // There is a SUBS feeding this condition. Is it fed by a mask we can // use? SDNode *AndNode = SubsNode->getOperand(0).getNode(); unsigned MaskBits = 0; if (AndNode->getOpcode() != ISD::AND) return SDValue(); if (ConstantSDNode *CN = dyn_cast(AndNode->getOperand(1))) { uint32_t CNV = CN->getZExtValue(); if (CNV == 255) MaskBits = 8; else if (CNV == 65535) MaskBits = 16; } if (!MaskBits) return SDValue(); SDValue AddValue = AndNode->getOperand(0); if (AddValue.getOpcode() != ISD::ADD) return SDValue(); // The basic dag structure is correct, grab the inputs and validate them. SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); SDValue SubsInputValue = SubsNode->getOperand(1); // The mask is present and the provenance of all the values is a smaller type, // lets see if the mask is superfluous. if (!isa(AddInputValue2.getNode()) || !isa(SubsInputValue.getNode())) return SDValue(); ISD::LoadExtType ExtType; if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || !checkValueWidth(AddInputValue2, MaskBits, ExtType) || !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) return SDValue(); if(!isEquivalentMaskless(CC, MaskBits, ExtType, cast(AddInputValue2.getNode())->getSExtValue(), cast(SubsInputValue.getNode())->getSExtValue())) return SDValue(); // The AND is not necessary, remove it. SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), SubsNode->getValueType(1)); SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); return SDValue(N, 0); } // Optimize compare with zero and branch. static SDValue performBRCONDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions // will not be produced, as they are conditional branch instructions that do // not set flags. if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) return SDValue(); if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) N = NV.getNode(); SDValue Chain = N->getOperand(0); SDValue Dest = N->getOperand(1); SDValue CCVal = N->getOperand(2); SDValue Cmp = N->getOperand(3); assert(isa(CCVal) && "Expected a ConstantSDNode here!"); unsigned CC = cast(CCVal)->getZExtValue(); if (CC != AArch64CC::EQ && CC != AArch64CC::NE) return SDValue(); unsigned CmpOpc = Cmp.getOpcode(); if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) return SDValue(); // Only attempt folding if there is only one use of the flag and no use of the // value. if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) return SDValue(); SDValue LHS = Cmp.getOperand(0); SDValue RHS = Cmp.getOperand(1); assert(LHS.getValueType() == RHS.getValueType() && "Expected the value type to be the same for both operands!"); if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) return SDValue(); if (isNullConstant(LHS)) std::swap(LHS, RHS); if (!isNullConstant(RHS)) return SDValue(); if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || LHS.getOpcode() == ISD::SRL) return SDValue(); // Fold the compare into the branch instruction. SDValue BR; if (CC == AArch64CC::EQ) BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); else BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, BR, false); return SDValue(); } // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test // as well as whether the test should be inverted. This code is required to // catch these cases (as opposed to standard dag combines) because // AArch64ISD::TBZ is matched during legalization. static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, SelectionDAG &DAG) { if (!Op->hasOneUse()) return Op; // We don't handle undef/constant-fold cases below, as they should have // already been taken care of (e.g. and of 0, test of undefined shifted bits, // etc.) // (tbz (trunc x), b) -> (tbz x, b) // This case is just here to enable more of the below cases to be caught. if (Op->getOpcode() == ISD::TRUNCATE && Bit < Op->getValueType(0).getSizeInBits()) { return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. if (Op->getOpcode() == ISD::ANY_EXTEND && Bit < Op->getOperand(0).getValueSizeInBits()) { return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } if (Op->getNumOperands() != 2) return Op; auto *C = dyn_cast(Op->getOperand(1)); if (!C) return Op; switch (Op->getOpcode()) { default: return Op; // (tbz (and x, m), b) -> (tbz x, b) case ISD::AND: if ((C->getZExtValue() >> Bit) & 1) return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); return Op; // (tbz (shl x, c), b) -> (tbz x, b-c) case ISD::SHL: if (C->getZExtValue() <= Bit && (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { Bit = Bit - C->getZExtValue(); return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } return Op; // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x case ISD::SRA: Bit = Bit + C->getZExtValue(); if (Bit >= Op->getValueType(0).getSizeInBits()) Bit = Op->getValueType(0).getSizeInBits() - 1; return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); // (tbz (srl x, c), b) -> (tbz x, b+c) case ISD::SRL: if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { Bit = Bit + C->getZExtValue(); return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } return Op; // (tbz (xor x, -1), b) -> (tbnz x, b) case ISD::XOR: if ((C->getZExtValue() >> Bit) & 1) Invert = !Invert; return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } } // Optimize test single bit zero/non-zero and branch. static SDValue performTBZCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { unsigned Bit = cast(N->getOperand(2))->getZExtValue(); bool Invert = false; SDValue TestSrc = N->getOperand(1); SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); if (TestSrc == NewTestSrc) return SDValue(); unsigned NewOpc = N->getOpcode(); if (Invert) { if (NewOpc == AArch64ISD::TBZ) NewOpc = AArch64ISD::TBNZ; else { assert(NewOpc == AArch64ISD::TBNZ); NewOpc = AArch64ISD::TBZ; } } SDLoc DL(N); return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); } // vselect (v1i1 setcc) -> // vselect (v1iXX setcc) (XX is the size of the compared operand type) // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine // such VSELECT. static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); EVT CCVT = N0.getValueType(); if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || CCVT.getVectorElementType() != MVT::i1) return SDValue(); EVT ResVT = N->getValueType(0); EVT CmpVT = N0.getOperand(0).getValueType(); // Only combine when the result type is of the same size as the compared // operands. if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) return SDValue(); SDValue IfTrue = N->getOperand(1); SDValue IfFalse = N->getOperand(2); SDValue SetCC = DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), N0.getOperand(0), N0.getOperand(1), cast(N0.getOperand(2))->get()); return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, IfTrue, IfFalse); } /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with /// the compare-mask instructions rather than going via NZCV, even if LHS and /// RHS are really scalar. This replaces any scalar setcc in the above pattern /// with a vector one followed by a DUP shuffle on the result. static SDValue performSelectCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); EVT ResVT = N->getValueType(0); if (N0.getOpcode() != ISD::SETCC) return SDValue(); // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered // scalar SetCCResultType. We also don't expect vectors, because we assume // that selects fed by vector SETCCs are canonicalized to VSELECT. assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && "Scalar-SETCC feeding SELECT has unexpected result type!"); // If NumMaskElts == 0, the comparison is larger than select result. The // largest real NEON comparison is 64-bits per lane, which means the result is // at most 32-bits and an illegal vector. Just bail out for now. EVT SrcVT = N0.getOperand(0).getValueType(); // Don't try to do this optimization when the setcc itself has i1 operands. // There are no legal vectors of i1, so this would be pointless. if (SrcVT == MVT::i1) return SDValue(); int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); if (!ResVT.isVector() || NumMaskElts == 0) return SDValue(); SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); // Also bail out if the vector CCVT isn't the same size as ResVT. // This can happen if the SETCC operand size doesn't divide the ResVT size // (e.g., f64 vs v3f32). if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) return SDValue(); // Make sure we didn't create illegal types, if we're not supposed to. assert(DCI.isBeforeLegalize() || DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); // First perform a vector comparison, where lane 0 is the one we're interested // in. SDLoc DL(N0); SDValue LHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); SDValue RHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); // Now duplicate the comparison mask we want across all other lanes. SmallVector DUPMask(CCVT.getVectorNumElements(), 0); SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(), Mask); return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); } /// Get rid of unnecessary NVCASTs (that don't change the type). static SDValue performNVCASTCombine(SDNode *N) { if (N->getValueType(0) == N->getOperand(0).getValueType()) return N->getOperand(0); return SDValue(); } // If all users of the globaladdr are of the form (globaladdr + constant), find // the smallest constant, fold it into the globaladdr's offset and rewrite the // globaladdr as (globaladdr + constant) - constant. static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget, const TargetMachine &TM) { auto *GN = cast(N); if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) != AArch64II::MO_NO_FLAG) return SDValue(); uint64_t MinOffset = -1ull; for (SDNode *N : GN->uses()) { if (N->getOpcode() != ISD::ADD) return SDValue(); auto *C = dyn_cast(N->getOperand(0)); if (!C) C = dyn_cast(N->getOperand(1)); if (!C) return SDValue(); MinOffset = std::min(MinOffset, C->getZExtValue()); } uint64_t Offset = MinOffset + GN->getOffset(); // Require that the new offset is larger than the existing one. Otherwise, we // can end up oscillating between two possible DAGs, for example, // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1). if (Offset <= uint64_t(GN->getOffset())) return SDValue(); // Check whether folding this offset is legal. It must not go out of bounds of // the referenced object to avoid violating the code model, and must be // smaller than 2^21 because this is the largest offset expressible in all // object formats. // // This check also prevents us from folding negative offsets, which will end // up being treated in the same way as large positive ones. They could also // cause code model violations, and aren't really common enough to matter. if (Offset >= (1 << 21)) return SDValue(); const GlobalValue *GV = GN->getGlobal(); Type *T = GV->getValueType(); if (!T->isSized() || Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) return SDValue(); SDLoc DL(GN); SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset); return DAG.getNode(ISD::SUB, DL, MVT::i64, Result, DAG.getConstant(MinOffset, DL, MVT::i64)); } // Turns the vector of indices into a vector of byte offstes by scaling Offset // by (BitWidth / 8). static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset, SDLoc DL, unsigned BitWidth) { assert(Offset.getValueType().isScalableVector() && "This method is only for scalable vectors of offsets"); SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64); SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift); return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift); } /// Check if the value of \p OffsetInBytes can be used as an immediate for /// the gather load/prefetch and scatter store instructions with vector base and /// immediate offset addressing mode: /// /// [.[S|D]{, #}] /// /// where = sizeof() * k, for k = 0, 1, ..., 31. inline static bool isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes, unsigned ScalarSizeInBytes) { // The immediate is not a multiple of the scalar size. if (OffsetInBytes % ScalarSizeInBytes) return false; // The immediate is out of range. if (OffsetInBytes / ScalarSizeInBytes > 31) return false; return true; } /// Check if the value of \p Offset represents a valid immediate for the SVE /// gather load/prefetch and scatter store instructiona with vector base and /// immediate offset addressing mode: /// /// [.[S|D]{, #}] /// /// where = sizeof() * k, for k = 0, 1, ..., 31. static bool isValidImmForSVEVecImmAddrMode(SDValue Offset, unsigned ScalarSizeInBytes) { ConstantSDNode *OffsetConst = dyn_cast(Offset.getNode()); return OffsetConst && isValidImmForSVEVecImmAddrMode( OffsetConst->getZExtValue(), ScalarSizeInBytes); } static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG, unsigned Opcode, bool OnlyPackedOffsets = true) { const SDValue Src = N->getOperand(2); const EVT SrcVT = Src->getValueType(0); assert(SrcVT.isScalableVector() && "Scatter stores are only possible for SVE vectors"); SDLoc DL(N); MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT(); // Make sure that source data will fit into an SVE register if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) return SDValue(); // For FPs, ACLE only supports _packed_ single and double precision types. if (SrcElVT.isFloatingPoint()) if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64)) return SDValue(); // Depending on the addressing mode, this is either a pointer or a vector of // pointers (that fits into one register) SDValue Base = N->getOperand(4); // Depending on the addressing mode, this is either a single offset or a // vector of offsets (that fits into one register) SDValue Offset = N->getOperand(5); // For "scalar + vector of indices", just scale the indices. This only // applies to non-temporal scatters because there's no instruction that takes // indicies. if (Opcode == AArch64ISD::SSTNT1_INDEX_PRED) { Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits()); Opcode = AArch64ISD::SSTNT1_PRED; } // In the case of non-temporal gather loads there's only one SVE instruction // per data-size: "scalar + vector", i.e. // * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] // Since we do have intrinsics that allow the arguments to be in a different // order, we may need to swap them to match the spec. if (Opcode == AArch64ISD::SSTNT1_PRED && Offset.getValueType().isVector()) std::swap(Base, Offset); // SST1_IMM requires that the offset is an immediate that is: // * a multiple of #SizeInBytes, // * in the range [0, 31 x #SizeInBytes], // where #SizeInBytes is the size in bytes of the stored items. For // immediates outside that range and non-immediate scalar offsets use SST1 or // SST1_UXTW instead. if (Opcode == AArch64ISD::SST1_IMM_PRED) { if (!isValidImmForSVEVecImmAddrMode(Offset, SrcVT.getScalarSizeInBits() / 8)) { if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) Opcode = AArch64ISD::SST1_UXTW_PRED; else Opcode = AArch64ISD::SST1_PRED; std::swap(Base, Offset); } } auto &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(Base.getValueType())) return SDValue(); // Some scatter store variants allow unpacked offsets, but only as nxv2i32 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to // nxv2i64. Legalize accordingly. if (!OnlyPackedOffsets && Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); if (!TLI.isTypeLegal(Offset.getValueType())) return SDValue(); // Source value type that is representable in hardware EVT HwSrcVt = getSVEContainerType(SrcVT); // Keep the original type of the input data to store - this is needed to be // able to select the correct instruction, e.g. ST1B, ST1H, ST1W and ST1D. For // FP values we want the integer equivalent, so just use HwSrcVt. SDValue InputVT = DAG.getValueType(SrcVT); if (SrcVT.isFloatingPoint()) InputVT = DAG.getValueType(HwSrcVt); SDVTList VTs = DAG.getVTList(MVT::Other); SDValue SrcNew; if (Src.getValueType().isFloatingPoint()) SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src); else SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src); SDValue Ops[] = {N->getOperand(0), // Chain SrcNew, N->getOperand(3), // Pg Base, Offset, InputVT}; return DAG.getNode(Opcode, DL, VTs, Ops); } static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG, unsigned Opcode, bool OnlyPackedOffsets = true) { const EVT RetVT = N->getValueType(0); assert(RetVT.isScalableVector() && "Gather loads are only possible for SVE vectors"); SDLoc DL(N); // Make sure that the loaded data will fit into an SVE register if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) return SDValue(); // Depending on the addressing mode, this is either a pointer or a vector of // pointers (that fits into one register) SDValue Base = N->getOperand(3); // Depending on the addressing mode, this is either a single offset or a // vector of offsets (that fits into one register) SDValue Offset = N->getOperand(4); // For "scalar + vector of indices", just scale the indices. This only // applies to non-temporal gathers because there's no instruction that takes // indicies. if (Opcode == AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) { Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, RetVT.getScalarSizeInBits()); Opcode = AArch64ISD::GLDNT1_MERGE_ZERO; } // In the case of non-temporal gather loads there's only one SVE instruction // per data-size: "scalar + vector", i.e. // * ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] // Since we do have intrinsics that allow the arguments to be in a different // order, we may need to swap them to match the spec. if (Opcode == AArch64ISD::GLDNT1_MERGE_ZERO && Offset.getValueType().isVector()) std::swap(Base, Offset); // GLD{FF}1_IMM requires that the offset is an immediate that is: // * a multiple of #SizeInBytes, // * in the range [0, 31 x #SizeInBytes], // where #SizeInBytes is the size in bytes of the loaded items. For // immediates outside that range and non-immediate scalar offsets use // GLD1_MERGE_ZERO or GLD1_UXTW_MERGE_ZERO instead. if (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO || Opcode == AArch64ISD::GLDFF1_IMM_MERGE_ZERO) { if (!isValidImmForSVEVecImmAddrMode(Offset, RetVT.getScalarSizeInBits() / 8)) { if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) ? AArch64ISD::GLD1_UXTW_MERGE_ZERO : AArch64ISD::GLDFF1_UXTW_MERGE_ZERO; else Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) ? AArch64ISD::GLD1_MERGE_ZERO : AArch64ISD::GLDFF1_MERGE_ZERO; std::swap(Base, Offset); } } auto &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(Base.getValueType())) return SDValue(); // Some gather load variants allow unpacked offsets, but only as nxv2i32 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to // nxv2i64. Legalize accordingly. if (!OnlyPackedOffsets && Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); // Return value type that is representable in hardware EVT HwRetVt = getSVEContainerType(RetVT); // Keep the original output value type around - this is needed to be able to // select the correct instruction, e.g. LD1B, LD1H, LD1W and LD1D. For FP // values we want the integer equivalent, so just use HwRetVT. SDValue OutVT = DAG.getValueType(RetVT); if (RetVT.isFloatingPoint()) OutVT = DAG.getValueType(HwRetVt); SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other); SDValue Ops[] = {N->getOperand(0), // Chain N->getOperand(2), // Pg Base, Offset, OutVT}; SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops); SDValue LoadChain = SDValue(Load.getNode(), 1); if (RetVT.isInteger() && (RetVT != HwRetVt)) Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0)); // If the original return value was FP, bitcast accordingly. Doing it here // means that we can avoid adding TableGen patterns for FPs. if (RetVT.isFloatingPoint()) Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0)); return DAG.getMergeValues({Load, LoadChain}, DL); } static SDValue performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDLoc DL(N); SDValue Src = N->getOperand(0); unsigned Opc = Src->getOpcode(); // Sign extend of an unsigned unpack -> signed unpack if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { unsigned SOpc = Opc == AArch64ISD::UUNPKHI ? AArch64ISD::SUNPKHI : AArch64ISD::SUNPKLO; // Push the sign extend to the operand of the unpack // This is necessary where, for example, the operand of the unpack // is another unpack: // 4i32 sign_extend_inreg (4i32 uunpklo(8i16 uunpklo (16i8 opnd)), from 4i8) // -> // 4i32 sunpklo (8i16 sign_extend_inreg(8i16 uunpklo (16i8 opnd), from 8i8) // -> // 4i32 sunpklo(8i16 sunpklo(16i8 opnd)) SDValue ExtOp = Src->getOperand(0); auto VT = cast(N->getOperand(1))->getVT(); EVT EltTy = VT.getVectorElementType(); (void)EltTy; assert((EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) && "Sign extending from an invalid type"); EVT ExtVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext()); SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ExtOp.getValueType(), ExtOp, DAG.getValueType(ExtVT)); return DAG.getNode(SOpc, DL, N->getValueType(0), Ext); } if (!EnableCombineMGatherIntrinsics) return SDValue(); // SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes. unsigned NewOpc; unsigned MemVTOpNum = 4; switch (Opc) { case AArch64ISD::LD1_MERGE_ZERO: NewOpc = AArch64ISD::LD1S_MERGE_ZERO; MemVTOpNum = 3; break; case AArch64ISD::LDNF1_MERGE_ZERO: NewOpc = AArch64ISD::LDNF1S_MERGE_ZERO; MemVTOpNum = 3; break; case AArch64ISD::LDFF1_MERGE_ZERO: NewOpc = AArch64ISD::LDFF1S_MERGE_ZERO; MemVTOpNum = 3; break; case AArch64ISD::GLD1_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_MERGE_ZERO; break; case AArch64ISD::GLD1_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_SCALED_MERGE_ZERO; break; case AArch64ISD::GLD1_SXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_SXTW_MERGE_ZERO; break; case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLD1_UXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_UXTW_MERGE_ZERO; break; case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLD1_IMM_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_IMM_MERGE_ZERO; break; case AArch64ISD::GLDFF1_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_MERGE_ZERO; break; case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO; break; case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO; break; case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO; break; case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_IMM_MERGE_ZERO; break; case AArch64ISD::GLDNT1_MERGE_ZERO: NewOpc = AArch64ISD::GLDNT1S_MERGE_ZERO; break; default: return SDValue(); } EVT SignExtSrcVT = cast(N->getOperand(1))->getVT(); EVT SrcMemVT = cast(Src->getOperand(MemVTOpNum))->getVT(); if ((SignExtSrcVT != SrcMemVT) || !Src.hasOneUse()) return SDValue(); EVT DstVT = N->getValueType(0); SDVTList VTs = DAG.getVTList(DstVT, MVT::Other); SmallVector Ops; for (unsigned I = 0; I < Src->getNumOperands(); ++I) Ops.push_back(Src->getOperand(I)); SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops); DCI.CombineTo(N, ExtLoad); DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1)); // Return N so it doesn't get rechecked return SDValue(N, 0); } /// Legalize the gather prefetch (scalar + vector addressing mode) when the /// offset vector is an unpacked 32-bit scalable vector. The other cases (Offset /// != nxv2i32) do not need legalization. static SDValue legalizeSVEGatherPrefetchOffsVec(SDNode *N, SelectionDAG &DAG) { const unsigned OffsetPos = 4; SDValue Offset = N->getOperand(OffsetPos); // Not an unpacked vector, bail out. if (Offset.getValueType().getSimpleVT().SimpleTy != MVT::nxv2i32) return SDValue(); // Extend the unpacked offset vector to 64-bit lanes. SDLoc DL(N); Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset); SmallVector Ops(N->op_begin(), N->op_end()); // Replace the offset operand with the 64-bit one. Ops[OffsetPos] = Offset; return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); } /// Combines a node carrying the intrinsic /// `aarch64_sve_prf_gather_scalar_offset` into a node that uses /// `aarch64_sve_prfb_gather_uxtw_index` when the scalar offset passed to /// `aarch64_sve_prf_gather_scalar_offset` is not a valid immediate for the /// sve gather prefetch instruction with vector plus immediate addressing mode. static SDValue combineSVEPrefetchVecBaseImmOff(SDNode *N, SelectionDAG &DAG, unsigned ScalarSizeInBytes) { const unsigned ImmPos = 4, OffsetPos = 3; // No need to combine the node if the immediate is valid... if (isValidImmForSVEVecImmAddrMode(N->getOperand(ImmPos), ScalarSizeInBytes)) return SDValue(); // ...otherwise swap the offset base with the offset... SmallVector Ops(N->op_begin(), N->op_end()); std::swap(Ops[ImmPos], Ops[OffsetPos]); // ...and remap the intrinsic `aarch64_sve_prf_gather_scalar_offset` to // `aarch64_sve_prfb_gather_uxtw_index`. SDLoc DL(N); Ops[1] = DAG.getConstant(Intrinsic::aarch64_sve_prfb_gather_uxtw_index, DL, MVT::i64); return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); } SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: LLVM_DEBUG(dbgs() << "Custom combining: skipping\n"); break; case ISD::ABS: return performABSCombine(N, DAG, DCI, Subtarget); case ISD::ADD: case ISD::SUB: return performAddSubCombine(N, DCI, DAG); case ISD::XOR: return performXorCombine(N, DAG, DCI, Subtarget); case ISD::MUL: return performMulCombine(N, DAG, DCI, Subtarget); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return performIntToFpCombine(N, DAG, Subtarget); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return performFpToIntCombine(N, DAG, DCI, Subtarget); case ISD::FDIV: return performFDivCombine(N, DAG, DCI, Subtarget); case ISD::OR: return performORCombine(N, DCI, Subtarget); case ISD::AND: return performANDCombine(N, DCI); case ISD::SRL: return performSRLCombine(N, DCI); case ISD::INTRINSIC_WO_CHAIN: return performIntrinsicCombine(N, DCI, Subtarget); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: return performExtendCombine(N, DCI, DAG); case ISD::SIGN_EXTEND_INREG: return performSignExtendInRegCombine(N, DCI, DAG); case ISD::TRUNCATE: return performVectorTruncateCombine(N, DCI, DAG); case ISD::CONCAT_VECTORS: return performConcatVectorsCombine(N, DCI, DAG); case ISD::SELECT: return performSelectCombine(N, DCI); case ISD::VSELECT: return performVSelectCombine(N, DCI.DAG); case ISD::LOAD: if (performTBISimplification(N->getOperand(1), DCI, DAG)) return SDValue(N, 0); break; case ISD::STORE: return performSTORECombine(N, DCI, DAG, Subtarget); case ISD::MSCATTER: return performMSCATTERCombine(N, DCI, DAG); case AArch64ISD::BRCOND: return performBRCONDCombine(N, DCI, DAG); case AArch64ISD::TBNZ: case AArch64ISD::TBZ: return performTBZCombine(N, DCI, DAG); case AArch64ISD::CSEL: return performCONDCombine(N, DCI, DAG, 2, 3); case AArch64ISD::DUP: return performPostLD1Combine(N, DCI, false); case AArch64ISD::NVCAST: return performNVCASTCombine(N); case AArch64ISD::UZP1: return performUzpCombine(N, DAG); case ISD::INSERT_VECTOR_ELT: return performPostLD1Combine(N, DCI, true); case ISD::EXTRACT_VECTOR_ELT: return performExtractVectorEltCombine(N, DAG); case ISD::VECREDUCE_ADD: return performVecReduceAddCombine(N, DCI.DAG, Subtarget); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (cast(N->getOperand(1))->getZExtValue()) { case Intrinsic::aarch64_sve_prfb_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 1 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfh_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 2 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfw_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 4 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfd_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 8 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfb_gather_uxtw_index: case Intrinsic::aarch64_sve_prfb_gather_sxtw_index: case Intrinsic::aarch64_sve_prfh_gather_uxtw_index: case Intrinsic::aarch64_sve_prfh_gather_sxtw_index: case Intrinsic::aarch64_sve_prfw_gather_uxtw_index: case Intrinsic::aarch64_sve_prfw_gather_sxtw_index: case Intrinsic::aarch64_sve_prfd_gather_uxtw_index: case Intrinsic::aarch64_sve_prfd_gather_sxtw_index: return legalizeSVEGatherPrefetchOffsVec(N, DAG); case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: case Intrinsic::aarch64_neon_ld1x2: case Intrinsic::aarch64_neon_ld1x3: case Intrinsic::aarch64_neon_ld1x4: case Intrinsic::aarch64_neon_ld2lane: case Intrinsic::aarch64_neon_ld3lane: case Intrinsic::aarch64_neon_ld4lane: case Intrinsic::aarch64_neon_ld2r: case Intrinsic::aarch64_neon_ld3r: case Intrinsic::aarch64_neon_ld4r: case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: case Intrinsic::aarch64_neon_st1x2: case Intrinsic::aarch64_neon_st1x3: case Intrinsic::aarch64_neon_st1x4: case Intrinsic::aarch64_neon_st2lane: case Intrinsic::aarch64_neon_st3lane: case Intrinsic::aarch64_neon_st4lane: return performNEONPostLDSTCombine(N, DCI, DAG); case Intrinsic::aarch64_sve_ldnt1: return performLDNT1Combine(N, DAG); case Intrinsic::aarch64_sve_ld1rq: return performLD1ReplicateCombine(N, DAG); case Intrinsic::aarch64_sve_ld1ro: return performLD1ReplicateCombine(N, DAG); case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnt1_gather: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnt1_gather_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_INDEX_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnt1_gather_uxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1: return performLD1Combine(N, DAG, AArch64ISD::LD1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnf1: return performLD1Combine(N, DAG, AArch64ISD::LDNF1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1: return performLD1Combine(N, DAG, AArch64ISD::LDFF1_MERGE_ZERO); case Intrinsic::aarch64_sve_st1: return performST1Combine(N, DAG); case Intrinsic::aarch64_sve_stnt1: return performSTNT1Combine(N, DAG); case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); case Intrinsic::aarch64_sve_stnt1_scatter_uxtw: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); case Intrinsic::aarch64_sve_stnt1_scatter: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); case Intrinsic::aarch64_sve_stnt1_scatter_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX_PRED); case Intrinsic::aarch64_sve_ld1_gather: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1_gather_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SCALED_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1_gather_sxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_uxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_sxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_uxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_scalar_offset: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_IMM_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1_gather: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1_gather_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_SCALED_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1_gather_sxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_SXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_uxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_UXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_IMM_MERGE_ZERO); case Intrinsic::aarch64_sve_st1_scatter: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_PRED); case Intrinsic::aarch64_sve_st1_scatter_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SCALED_PRED); case Intrinsic::aarch64_sve_st1_scatter_sxtw: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_uxtw: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_sxtw_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_SCALED_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_uxtw_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_SCALED_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_scalar_offset: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_IMM_PRED); case Intrinsic::aarch64_sve_tuple_get: { SDLoc DL(N); SDValue Chain = N->getOperand(0); SDValue Src1 = N->getOperand(2); SDValue Idx = N->getOperand(3); uint64_t IdxConst = cast(Idx)->getZExtValue(); EVT ResVT = N->getValueType(0); uint64_t NumLanes = ResVT.getVectorElementCount().getKnownMinValue(); SDValue ExtIdx = DAG.getVectorIdxConstant(IdxConst * NumLanes, DL); SDValue Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResVT, Src1, ExtIdx); return DAG.getMergeValues({Val, Chain}, DL); } case Intrinsic::aarch64_sve_tuple_set: { SDLoc DL(N); SDValue Chain = N->getOperand(0); SDValue Tuple = N->getOperand(2); SDValue Idx = N->getOperand(3); SDValue Vec = N->getOperand(4); EVT TupleVT = Tuple.getValueType(); uint64_t TupleLanes = TupleVT.getVectorElementCount().getKnownMinValue(); uint64_t IdxConst = cast(Idx)->getZExtValue(); uint64_t NumLanes = Vec.getValueType().getVectorElementCount().getKnownMinValue(); if ((TupleLanes % NumLanes) != 0) report_fatal_error("invalid tuple vector!"); uint64_t NumVecs = TupleLanes / NumLanes; SmallVector Opnds; for (unsigned I = 0; I < NumVecs; ++I) { if (I == IdxConst) Opnds.push_back(Vec); else { SDValue ExtIdx = DAG.getVectorIdxConstant(I * NumLanes, DL); Opnds.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, Vec.getValueType(), Tuple, ExtIdx)); } } SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, Tuple.getValueType(), Opnds); return DAG.getMergeValues({Concat, Chain}, DL); } case Intrinsic::aarch64_sve_tuple_create2: case Intrinsic::aarch64_sve_tuple_create3: case Intrinsic::aarch64_sve_tuple_create4: { SDLoc DL(N); SDValue Chain = N->getOperand(0); SmallVector Opnds; for (unsigned I = 2; I < N->getNumOperands(); ++I) Opnds.push_back(N->getOperand(I)); EVT VT = Opnds[0].getValueType(); EVT EltVT = VT.getVectorElementType(); EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, VT.getVectorElementCount() * (N->getNumOperands() - 2)); SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, DestVT, Opnds); return DAG.getMergeValues({Concat, Chain}, DL); } case Intrinsic::aarch64_sve_ld2: case Intrinsic::aarch64_sve_ld3: case Intrinsic::aarch64_sve_ld4: { SDLoc DL(N); SDValue Chain = N->getOperand(0); SDValue Mask = N->getOperand(2); SDValue BasePtr = N->getOperand(3); SDValue LoadOps[] = {Chain, Mask, BasePtr}; unsigned IntrinsicID = cast(N->getOperand(1))->getZExtValue(); SDValue Result = LowerSVEStructLoad(IntrinsicID, LoadOps, N->getValueType(0), DAG, DL); return DAG.getMergeValues({Result, Chain}, DL); } default: break; } break; case ISD::GlobalAddress: return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine()); } return SDValue(); } // Check if the return value is used as only a return value, as otherwise // we can't perform a tail-call. In particular, we need to check for // target ISD nodes that are returns and any other "odd" constructs // that the generic analysis code won't necessarily catch. bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() != ISD::FP_EXTEND) return false; bool HasRet = false; for (SDNode *Node : Copy->uses()) { if (Node->getOpcode() != AArch64ISD::RET_FLAG) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } // Return whether the an instruction can potentially be optimized to a tail // call. This will cause the optimizers to attempt to move, or duplicate, // return instructions to help enable tail call optimizations for this // instruction. bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { return CI->isTailCall(); } bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, bool &IsInc, SelectionDAG &DAG) const { if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) return false; Base = Op->getOperand(0); // All of the indexed addressing mode instructions take a signed // 9 bit immediate offset. if (ConstantSDNode *RHS = dyn_cast(Op->getOperand(1))) { int64_t RHSC = RHS->getSExtValue(); if (Op->getOpcode() == ISD::SUB) RHSC = -(uint64_t)RHSC; if (!isInt<9>(RHSC)) return false; IsInc = (Op->getOpcode() == ISD::ADD); Offset = Op->getOperand(1); return true; } return false; } bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; bool IsInc; if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) return false; AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; return true; } bool AArch64TargetLowering::getPostIndexedAddressParts( SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; bool IsInc; if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) return false; // Post-indexing updates the base, so it's not a valid transform // if that's not the same as the load's pointer. if (Ptr != Base) return false; AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; return true; } static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) { SDLoc DL(N); SDValue Op = N->getOperand(0); if (N->getValueType(0) != MVT::i16 || (Op.getValueType() != MVT::f16 && Op.getValueType() != MVT::bf16)) return; Op = SDValue( DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, DAG.getUNDEF(MVT::i32), Op, DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 0); Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); } static void ReplaceReductionResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, unsigned InterOp, unsigned AcrossOp) { EVT LoVT, HiVT; SDValue Lo, Hi; SDLoc dl(N); std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); Results.push_back(SplitVal); } static std::pair splitInt128(SDValue N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N); SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, DAG.getNode(ISD::SRL, DL, MVT::i128, N, DAG.getConstant(64, DL, MVT::i64))); return std::make_pair(Lo, Hi); } void AArch64TargetLowering::ReplaceExtractSubVectorResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDValue In = N->getOperand(0); EVT InVT = In.getValueType(); // Common code will handle these just fine. if (!InVT.isScalableVector() || !InVT.isInteger()) return; SDLoc DL(N); EVT VT = N->getValueType(0); // The following checks bail if this is not a halving operation. ElementCount ResEC = VT.getVectorElementCount(); if (InVT.getVectorElementCount() != (ResEC * 2)) return; auto *CIndex = dyn_cast(N->getOperand(1)); if (!CIndex) return; unsigned Index = CIndex->getZExtValue(); if ((Index != 0) && (Index != ResEC.getKnownMinValue())) return; unsigned Opcode = (Index == 0) ? AArch64ISD::UUNPKLO : AArch64ISD::UUNPKHI; EVT ExtendedHalfVT = VT.widenIntegerVectorElementType(*DAG.getContext()); SDValue Half = DAG.getNode(Opcode, DL, ExtendedHalfVT, N->getOperand(0)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Half)); } // Create an even/odd pair of X registers holding integer value V. static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { SDLoc dl(V.getNode()); SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64); SDValue VHi = DAG.getAnyExtOrTrunc( DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)), dl, MVT::i64); if (DAG.getDataLayout().isBigEndian()) std::swap (VLo, VHi); SDValue RegClass = DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32); SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32); SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32); const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; return SDValue( DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); } static void ReplaceCMP_SWAP_128Results(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { assert(N->getValueType(0) == MVT::i128 && "AtomicCmpSwap on types less than 128 should be legal"); if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) { // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type, // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG. SDValue Ops[] = { createGPRPairNode(DAG, N->getOperand(2)), // Compare value createGPRPairNode(DAG, N->getOperand(3)), // Store value N->getOperand(1), // Ptr N->getOperand(0), // Chain in }; MachineMemOperand *MemOp = cast(N)->getMemOperand(); unsigned Opcode; switch (MemOp->getOrdering()) { case AtomicOrdering::Monotonic: Opcode = AArch64::CASPX; break; case AtomicOrdering::Acquire: Opcode = AArch64::CASPAX; break; case AtomicOrdering::Release: Opcode = AArch64::CASPLX; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: Opcode = AArch64::CASPALX; break; default: llvm_unreachable("Unexpected ordering!"); } MachineSDNode *CmpSwap = DAG.getMachineNode( Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops); DAG.setNodeMemRefs(CmpSwap, {MemOp}); unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64; if (DAG.getDataLayout().isBigEndian()) std::swap(SubReg1, SubReg2); SDValue Lo = DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64, SDValue(CmpSwap, 0)); SDValue Hi = DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64, SDValue(CmpSwap, 0)); Results.push_back( DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi)); Results.push_back(SDValue(CmpSwap, 1)); // Chain out return; } auto Desired = splitInt128(N->getOperand(2), DAG); auto New = splitInt128(N->getOperand(3), DAG); SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, New.first, New.second, N->getOperand(0)}; SDNode *CmpSwap = DAG.getMachineNode( AArch64::CMP_SWAP_128, SDLoc(N), DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops); MachineMemOperand *MemOp = cast(N)->getMemOperand(); DAG.setNodeMemRefs(cast(CmpSwap), {MemOp}); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, SDValue(CmpSwap, 0), SDValue(CmpSwap, 1))); Results.push_back(SDValue(CmpSwap, 3)); } void AArch64TargetLowering::ReplaceNodeResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this"); case ISD::BITCAST: ReplaceBITCASTResults(N, Results, DAG); return; case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG)); return; case ISD::CTPOP: Results.push_back(LowerCTPOP(SDValue(N, 0), DAG)); return; case AArch64ISD::SADDV: ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); return; case AArch64ISD::UADDV: ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); return; case AArch64ISD::SMINV: ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); return; case AArch64ISD::UMINV: ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); return; case AArch64ISD::SMAXV: ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); return; case AArch64ISD::UMAXV: ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); return; case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); // Let normal code take care of it by not adding anything to Results. return; case ISD::ATOMIC_CMP_SWAP: ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget); return; case ISD::LOAD: { assert(SDValue(N, 0).getValueType() == MVT::i128 && "unexpected load's value type"); LoadSDNode *LoadNode = cast(N); if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) { // Non-volatile loads are optimized later in AArch64's load/store // optimizer. return; } SDValue Result = DAG.getMemIntrinsicNode( AArch64ISD::LDP, SDLoc(N), DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(), LoadNode->getMemOperand()); SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Result.getValue(0), Result.getValue(1)); Results.append({Pair, Result.getValue(2) /* Chain */}); return; } case ISD::EXTRACT_SUBVECTOR: ReplaceExtractSubVectorResults(N, Results, DAG); return; case ISD::INTRINSIC_WO_CHAIN: { EVT VT = N->getValueType(0); assert((VT == MVT::i8 || VT == MVT::i16) && "custom lowering for unexpected type"); ConstantSDNode *CN = cast(N->getOperand(0)); Intrinsic::ID IntID = static_cast(CN->getZExtValue()); switch (IntID) { default: return; case Intrinsic::aarch64_sve_clasta_n: { SDLoc DL(N); auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32, N->getOperand(1), Op2, N->getOperand(3)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } case Intrinsic::aarch64_sve_clastb_n: { SDLoc DL(N); auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32, N->getOperand(1), Op2, N->getOperand(3)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } case Intrinsic::aarch64_sve_lasta: { SDLoc DL(N); auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32, N->getOperand(1), N->getOperand(2)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } case Intrinsic::aarch64_sve_lastb: { SDLoc DL(N); auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32, N->getOperand(1), N->getOperand(2)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } } } } } bool AArch64TargetLowering::useLoadStackGuardNode() const { if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia()) return TargetLowering::useLoadStackGuardNode(); return true; } unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { // Combine multiple FDIVs with the same divisor into multiple FMULs by the // reciprocal if there are three or more FDIVs. return 3; } TargetLoweringBase::LegalizeTypeAction AArch64TargetLowering::getPreferredVectorAction(MVT VT) const { // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, // v4i16, v2i32 instead of to promote. if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 || VT == MVT::v1f32) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } // Loads and stores less than 128-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); return Size == 128; } // Loads and stores less than 128-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. TargetLowering::AtomicExpansionKind AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { unsigned Size = LI->getType()->getPrimitiveSizeInBits(); return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; } // For the real atomic operations, we have ldxr/stxr up to 128 bits, TargetLowering::AtomicExpansionKind AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { if (AI->isFloatingPointOperation()) return AtomicExpansionKind::CmpXChg; unsigned Size = AI->getType()->getPrimitiveSizeInBits(); if (Size > 128) return AtomicExpansionKind::None; // Nand not supported in LSE. if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC; // Leave 128 bits to LLSC. if (Subtarget->hasLSE() && Size < 128) return AtomicExpansionKind::None; if (Subtarget->outlineAtomics() && Size < 128) { // [U]Min/[U]Max RWM atomics are used in __sync_fetch_ libcalls so far. // Don't outline them unless // (1) high level support approved: // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0493r1.pdf // (2) low level libgcc and compiler-rt support implemented by: // min/max outline atomics helpers if (AI->getOperation() != AtomicRMWInst::Min && AI->getOperation() != AtomicRMWInst::Max && AI->getOperation() != AtomicRMWInst::UMin && AI->getOperation() != AtomicRMWInst::UMax) { return AtomicExpansionKind::None; } } return AtomicExpansionKind::LLSC; } TargetLowering::AtomicExpansionKind AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( AtomicCmpXchgInst *AI) const { // If subtarget has LSE, leave cmpxchg intact for codegen. if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) return AtomicExpansionKind::None; // At -O0, fast-regalloc cannot cope with the live vregs necessary to // implement cmpxchg without spilling. If the address being exchanged is also // on the stack and close enough to the spill slot, this can lead to a // situation where the monitor always gets cleared and the atomic operation // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. if (getTargetMachine().getOptLevel() == CodeGenOpt::None) return AtomicExpansionKind::None; return AtomicExpansionKind::LLSC; } Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Type *ValTy = cast(Addr->getType())->getElementType(); bool IsAcquire = isAcquireOrStronger(Ord); // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd // intrinsic must return {i64, i64} and we have to recombine them into a // single i128 here. if (ValTy->getPrimitiveSizeInBits() == 128) { Intrinsic::ID Int = IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; Function *Ldxr = Intrinsic::getDeclaration(M, Int); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); return Builder.CreateOr( Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); } Type *Tys[] = { Addr->getType() }; Intrinsic::ID Int = IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys); Type *EltTy = cast(Addr->getType())->getElementType(); const DataLayout &DL = M->getDataLayout(); IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy)); Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy); return Builder.CreateBitCast(Trunc, EltTy); } void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( IRBuilder<> &Builder) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); } Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); bool IsRelease = isReleaseOrStronger(Ord); // Since the intrinsics must have legal type, the i128 intrinsics take two // parameters: "i64, i64". We must marshal Val into the appropriate form // before the call. if (Val->getType()->getPrimitiveSizeInBits() == 128) { Intrinsic::ID Int = IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; Function *Stxr = Intrinsic::getDeclaration(M, Int); Type *Int64Ty = Type::getInt64Ty(M->getContext()); Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); } Intrinsic::ID Int = IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; Type *Tys[] = { Addr->getType() }; Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); const DataLayout &DL = M->getDataLayout(); IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType())); Val = Builder.CreateBitCast(Val, IntValTy); return Builder.CreateCall(Stxr, {Builder.CreateZExtOrBitCast( Val, Stxr->getFunctionType()->getParamType(0)), Addr}); } bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { if (Ty->isArrayTy()) return true; const TypeSize &TySize = Ty->getPrimitiveSizeInBits(); if (TySize.isScalable() && TySize.getKnownMinSize() > 128) return true; return false; } bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, EVT) const { return false; } static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) { Module *M = IRB.GetInsertBlock()->getParent()->getParent(); Function *ThreadPointerFunc = Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); return IRB.CreatePointerCast( IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc), Offset), IRB.getInt8PtrTy()->getPointerTo(0)); } Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { // Android provides a fixed TLS slot for the stack cookie. See the definition // of TLS_SLOT_STACK_GUARD in // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h if (Subtarget->isTargetAndroid()) return UseTlsOffset(IRB, 0x28); // Fuchsia is similar. // defines ZX_TLS_STACK_GUARD_OFFSET with this value. if (Subtarget->isTargetFuchsia()) return UseTlsOffset(IRB, -0x10); return TargetLowering::getIRStackGuard(IRB); } void AArch64TargetLowering::insertSSPDeclarations(Module &M) const { // MSVC CRT provides functionalities for stack protection. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) { // MSVC CRT has a global variable holding security cookie. M.getOrInsertGlobal("__security_cookie", Type::getInt8PtrTy(M.getContext())); // MSVC CRT has a function to validate security cookie. FunctionCallee SecurityCheckCookie = M.getOrInsertFunction( "__security_check_cookie", Type::getVoidTy(M.getContext()), Type::getInt8PtrTy(M.getContext())); if (Function *F = dyn_cast(SecurityCheckCookie.getCallee())) { F->setCallingConv(CallingConv::Win64); F->addAttribute(1, Attribute::AttrKind::InReg); } return; } TargetLowering::insertSSPDeclarations(M); } Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const { // MSVC CRT has a global variable holding security cookie. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return M.getGlobalVariable("__security_cookie"); return TargetLowering::getSDagStackGuard(M); } Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const { // MSVC CRT has a function to validate security cookie. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return M.getFunction("__security_check_cookie"); return TargetLowering::getSSPStackGuardCheck(M); } Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { // Android provides a fixed TLS slot for the SafeStack pointer. See the // definition of TLS_SLOT_SAFESTACK in // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h if (Subtarget->isTargetAndroid()) return UseTlsOffset(IRB, 0x48); // Fuchsia is similar. // defines ZX_TLS_UNSAFE_SP_OFFSET with this value. if (Subtarget->isTargetFuchsia()) return UseTlsOffset(IRB, -0x8); return TargetLowering::getSafeStackPointerLocation(IRB); } bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial( const Instruction &AndI) const { // Only sink 'and' mask to cmp use block if it is masking a single bit, since // this is likely to be fold the and/cmp/br into a single tbz instruction. It // may be beneficial to sink in other cases, but we would have to check that // the cmp would not get folded into the br to form a cbz for these to be // beneficial. ConstantInt* Mask = dyn_cast(AndI.getOperand(1)); if (!Mask) return false; return Mask->getValue().isPowerOf2(); } bool AArch64TargetLowering:: shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const { // Does baseline recommend not to perform the fold by default? if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG)) return false; // Else, if this is a vector shift, prefer 'shl'. return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL; } bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const { if (DAG.getMachineFunction().getFunction().hasMinSize() && !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin()) return false; return true; } void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { // Update IsSplitCSR in AArch64unctionInfo. AArch64FunctionInfo *AFI = Entry->getParent()->getInfo(); AFI->setIsSplitCSR(true); } void AArch64TargetLowering::insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const { const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); if (!IStart) return; const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); MachineBasicBlock::iterator MBBI = Entry->begin(); for (const MCPhysReg *I = IStart; *I; ++I) { const TargetRegisterClass *RC = nullptr; if (AArch64::GPR64RegClass.contains(*I)) RC = &AArch64::GPR64RegClass; else if (AArch64::FPR64RegClass.contains(*I)) RC = &AArch64::FPR64RegClass; else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); Register NewVR = MRI->createVirtualRegister(RC); // Create copy from CSR to a virtual register. // FIXME: this currently does not emit CFI pseudo-instructions, it works // fine for CXX_FAST_TLS since the C++-style TLS access functions should be // nounwind. If we want to generalize this later, we may need to emit // CFI pseudo-instructions. assert(Entry->getParent()->getFunction().hasFnAttribute( Attribute::NoUnwind) && "Function should be nounwind in insertCopiesSplitCSR!"); Entry->addLiveIn(*I); BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(*I); // Insert the copy-back instructions right before the terminator. for (auto *Exit : Exits) BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), TII->get(TargetOpcode::COPY), *I) .addReg(NewVR); } } bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { // Integer division on AArch64 is expensive. However, when aggressively // optimizing for code size, we prefer to use a div instruction, as it is // usually smaller than the alternative sequence. // The exception to this is vector division. Since AArch64 doesn't have vector // integer division, leaving the division as-is is a loss even in terms of // size, because it will have to be scalarized, while the alternative code // sequence can be performed in vector form. bool OptSize = Attr.hasFnAttribute(Attribute::MinSize); return OptSize && !VT.isVector(); } bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { // We want inc-of-add for scalars and sub-of-not for vectors. return VT.isScalarInteger(); } bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const { return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint(); } unsigned AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const { if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) return getPointerTy(DL).getSizeInBits(); return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32; } void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const { MF.getFrameInfo().computeMaxCallFrameSize(MF); TargetLoweringBase::finalizeLowering(MF); } // Unlike X86, we let frame lowering assign offsets to all catch objects. bool AArch64TargetLowering::needsFixedCatchObjects() const { return false; } bool AArch64TargetLowering::shouldLocalize( const MachineInstr &MI, const TargetTransformInfo *TTI) const { switch (MI.getOpcode()) { case TargetOpcode::G_GLOBAL_VALUE: { // On Darwin, TLS global vars get selected into function calls, which // we don't want localized, as they can get moved into the middle of a // another call sequence. const GlobalValue &GV = *MI.getOperand(1).getGlobal(); if (GV.isThreadLocal() && Subtarget->isTargetMachO()) return false; break; } // If we legalized G_GLOBAL_VALUE into ADRP + G_ADD_LOW, mark both as being // localizable. case AArch64::ADRP: case AArch64::G_ADD_LOW: return true; default: break; } return TargetLoweringBase::shouldLocalize(MI, TTI); } bool AArch64TargetLowering::fallBackToDAGISel(const Instruction &Inst) const { if (isa(Inst.getType())) return true; for (unsigned i = 0; i < Inst.getNumOperands(); ++i) if (isa(Inst.getOperand(i)->getType())) return true; if (const AllocaInst *AI = dyn_cast(&Inst)) { if (isa(AI->getAllocatedType())) return true; } return false; } // Return the largest legal scalable vector type that matches VT's element type. static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT) { assert(VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!"); switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unexpected element type for SVE container"); case MVT::i8: return EVT(MVT::nxv16i8); case MVT::i16: return EVT(MVT::nxv8i16); case MVT::i32: return EVT(MVT::nxv4i32); case MVT::i64: return EVT(MVT::nxv2i64); case MVT::f16: return EVT(MVT::nxv8f16); case MVT::f32: return EVT(MVT::nxv4f32); case MVT::f64: return EVT(MVT::nxv2f64); } } // Return a PTRUE with active lanes corresponding to the extent of VT. static SDValue getPredicateForFixedLengthVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { assert(VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!"); int PgPattern; switch (VT.getVectorNumElements()) { default: llvm_unreachable("unexpected element count for SVE predicate"); case 1: PgPattern = AArch64SVEPredPattern::vl1; break; case 2: PgPattern = AArch64SVEPredPattern::vl2; break; case 4: PgPattern = AArch64SVEPredPattern::vl4; break; case 8: PgPattern = AArch64SVEPredPattern::vl8; break; case 16: PgPattern = AArch64SVEPredPattern::vl16; break; case 32: PgPattern = AArch64SVEPredPattern::vl32; break; case 64: PgPattern = AArch64SVEPredPattern::vl64; break; case 128: PgPattern = AArch64SVEPredPattern::vl128; break; case 256: PgPattern = AArch64SVEPredPattern::vl256; break; } // TODO: For vectors that are exactly getMaxSVEVectorSizeInBits big, we can // use AArch64SVEPredPattern::all, which can enable the use of unpredicated // variants of instructions when available. MVT MaskVT; switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unexpected element type for SVE predicate"); case MVT::i8: MaskVT = MVT::nxv16i1; break; case MVT::i16: case MVT::f16: MaskVT = MVT::nxv8i1; break; case MVT::i32: case MVT::f32: MaskVT = MVT::nxv4i1; break; case MVT::i64: case MVT::f64: MaskVT = MVT::nxv2i1; break; } return DAG.getNode(AArch64ISD::PTRUE, DL, MaskVT, DAG.getTargetConstant(PgPattern, DL, MVT::i64)); } static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal scalable vector!"); auto PredTy = VT.changeVectorElementType(MVT::i1); return getPTrue(DAG, DL, PredTy, AArch64SVEPredPattern::all); } static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { if (VT.isFixedLengthVector()) return getPredicateForFixedLengthVector(DAG, DL, VT); return getPredicateForScalableVector(DAG, DL, VT); } // Grow V to consume an entire SVE register. static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { assert(VT.isScalableVector() && "Expected to convert into a scalable vector!"); assert(V.getValueType().isFixedLengthVector() && "Expected a fixed length vector operand!"); SDLoc DL(V); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); } // Shrink V so it's just big enough to maintain a VT's worth of data. static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { assert(VT.isFixedLengthVector() && "Expected to convert into a fixed length vector!"); assert(V.getValueType().isScalableVector() && "Expected a scalable vector operand!"); SDLoc DL(V); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); } // Convert all fixed length vector loads larger than NEON to masked_loads. SDValue AArch64TargetLowering::LowerFixedLengthVectorLoadToSVE( SDValue Op, SelectionDAG &DAG) const { auto Load = cast(Op); SDLoc DL(Op); EVT VT = Op.getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); auto NewLoad = DAG.getMaskedLoad( ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), getPredicateForFixedLengthVector(DAG, DL, VT), DAG.getUNDEF(ContainerVT), Load->getMemoryVT(), Load->getMemOperand(), Load->getAddressingMode(), Load->getExtensionType()); auto Result = convertFromScalableVector(DAG, VT, NewLoad); SDValue MergedValues[2] = {Result, Load->getChain()}; return DAG.getMergeValues(MergedValues, DL); } // Convert all fixed length vector stores larger than NEON to masked_stores. SDValue AArch64TargetLowering::LowerFixedLengthVectorStoreToSVE( SDValue Op, SelectionDAG &DAG) const { auto Store = cast(Op); SDLoc DL(Op); EVT VT = Store->getValue().getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue()); return DAG.getMaskedStore( Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(), getPredicateForFixedLengthVector(DAG, DL, VT), Store->getMemoryVT(), Store->getMemOperand(), Store->getAddressingMode(), Store->isTruncatingStore()); } SDValue AArch64TargetLowering::LowerFixedLengthVectorIntDivideToSVE( SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); EVT EltVT = VT.getVectorElementType(); bool Signed = Op.getOpcode() == ISD::SDIV; unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED; // Scalable vector i32/i64 DIV is supported. if (EltVT == MVT::i32 || EltVT == MVT::i64) return LowerToPredicatedOp(Op, DAG, PredOpcode, /*OverrideNEON=*/true); // Scalable vector i8/i16 DIV is not supported. Promote it to i32. EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); EVT FixedWidenedVT = HalfVT.widenIntegerVectorElementType(*DAG.getContext()); EVT ScalableWidenedVT = getContainerForFixedLengthVector(DAG, FixedWidenedVT); // Convert the operands to scalable vectors. SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1)); // Extend the scalable operands. unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI; SDValue Op0Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op0); SDValue Op1Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op1); SDValue Op0Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op0); SDValue Op1Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op1); // Convert back to fixed vectors so the DIV can be further lowered. Op0Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op0Lo); Op1Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op1Lo); Op0Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op0Hi); Op1Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op1Hi); SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT, Op0Lo, Op1Lo); SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT, Op0Hi, Op1Hi); // Convert again to scalable vectors to truncate. ResultLo = convertToScalableVector(DAG, ScalableWidenedVT, ResultLo); ResultHi = convertToScalableVector(DAG, ScalableWidenedVT, ResultHi); SDValue ScalableResult = DAG.getNode(AArch64ISD::UZP1, dl, ContainerVT, ResultLo, ResultHi); return convertFromScalableVector(DAG, VT, ScalableResult); } SDValue AArch64TargetLowering::LowerFixedLengthVectorIntExtendToSVE( SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); SDValue Val = Op.getOperand(0); EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType()); Val = convertToScalableVector(DAG, ContainerVT, Val); bool Signed = Op.getOpcode() == ISD::SIGN_EXTEND; unsigned ExtendOpc = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; // Repeatedly unpack Val until the result is of the desired element type. switch (ContainerVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unimplemented container type"); case MVT::nxv16i8: Val = DAG.getNode(ExtendOpc, DL, MVT::nxv8i16, Val); if (VT.getVectorElementType() == MVT::i16) break; LLVM_FALLTHROUGH; case MVT::nxv8i16: Val = DAG.getNode(ExtendOpc, DL, MVT::nxv4i32, Val); if (VT.getVectorElementType() == MVT::i32) break; LLVM_FALLTHROUGH; case MVT::nxv4i32: Val = DAG.getNode(ExtendOpc, DL, MVT::nxv2i64, Val); assert(VT.getVectorElementType() == MVT::i64 && "Unexpected element type!"); break; } return convertFromScalableVector(DAG, VT, Val); } SDValue AArch64TargetLowering::LowerFixedLengthVectorTruncateToSVE( SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); SDValue Val = Op.getOperand(0); EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType()); Val = convertToScalableVector(DAG, ContainerVT, Val); // Repeatedly truncate Val until the result is of the desired element type. switch (ContainerVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unimplemented container type"); case MVT::nxv2i64: Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv4i32, Val); Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv4i32, Val, Val); if (VT.getVectorElementType() == MVT::i32) break; LLVM_FALLTHROUGH; case MVT::nxv4i32: Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv8i16, Val); Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv8i16, Val, Val); if (VT.getVectorElementType() == MVT::i16) break; LLVM_FALLTHROUGH; case MVT::nxv8i16: Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i8, Val); Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv16i8, Val, Val); assert(VT.getVectorElementType() == MVT::i8 && "Unexpected element type!"); break; } return convertFromScalableVector(DAG, VT, Val); } // Convert vector operation 'Op' to an equivalent predicated operation whereby // the original operation's type is used to construct a suitable predicate. // NOTE: The results for inactive lanes are undefined. SDValue AArch64TargetLowering::LowerToPredicatedOp(SDValue Op, SelectionDAG &DAG, unsigned NewOp, bool OverrideNEON) const { EVT VT = Op.getValueType(); SDLoc DL(Op); auto Pg = getPredicateForVector(DAG, DL, VT); if (useSVEForFixedLengthVectorVT(VT, OverrideNEON)) { EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); // Create list of operands by converting existing ones to scalable types. SmallVector Operands = {Pg}; for (const SDValue &V : Op->op_values()) { if (isa(V)) { Operands.push_back(V); continue; } if (const VTSDNode *VTNode = dyn_cast(V)) { EVT VTArg = VTNode->getVT().getVectorElementType(); EVT NewVTArg = ContainerVT.changeVectorElementType(VTArg); Operands.push_back(DAG.getValueType(NewVTArg)); continue; } assert(useSVEForFixedLengthVectorVT(V.getValueType(), OverrideNEON) && "Only fixed length vectors are supported!"); Operands.push_back(convertToScalableVector(DAG, ContainerVT, V)); } if (isMergePassthruOpcode(NewOp)) Operands.push_back(DAG.getUNDEF(ContainerVT)); auto ScalableRes = DAG.getNode(NewOp, DL, ContainerVT, Operands); return convertFromScalableVector(DAG, VT, ScalableRes); } assert(VT.isScalableVector() && "Only expect to lower scalable vector op!"); SmallVector Operands = {Pg}; for (const SDValue &V : Op->op_values()) { assert((!V.getValueType().isVector() || V.getValueType().isScalableVector()) && "Only scalable vectors are supported!"); Operands.push_back(V); } if (isMergePassthruOpcode(NewOp)) Operands.push_back(DAG.getUNDEF(VT)); return DAG.getNode(NewOp, DL, VT, Operands); } // If a fixed length vector operation has no side effects when applied to // undefined elements, we can safely use scalable vectors to perform the same // operation without needing to worry about predication. SDValue AArch64TargetLowering::LowerToScalableOp(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(useSVEForFixedLengthVectorVT(VT) && "Only expected to lower fixed length vector operation!"); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); // Create list of operands by converting existing ones to scalable types. SmallVector Ops; for (const SDValue &V : Op->op_values()) { assert(!isa(V) && "Unexpected VTSDNode node!"); // Pass through non-vector operands. if (!V.getValueType().isVector()) { Ops.push_back(V); continue; } // "cast" fixed length vector to a scalable vector. assert(useSVEForFixedLengthVectorVT(V.getValueType()) && "Only fixed length vectors are supported!"); Ops.push_back(convertToScalableVector(DAG, ContainerVT, V)); } auto ScalableRes = DAG.getNode(Op.getOpcode(), SDLoc(Op), ContainerVT, Ops); return convertFromScalableVector(DAG, VT, ScalableRes); } SDValue AArch64TargetLowering::LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp, SelectionDAG &DAG) const { SDLoc DL(ScalarOp); SDValue AccOp = ScalarOp.getOperand(0); SDValue VecOp = ScalarOp.getOperand(1); EVT SrcVT = VecOp.getValueType(); EVT ResVT = SrcVT.getVectorElementType(); // Only fixed length FADDA handled for now. if (!useSVEForFixedLengthVectorVT(SrcVT, /*OverrideNEON=*/true)) return SDValue(); SDValue Pg = getPredicateForVector(DAG, DL, SrcVT); EVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); // Convert operands to Scalable. AccOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, DAG.getUNDEF(ContainerVT), AccOp, Zero); VecOp = convertToScalableVector(DAG, ContainerVT, VecOp); // Perform reduction. SDValue Rdx = DAG.getNode(AArch64ISD::FADDA_PRED, DL, ContainerVT, Pg, AccOp, VecOp); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, Zero); } SDValue AArch64TargetLowering::LowerPredReductionToSVE(SDValue ReduceOp, SelectionDAG &DAG) const { SDLoc DL(ReduceOp); SDValue Op = ReduceOp.getOperand(0); EVT OpVT = Op.getValueType(); EVT VT = ReduceOp.getValueType(); if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1) return SDValue(); SDValue Pg = getPredicateForVector(DAG, DL, OpVT); switch (ReduceOp.getOpcode()) { default: return SDValue(); case ISD::VECREDUCE_OR: return getPTest(DAG, VT, Pg, Op, AArch64CC::ANY_ACTIVE); case ISD::VECREDUCE_AND: { Op = DAG.getNode(ISD::XOR, DL, OpVT, Op, Pg); return getPTest(DAG, VT, Pg, Op, AArch64CC::NONE_ACTIVE); } case ISD::VECREDUCE_XOR: { SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64); SDValue Cntp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64, ID, Pg, Op); return DAG.getAnyExtOrTrunc(Cntp, DL, VT); } } return SDValue(); } SDValue AArch64TargetLowering::LowerReductionToSVE(unsigned Opcode, SDValue ScalarOp, SelectionDAG &DAG) const { SDLoc DL(ScalarOp); SDValue VecOp = ScalarOp.getOperand(0); EVT SrcVT = VecOp.getValueType(); if (useSVEForFixedLengthVectorVT(SrcVT, true)) { EVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT); VecOp = convertToScalableVector(DAG, ContainerVT, VecOp); } // UADDV always returns an i64 result. EVT ResVT = (Opcode == AArch64ISD::UADDV_PRED) ? MVT::i64 : SrcVT.getVectorElementType(); SDValue Pg = getPredicateForVector(DAG, DL, SrcVT); SDValue Rdx = DAG.getNode(Opcode, DL, getPackedSVEVectorVT(ResVT), Pg, VecOp); SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, DAG.getConstant(0, DL, MVT::i64)); // The VEC_REDUCE nodes expect an element size result. if (ResVT != ScalarOp.getValueType()) Res = DAG.getAnyExtOrTrunc(Res, DL, ScalarOp.getValueType()); return Res; } SDValue AArch64TargetLowering::LowerFixedLengthVectorSelectToSVE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); EVT InVT = Op.getOperand(1).getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(1)); SDValue Op2 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(2)); // Convert the mask to a predicated (NOTE: We don't need to worry about // inactive lanes since VSELECT is safe when given undefined elements). EVT MaskVT = Op.getOperand(0).getValueType(); EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskVT); auto Mask = convertToScalableVector(DAG, MaskContainerVT, Op.getOperand(0)); Mask = DAG.getNode(ISD::TRUNCATE, DL, MaskContainerVT.changeVectorElementType(MVT::i1), Mask); auto ScalableRes = DAG.getNode(ISD::VSELECT, DL, ContainerVT, Mask, Op1, Op2); return convertFromScalableVector(DAG, VT, ScalableRes); } SDValue AArch64TargetLowering::LowerFixedLengthVectorSetccToSVE( SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT InVT = Op.getOperand(0).getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); assert(useSVEForFixedLengthVectorVT(InVT) && "Only expected to lower fixed length vector operation!"); assert(Op.getValueType() == InVT.changeTypeToInteger() && "Expected integer result of the same bit length as the inputs!"); // Expand floating point vector comparisons. if (InVT.isFloatingPoint()) return SDValue(); auto Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); auto Op2 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1)); auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT); EVT CmpVT = Pg.getValueType(); auto Cmp = DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, CmpVT, {Pg, Op1, Op2, Op.getOperand(2)}); EVT PromoteVT = ContainerVT.changeTypeToInteger(); auto Promote = DAG.getBoolExtOrTrunc(Cmp, DL, PromoteVT, InVT); return convertFromScalableVector(DAG, Op.getValueType(), Promote); }