//===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "ARMISelLowering.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMCallingConv.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "ARMPerfectShuffle.h" #include "ARMRegisterInfo.h" #include "ARMSelectionDAGInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "Utils/ARMBaseInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsARM.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "arm-isel" STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); STATISTIC(NumConstpoolPromoted, "Number of constants with their storage promoted into constant pools"); static cl::opt ARMInterworking("arm-interworking", cl::Hidden, cl::desc("Enable / disable ARM interworking (for debugging only)"), cl::init(true)); static cl::opt EnableConstpoolPromotion( "arm-promote-constant", cl::Hidden, cl::desc("Enable / disable promotion of unnamed_addr constants into " "constant pools"), cl::init(false)); // FIXME: set to true by default once PR32780 is fixed static cl::opt ConstpoolPromotionMaxSize( "arm-promote-constant-max-size", cl::Hidden, cl::desc("Maximum size of constant to promote into a constant pool"), cl::init(64)); static cl::opt ConstpoolPromotionMaxTotal( "arm-promote-constant-max-total", cl::Hidden, cl::desc("Maximum size of ALL constants to promote into a constant pool"), cl::init(128)); cl::opt MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden, cl::desc("Maximum interleave factor for MVE VLDn to generate."), cl::init(2)); // The APCS parameter registers. static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT) { if (VT != PromotedLdStVT) { setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); } MVT ElemTy = VT.getVectorElementType(); if (ElemTy != MVT::f64) setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); if (ElemTy == MVT::i32) { setOperationAction(ISD::SINT_TO_FP, VT, Custom); setOperationAction(ISD::UINT_TO_FP, VT, Custom); setOperationAction(ISD::FP_TO_SINT, VT, Custom); setOperationAction(ISD::FP_TO_UINT, VT, Custom); } else { setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); } setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); if (VT.isInteger()) { setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); } // Promote all bit-wise operations. if (VT.isInteger() && VT != PromotedBitwiseVT) { setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); } // Neon does not support vector divide/remainder operations. setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) setOperationAction(Opcode, VT, Legal); if (!VT.isFloatingPoint()) for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}) setOperationAction(Opcode, VT, Legal); } void ARMTargetLowering::addDRTypeForNEON(MVT VT) { addRegisterClass(VT, &ARM::DPRRegClass); addTypeForNEON(VT, MVT::f64, MVT::v2i32); } void ARMTargetLowering::addQRTypeForNEON(MVT VT) { addRegisterClass(VT, &ARM::DPairRegClass); addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); } void ARMTargetLowering::setAllExpand(MVT VT) { for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) setOperationAction(Opc, VT, Expand); // We support these really simple operations even on types where all // the actual arithmetic has to be broken down into simpler // operations or turned into library calls. setOperationAction(ISD::BITCAST, VT, Legal); setOperationAction(ISD::LOAD, VT, Legal); setOperationAction(ISD::STORE, VT, Legal); setOperationAction(ISD::UNDEF, VT, Legal); } void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To, LegalizeAction Action) { setLoadExtAction(ISD::EXTLOAD, From, To, Action); setLoadExtAction(ISD::ZEXTLOAD, From, To, Action); setLoadExtAction(ISD::SEXTLOAD, From, To, Action); } void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) { const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 }; for (auto VT : IntTypes) { addRegisterClass(VT, &ARM::MQPRRegClass); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); setOperationAction(ISD::SMIN, VT, Legal); setOperationAction(ISD::SMAX, VT, Legal); setOperationAction(ISD::UMIN, VT, Legal); setOperationAction(ISD::UMAX, VT, Legal); setOperationAction(ISD::ABS, VT, Legal); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::MLOAD, VT, Custom); setOperationAction(ISD::MSTORE, VT, Legal); setOperationAction(ISD::CTLZ, VT, Legal); setOperationAction(ISD::CTTZ, VT, Custom); setOperationAction(ISD::BITREVERSE, VT, Legal); setOperationAction(ISD::BSWAP, VT, Legal); setOperationAction(ISD::SADDSAT, VT, Legal); setOperationAction(ISD::UADDSAT, VT, Legal); setOperationAction(ISD::SSUBSAT, VT, Legal); setOperationAction(ISD::USUBSAT, VT, Legal); // No native support for these. setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); // Vector reductions setOperationAction(ISD::VECREDUCE_ADD, VT, Legal); setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal); setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal); setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal); setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal); setOperationAction(ISD::VECREDUCE_MUL, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); if (!HasMVEFP) { setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); } // Pre and Post inc are supported on loads and stores for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, VT, Legal); setIndexedStoreAction(im, VT, Legal); setIndexedMaskedLoadAction(im, VT, Legal); setIndexedMaskedStoreAction(im, VT, Legal); } } const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 }; for (auto VT : FloatTypes) { addRegisterClass(VT, &ARM::MQPRRegClass); if (!HasMVEFP) setAllExpand(VT); // These are legal or custom whether we have MVE.fp or not setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::MLOAD, VT, Custom); setOperationAction(ISD::MSTORE, VT, Legal); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); // Pre and Post inc are supported on loads and stores for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, VT, Legal); setIndexedStoreAction(im, VT, Legal); setIndexedMaskedLoadAction(im, VT, Legal); setIndexedMaskedStoreAction(im, VT, Legal); } if (HasMVEFP) { setOperationAction(ISD::FMINNUM, VT, Legal); setOperationAction(ISD::FMAXNUM, VT, Legal); setOperationAction(ISD::FROUND, VT, Legal); setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom); setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); // No native support for these. setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); } } // Custom Expand smaller than legal vector reductions to prevent false zero // items being added. setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom); setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom); setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom); setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom); setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom); setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom); setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom); setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom); // We 'support' these types up to bitcast/load/store level, regardless of // MVE integer-only / float support. Only doing FP data processing on the FP // vector types is inhibited at integer-only level. const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 }; for (auto VT : LongTypes) { addRegisterClass(VT, &ARM::MQPRRegClass); setAllExpand(VT); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); } // We can do bitwise operations on v2i64 vectors setOperationAction(ISD::AND, MVT::v2i64, Legal); setOperationAction(ISD::OR, MVT::v2i64, Legal); setOperationAction(ISD::XOR, MVT::v2i64, Legal); // It is legal to extload from v4i8 to v4i16 or v4i32. addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal); addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal); addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal); // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal); // Some truncating stores are legal too. setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal); setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); // Pre and Post inc on these are legal, given the correct extends for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) { setIndexedLoadAction(im, VT, Legal); setIndexedStoreAction(im, VT, Legal); setIndexedMaskedLoadAction(im, VT, Legal); setIndexedMaskedStoreAction(im, VT, Legal); } } // Predicate types const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1}; for (auto VT : pTypes) { addRegisterClass(VT, &ARM::VCCRRegClass); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); setOperationAction(ISD::LOAD, VT, Custom); setOperationAction(ISD::STORE, VT, Custom); } } ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM, const ARMSubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { RegInfo = Subtarget->getRegisterInfo(); Itins = Subtarget->getInstrItineraryData(); setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() && !Subtarget->isTargetWatchOS()) { bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard; for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID) setLibcallCallingConv(static_cast(LCID), IsHFTarget ? CallingConv::ARM_AAPCS_VFP : CallingConv::ARM_AAPCS); } if (Subtarget->isTargetMachO()) { // Uses VFP for Thumb libfuncs if available. if (Subtarget->isThumb() && Subtarget->hasVFP2Base() && Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) { static const struct { const RTLIB::Libcall Op; const char * const Name; const ISD::CondCode Cond; } LibraryCalls[] = { // Single-precision floating-point arithmetic. { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID }, { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID }, { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID }, { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID }, // Double-precision floating-point arithmetic. { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID }, { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID }, { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID }, { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID }, // Single-precision comparisons. { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE }, { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE }, { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE }, { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE }, { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE }, { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE }, { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE }, // Double-precision comparisons. { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE }, { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE }, { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE }, { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE }, { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE }, { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE }, { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE }, // Floating-point to integer conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID }, // Conversions between floating types. { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID }, { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID }, // Integer to floating-point conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. // FIXME: There appears to be some naming inconsistency in ARM libgcc: // e.g., __floatunsidf vs. __floatunssidfvfp. { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); if (LC.Cond != ISD::SETCC_INVALID) setCmpLibcallCC(LC.Op, LC.Cond); } } } // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, nullptr); setLibcallName(RTLIB::SRL_I128, nullptr); setLibcallName(RTLIB::SRA_I128, nullptr); // RTLIB if (Subtarget->isAAPCS_ABI() && (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) { static const struct { const RTLIB::Libcall Op; const char * const Name; const CallingConv::ID CC; const ISD::CondCode Cond; } LibraryCalls[] = { // Double-precision floating-point arithmetic helper functions // RTABI chapter 4.1.2, Table 2 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Double-precision floating-point comparison helper functions // RTABI chapter 4.1.2, Table 3 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, // Single-precision floating-point arithmetic helper functions // RTABI chapter 4.1.2, Table 4 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Single-precision floating-point comparison helper functions // RTABI chapter 4.1.2, Table 5 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, // Floating-point to integer conversions. // RTABI chapter 4.1.2, Table 6 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Conversions between floating types. // RTABI chapter 4.1.2, Table 7 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Integer to floating-point conversions. // RTABI chapter 4.1.2, Table 8 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Long long helper functions // RTABI chapter 4.2, Table 9 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, // Integer division functions // RTABI chapter 4.3.1 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); if (LC.Cond != ISD::SETCC_INVALID) setCmpLibcallCC(LC.Op, LC.Cond); } // EABI dependent RTLIB if (TM.Options.EABIVersion == EABI::EABI4 || TM.Options.EABIVersion == EABI::EABI5) { static const struct { const RTLIB::Libcall Op; const char *const Name; const CallingConv::ID CC; const ISD::CondCode Cond; } MemOpsLibraryCalls[] = { // Memory operations // RTABI chapter 4.3.4 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, }; for (const auto &LC : MemOpsLibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); if (LC.Cond != ISD::SETCC_INVALID) setCmpLibcallCC(LC.Op, LC.Cond); } } } if (Subtarget->isTargetWindows()) { static const struct { const RTLIB::Libcall Op; const char * const Name; const CallingConv::ID CC; } LibraryCalls[] = { { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP }, { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP }, { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP }, { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP }, { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); } } // Use divmod compiler-rt calls for iOS 5.0 and later. if (Subtarget->isTargetMachO() && !(Subtarget->isTargetIOS() && Subtarget->getTargetTriple().isOSVersionLT(5, 0))) { setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); } // The half <-> float conversion functions are always soft-float on // non-watchos platforms, but are needed for some targets which use a // hard-float calling convention by default. if (!Subtarget->isTargetWatchABI()) { if (Subtarget->isAAPCS_ABI()) { setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS); } else { setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS); setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS); setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS); } } // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have // a __gnu_ prefix (which is the default). if (Subtarget->isTargetAEABI()) { static const struct { const RTLIB::Libcall Op; const char * const Name; const CallingConv::ID CC; } LibraryCalls[] = { { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS }, { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS }, { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); } } if (Subtarget->isThumb1Only()) addRegisterClass(MVT::i32, &ARM::tGPRRegClass); else addRegisterClass(MVT::i32, &ARM::GPRRegClass); if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() && Subtarget->hasFPRegs()) { addRegisterClass(MVT::f32, &ARM::SPRRegClass); addRegisterClass(MVT::f64, &ARM::DPRRegClass); if (!Subtarget->hasVFP2Base()) setAllExpand(MVT::f32); if (!Subtarget->hasFP64()) setAllExpand(MVT::f64); } if (Subtarget->hasFullFP16()) { addRegisterClass(MVT::f16, &ARM::HPRRegClass); setOperationAction(ISD::BITCAST, MVT::i16, Custom); setOperationAction(ISD::BITCAST, MVT::f16, Custom); setOperationAction(ISD::FMINNUM, MVT::f16, Legal); setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); } if (Subtarget->hasBF16()) { addRegisterClass(MVT::bf16, &ARM::HPRRegClass); setAllExpand(MVT::bf16); if (!Subtarget->hasFullFP16()) setOperationAction(ISD::BITCAST, MVT::bf16, Custom); } for (MVT VT : MVT::fixedlen_vector_valuetypes()) { for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { setTruncStoreAction(VT, InnerVT, Expand); addAllExtLoads(VT, InnerVT, Expand); } setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); } setOperationAction(ISD::ConstantFP, MVT::f32, Custom); setOperationAction(ISD::ConstantFP, MVT::f64, Custom); setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom); setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom); if (Subtarget->hasMVEIntegerOps()) addMVEVectorTypes(Subtarget->hasMVEFloatOps()); // Combine low-overhead loop intrinsics so that we can lower i1 types. if (Subtarget->hasLOB()) { setTargetDAGCombine(ISD::BRCOND); setTargetDAGCombine(ISD::BR_CC); } if (Subtarget->hasNEON()) { addDRTypeForNEON(MVT::v2f32); addDRTypeForNEON(MVT::v8i8); addDRTypeForNEON(MVT::v4i16); addDRTypeForNEON(MVT::v2i32); addDRTypeForNEON(MVT::v1i64); addQRTypeForNEON(MVT::v4f32); addQRTypeForNEON(MVT::v2f64); addQRTypeForNEON(MVT::v16i8); addQRTypeForNEON(MVT::v8i16); addQRTypeForNEON(MVT::v4i32); addQRTypeForNEON(MVT::v2i64); if (Subtarget->hasFullFP16()) { addQRTypeForNEON(MVT::v8f16); addDRTypeForNEON(MVT::v4f16); } if (Subtarget->hasBF16()) { addQRTypeForNEON(MVT::v8bf16); addDRTypeForNEON(MVT::v4bf16); } } if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) { // v2f64 is legal so that QR subregs can be extracted as f64 elements, but // none of Neon, MVE or VFP supports any arithmetic operations on it. setOperationAction(ISD::FADD, MVT::v2f64, Expand); setOperationAction(ISD::FSUB, MVT::v2f64, Expand); setOperationAction(ISD::FMUL, MVT::v2f64, Expand); // FIXME: Code duplication: FDIV and FREM are expanded always, see // ARMTargetLowering::addTypeForNEON method for details. setOperationAction(ISD::FDIV, MVT::v2f64, Expand); setOperationAction(ISD::FREM, MVT::v2f64, Expand); // FIXME: Create unittest. // In another words, find a way when "copysign" appears in DAG with vector // operands. setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); // FIXME: Code duplication: SETCC has custom operation action, see // ARMTargetLowering::addTypeForNEON method for details. setOperationAction(ISD::SETCC, MVT::v2f64, Expand); // FIXME: Create unittest for FNEG and for FABS. setOperationAction(ISD::FNEG, MVT::v2f64, Expand); setOperationAction(ISD::FABS, MVT::v2f64, Expand); setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); setOperationAction(ISD::FSIN, MVT::v2f64, Expand); setOperationAction(ISD::FCOS, MVT::v2f64, Expand); setOperationAction(ISD::FPOW, MVT::v2f64, Expand); setOperationAction(ISD::FLOG, MVT::v2f64, Expand); setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); setOperationAction(ISD::FEXP, MVT::v2f64, Expand); setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); setOperationAction(ISD::FRINT, MVT::v2f64, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); setOperationAction(ISD::FMA, MVT::v2f64, Expand); } if (Subtarget->hasNEON()) { // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively // supported for v4f32. setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); setOperationAction(ISD::FSIN, MVT::v4f32, Expand); setOperationAction(ISD::FCOS, MVT::v4f32, Expand); setOperationAction(ISD::FPOW, MVT::v4f32, Expand); setOperationAction(ISD::FLOG, MVT::v4f32, Expand); setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); setOperationAction(ISD::FEXP, MVT::v4f32, Expand); setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); setOperationAction(ISD::FRINT, MVT::v4f32, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); // Mark v2f32 intrinsics. setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); setOperationAction(ISD::FSIN, MVT::v2f32, Expand); setOperationAction(ISD::FCOS, MVT::v2f32, Expand); setOperationAction(ISD::FPOW, MVT::v2f32, Expand); setOperationAction(ISD::FLOG, MVT::v2f32, Expand); setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); setOperationAction(ISD::FEXP, MVT::v2f32, Expand); setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); setOperationAction(ISD::FRINT, MVT::v2f32, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); // Neon does not support some operations on v1i64 and v2i64 types. setOperationAction(ISD::MUL, MVT::v1i64, Expand); // Custom handling for some quad-vector types to detect VMULL. setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); // Custom handling for some vector types to avoid expensive expansions setOperationAction(ISD::SDIV, MVT::v4i16, Custom); setOperationAction(ISD::SDIV, MVT::v8i8, Custom); setOperationAction(ISD::UDIV, MVT::v4i16, Custom); setOperationAction(ISD::UDIV, MVT::v8i8, Custom); // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with // a destination type that is wider than the source, and nor does // it have a FP_TO_[SU]INT instruction with a narrower destination than // source. setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); // NEON does not have single instruction CTPOP for vectors with element // types wider than 8-bits. However, custom lowering can leverage the // v8i8/v16i8 vcnt instruction. setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); setOperationAction(ISD::CTPOP, MVT::v1i64, Custom); setOperationAction(ISD::CTPOP, MVT::v2i64, Custom); setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); // NEON does not have single instruction CTTZ for vectors. setOperationAction(ISD::CTTZ, MVT::v8i8, Custom); setOperationAction(ISD::CTTZ, MVT::v4i16, Custom); setOperationAction(ISD::CTTZ, MVT::v2i32, Custom); setOperationAction(ISD::CTTZ, MVT::v1i64, Custom); setOperationAction(ISD::CTTZ, MVT::v16i8, Custom); setOperationAction(ISD::CTTZ, MVT::v8i16, Custom); setOperationAction(ISD::CTTZ, MVT::v4i32, Custom); setOperationAction(ISD::CTTZ, MVT::v2i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom); // NEON only has FMA instructions as of VFP4. if (!Subtarget->hasVFP4Base()) { setOperationAction(ISD::FMA, MVT::v2f32, Expand); setOperationAction(ISD::FMA, MVT::v4f32, Expand); } setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::FP_TO_SINT); setTargetDAGCombine(ISD::FP_TO_UINT); setTargetDAGCombine(ISD::FDIV); setTargetDAGCombine(ISD::LOAD); // It is legal to extload from v4i8 to v4i16 or v4i32. for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16, MVT::v2i32}) { for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal); setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal); setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal); } } } if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) { setTargetDAGCombine(ISD::BUILD_VECTOR); setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); setTargetDAGCombine(ISD::INTRINSIC_VOID); setTargetDAGCombine(ISD::VECREDUCE_ADD); setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::BITCAST); } if (Subtarget->hasMVEIntegerOps()) { setTargetDAGCombine(ISD::SMIN); setTargetDAGCombine(ISD::UMIN); setTargetDAGCombine(ISD::SMAX); setTargetDAGCombine(ISD::UMAX); setTargetDAGCombine(ISD::FP_EXTEND); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::SELECT_CC); } if (!Subtarget->hasFP64()) { // When targeting a floating-point unit with only single-precision // operations, f64 is legal for the few double-precision instructions which // are present However, no double-precision operations other than moves, // loads and stores are provided by the hardware. setOperationAction(ISD::FADD, MVT::f64, Expand); setOperationAction(ISD::FSUB, MVT::f64, Expand); setOperationAction(ISD::FMUL, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FDIV, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FGETSIGN, MVT::f64, Expand); setOperationAction(ISD::FNEG, MVT::f64, Expand); setOperationAction(ISD::FABS, MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FLOG, MVT::f64, Expand); setOperationAction(ISD::FLOG2, MVT::f64, Expand); setOperationAction(ISD::FLOG10, MVT::f64, Expand); setOperationAction(ISD::FEXP, MVT::f64, Expand); setOperationAction(ISD::FEXP2, MVT::f64, Expand); setOperationAction(ISD::FCEIL, MVT::f64, Expand); setOperationAction(ISD::FTRUNC, MVT::f64, Expand); setOperationAction(ISD::FRINT, MVT::f64, Expand); setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); setOperationAction(ISD::FFLOOR, MVT::f64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom); setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom); } if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) { setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom); if (Subtarget->hasFullFP16()) { setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom); } } if (!Subtarget->hasFP16()) { setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom); } computeRegisterProperties(Subtarget->getRegisterInfo()); // ARM does not have floating-point extending loads. for (MVT VT : MVT::fp_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); } // ... or truncating stores setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); // ARM does not have i1 sign extending load. for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); // ARM supports all 4 flavors of integer indexed load / store. if (!Subtarget->isThumb1Only()) { for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i1, Legal); setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i1, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); } } else { // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}. setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal); setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal); } setOperationAction(ISD::SADDO, MVT::i32, Custom); setOperationAction(ISD::UADDO, MVT::i32, Custom); setOperationAction(ISD::SSUBO, MVT::i32, Custom); setOperationAction(ISD::USUBO, MVT::i32, Custom); setOperationAction(ISD::ADDCARRY, MVT::i32, Custom); setOperationAction(ISD::SUBCARRY, MVT::i32, Custom); if (Subtarget->hasDSP()) { setOperationAction(ISD::SADDSAT, MVT::i8, Custom); setOperationAction(ISD::SSUBSAT, MVT::i8, Custom); setOperationAction(ISD::SADDSAT, MVT::i16, Custom); setOperationAction(ISD::SSUBSAT, MVT::i16, Custom); } if (Subtarget->hasBaseDSP()) { setOperationAction(ISD::SADDSAT, MVT::i32, Legal); setOperationAction(ISD::SSUBSAT, MVT::i32, Legal); } // i64 operation support. setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); if (Subtarget->isThumb1Only()) { setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); } if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() || (Subtarget->isThumb2() && !Subtarget->hasDSP())) setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL, MVT::i64, Custom); setOperationAction(ISD::SRA, MVT::i64, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); setOperationAction(ISD::LOAD, MVT::i64, Custom); setOperationAction(ISD::STORE, MVT::i64, Custom); // MVE lowers 64 bit shifts to lsll and lsrl // assuming that ISD::SRL and SRA of i64 are already marked custom if (Subtarget->hasMVEIntegerOps()) setOperationAction(ISD::SHL, MVT::i64, Custom); // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1. if (Subtarget->isThumb1Only()) { setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); } if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); // ARM does not have ROTL. setOperationAction(ISD::ROTL, MVT::i32, Expand); for (MVT VT : MVT::fixedlen_vector_valuetypes()) { setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); } setOperationAction(ISD::CTTZ, MVT::i32, Custom); setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) { setOperationAction(ISD::CTLZ, MVT::i32, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall); } // @llvm.readcyclecounter requires the Performance Monitors extension. // Default to the 0 expansion on unsupported platforms. // FIXME: Technically there are older ARM CPUs that have // implementation-specific ways of obtaining this information. if (Subtarget->hasPerfMon()) setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); // Only ARMv6 has BSWAP. if (!Subtarget->hasV6Ops()) setOperationAction(ISD::BSWAP, MVT::i32, Expand); bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode() : Subtarget->hasDivideInARMMode(); if (!hasDivide) { // These are expanded into libcalls if the cpu doesn't have HW divider. setOperationAction(ISD::SDIV, MVT::i32, LibCall); setOperationAction(ISD::UDIV, MVT::i32, LibCall); } if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) { setOperationAction(ISD::SDIV, MVT::i32, Custom); setOperationAction(ISD::UDIV, MVT::i32, Custom); setOperationAction(ISD::SDIV, MVT::i64, Custom); setOperationAction(ISD::UDIV, MVT::i64, Custom); } setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); // Register based DivRem for AEABI (RTABI 4.2) if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() || Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() || Subtarget->isTargetWindows()) { setOperationAction(ISD::SREM, MVT::i64, Custom); setOperationAction(ISD::UREM, MVT::i64, Custom); HasStandaloneRem = false; if (Subtarget->isTargetWindows()) { const struct { const RTLIB::Libcall Op; const char * const Name; const CallingConv::ID CC; } LibraryCalls[] = { { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS }, { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS }, { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS }, { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); } } else { const struct { const RTLIB::Libcall Op; const char * const Name; const CallingConv::ID CC; } LibraryCalls[] = { { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS }, }; for (const auto &LC : LibraryCalls) { setLibcallName(LC.Op, LC.Name); setLibcallCallingConv(LC.Op, LC.CC); } } setOperationAction(ISD::SDIVREM, MVT::i32, Custom); setOperationAction(ISD::UDIVREM, MVT::i32, Custom); setOperationAction(ISD::SDIVREM, MVT::i64, Custom); setOperationAction(ISD::UDIVREM, MVT::i64, Custom); } else { setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); } if (Subtarget->getTargetTriple().isOSMSVCRT()) { // MSVCRT doesn't have powi; fall back to pow setLibcallName(RTLIB::POWI_F32, nullptr); setLibcallName(RTLIB::POWI_F64, nullptr); } setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); // Use the default implementation. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); if (Subtarget->isTargetWindows()) setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); else setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use // the default expansion. InsertFencesForAtomic = false; if (Subtarget->hasAnyDataBarrier() && (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) { // ATOMIC_FENCE needs custom lowering; the others should have been expanded // to ldrex/strex loops already. setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); if (!Subtarget->isThumb() || !Subtarget->isMClass()) setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); // On v8, we have particularly efficient implementations of atomic fences // if they can be combined with nearby atomic loads and stores. if (!Subtarget->hasAcquireRelease() || getTargetMachine().getOptLevel() == 0) { // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc. InsertFencesForAtomic = true; } } else { // If there's anything we can use as a barrier, go through custom lowering // for ATOMIC_FENCE. // If target has DMB in thumb, Fences can be inserted. if (Subtarget->hasDataBarrier()) InsertFencesForAtomic = true; setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Subtarget->hasAnyDataBarrier() ? Custom : Expand); // Set them all for expansion, which will force libcalls. setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the // Unordered/Monotonic case. if (!InsertFencesForAtomic) { setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); } } setOperationAction(ISD::PREFETCH, MVT::Other, Custom); // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. if (!Subtarget->hasV6Ops()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); } setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() && !Subtarget->isThumb1Only()) { // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR // iff target supports vfp2. setOperationAction(ISD::BITCAST, MVT::i64, Custom); setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); if (Subtarget->useSjLjEH()) setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); if (Subtarget->hasFullFP16()) { setOperationAction(ISD::SETCC, MVT::f16, Expand); setOperationAction(ISD::SELECT, MVT::f16, Custom); setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); } setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::BR_CC, MVT::i32, Custom); if (Subtarget->hasFullFP16()) setOperationAction(ISD::BR_CC, MVT::f16, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Custom); // We don't support sin/cos/fmod/copysign/pow setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f32, Expand); if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only()) { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); } setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); if (!Subtarget->hasVFP4Base()) { setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); } // Various VFP goodness if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) { // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded. if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) { setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); } // fp16 is a special v7 extension that adds f16 <-> f32 conversions. if (!Subtarget->hasFP16()) { setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); } // Strict floating-point comparisons need custom lowering. setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom); } // Use __sincos_stret if available. if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } // FP-ARMv8 implements a lot of rounding-like FP operations. if (Subtarget->hasFPARMv8Base()) { setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FROUND, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::FMINNUM, MVT::f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); if (Subtarget->hasNEON()) { setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal); setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); } if (Subtarget->hasFP64()) { setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FROUND, MVT::f64, Legal); setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); setOperationAction(ISD::FMINNUM, MVT::f64, Legal); setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); } } // FP16 often need to be promoted to call lib functions if (Subtarget->hasFullFP16()) { setOperationAction(ISD::FREM, MVT::f16, Promote); setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); setOperationAction(ISD::FSIN, MVT::f16, Promote); setOperationAction(ISD::FCOS, MVT::f16, Promote); setOperationAction(ISD::FSINCOS, MVT::f16, Promote); setOperationAction(ISD::FPOWI, MVT::f16, Promote); setOperationAction(ISD::FPOW, MVT::f16, Promote); setOperationAction(ISD::FEXP, MVT::f16, Promote); setOperationAction(ISD::FEXP2, MVT::f16, Promote); setOperationAction(ISD::FLOG, MVT::f16, Promote); setOperationAction(ISD::FLOG10, MVT::f16, Promote); setOperationAction(ISD::FLOG2, MVT::f16, Promote); setOperationAction(ISD::FROUND, MVT::f16, Legal); } if (Subtarget->hasNEON()) { // vmin and vmax aren't available in a scalar form, so we can use // a NEON instruction with an undef lane instead. This has a performance // penalty on some cores, so we don't do this unless we have been // asked to by the core tuning model. if (Subtarget->useNEONForSinglePrecisionFP()) { setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); setOperationAction(ISD::FMINIMUM, MVT::f16, Legal); setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal); } setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal); setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal); setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); if (Subtarget->hasFullFP16()) { setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal); setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal); setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal); setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal); setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal); setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal); setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal); setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal); } } // We have target-specific dag combine patterns for the following nodes: // ARMISD::VMOVRRD - No need to call setTargetDAGCombine setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::XOR); if (Subtarget->hasMVEIntegerOps()) setTargetDAGCombine(ISD::VSELECT); if (Subtarget->hasV6Ops()) setTargetDAGCombine(ISD::SRL); if (Subtarget->isThumb1Only()) setTargetDAGCombine(ISD::SHL); setStackPointerRegisterToSaveRestore(ARM::SP); if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() || !Subtarget->hasVFP2Base() || Subtarget->hasMinSize()) setSchedulingPreference(Sched::RegPressure); else setSchedulingPreference(Sched::Hybrid); //// temporary - rewrite interface to use type MaxStoresPerMemset = 8; MaxStoresPerMemsetOptSize = 4; MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores MaxStoresPerMemcpyOptSize = 2; MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores MaxStoresPerMemmoveOptSize = 2; // On ARM arguments smaller than 4 bytes are extended, so all arguments // are at least 4 bytes aligned. setMinStackArgumentAlignment(Align(4)); // Prefer likely predicted branches to selects on out-of-order cores. PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder(); setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment())); setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4)); if (Subtarget->isThumb() || Subtarget->isThumb2()) setTargetDAGCombine(ISD::ABS); } bool ARMTargetLowering::useSoftFloat() const { return Subtarget->useSoftFloat(); } // FIXME: It might make sense to define the representative register class as the // nearest super-register that has a non-null superset. For example, DPR_VFP2 is // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, // SPR's representative would be DPR_VFP2. This should work well if register // pressure tracking were modified such that a register use would increment the // pressure of the register class's representative and all of it's super // classes' representatives transitively. We have not implemented this because // of the difficulty prior to coalescing of modeling operand register classes // due to the common occurrence of cross class copies and subregister insertions // and extractions. std::pair ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const { const TargetRegisterClass *RRC = nullptr; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(TRI, VT); // Use DPR as representative register class for all floating point // and vector types. Since there are 32 SPR registers and 32 DPR registers so // the cost is 1 for both f32 and f64. case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: RRC = &ARM::DPRRegClass; // When NEON is used for SP, only half of the register file is available // because operations that define both SP and DP results will be constrained // to the VFP2 class (D0-D15). We currently model this constraint prior to // coalescing by double-counting the SP regs. See the FIXME above. if (Subtarget->useNEONForSinglePrecisionFP()) Cost = 2; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: RRC = &ARM::DPRRegClass; Cost = 2; break; case MVT::v4i64: RRC = &ARM::DPRRegClass; Cost = 4; break; case MVT::v8i64: RRC = &ARM::DPRRegClass; Cost = 8; break; } return std::make_pair(RRC, Cost); } const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((ARMISD::NodeType)Opcode) { case ARMISD::FIRST_NUMBER: break; case ARMISD::Wrapper: return "ARMISD::Wrapper"; case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL"; case ARMISD::CALL: return "ARMISD::CALL"; case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; case ARMISD::tSECALL: return "ARMISD::tSECALL"; case ARMISD::BRCOND: return "ARMISD::BRCOND"; case ARMISD::BR_JT: return "ARMISD::BR_JT"; case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; case ARMISD::SERET_FLAG: return "ARMISD::SERET_FLAG"; case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG"; case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; case ARMISD::CMP: return "ARMISD::CMP"; case ARMISD::CMN: return "ARMISD::CMN"; case ARMISD::CMPZ: return "ARMISD::CMPZ"; case ARMISD::CMPFP: return "ARMISD::CMPFP"; case ARMISD::CMPFPE: return "ARMISD::CMPFPE"; case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; case ARMISD::CMPFPEw0: return "ARMISD::CMPFPEw0"; case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; case ARMISD::CMOV: return "ARMISD::CMOV"; case ARMISD::SUBS: return "ARMISD::SUBS"; case ARMISD::SSAT: return "ARMISD::SSAT"; case ARMISD::USAT: return "ARMISD::USAT"; case ARMISD::ASRL: return "ARMISD::ASRL"; case ARMISD::LSRL: return "ARMISD::LSRL"; case ARMISD::LSLL: return "ARMISD::LSLL"; case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; case ARMISD::RRX: return "ARMISD::RRX"; case ARMISD::ADDC: return "ARMISD::ADDC"; case ARMISD::ADDE: return "ARMISD::ADDE"; case ARMISD::SUBC: return "ARMISD::SUBC"; case ARMISD::SUBE: return "ARMISD::SUBE"; case ARMISD::LSLS: return "ARMISD::LSLS"; case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; case ARMISD::VMOVhr: return "ARMISD::VMOVhr"; case ARMISD::VMOVrh: return "ARMISD::VMOVrh"; case ARMISD::VMOVSR: return "ARMISD::VMOVSR"; case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP"; case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH"; case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; case ARMISD::LDRD: return "ARMISD::LDRD"; case ARMISD::STRD: return "ARMISD::STRD"; case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK"; case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK"; case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST"; case ARMISD::VECTOR_REG_CAST: return "ARMISD::VECTOR_REG_CAST"; case ARMISD::VCMP: return "ARMISD::VCMP"; case ARMISD::VCMPZ: return "ARMISD::VCMPZ"; case ARMISD::VTST: return "ARMISD::VTST"; case ARMISD::VSHLs: return "ARMISD::VSHLs"; case ARMISD::VSHLu: return "ARMISD::VSHLu"; case ARMISD::VSHLIMM: return "ARMISD::VSHLIMM"; case ARMISD::VSHRsIMM: return "ARMISD::VSHRsIMM"; case ARMISD::VSHRuIMM: return "ARMISD::VSHRuIMM"; case ARMISD::VRSHRsIMM: return "ARMISD::VRSHRsIMM"; case ARMISD::VRSHRuIMM: return "ARMISD::VRSHRuIMM"; case ARMISD::VRSHRNIMM: return "ARMISD::VRSHRNIMM"; case ARMISD::VQSHLsIMM: return "ARMISD::VQSHLsIMM"; case ARMISD::VQSHLuIMM: return "ARMISD::VQSHLuIMM"; case ARMISD::VQSHLsuIMM: return "ARMISD::VQSHLsuIMM"; case ARMISD::VQSHRNsIMM: return "ARMISD::VQSHRNsIMM"; case ARMISD::VQSHRNuIMM: return "ARMISD::VQSHRNuIMM"; case ARMISD::VQSHRNsuIMM: return "ARMISD::VQSHRNsuIMM"; case ARMISD::VQRSHRNsIMM: return "ARMISD::VQRSHRNsIMM"; case ARMISD::VQRSHRNuIMM: return "ARMISD::VQRSHRNuIMM"; case ARMISD::VQRSHRNsuIMM: return "ARMISD::VQRSHRNsuIMM"; case ARMISD::VSLIIMM: return "ARMISD::VSLIIMM"; case ARMISD::VSRIIMM: return "ARMISD::VSRIIMM"; case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; case ARMISD::VDUP: return "ARMISD::VDUP"; case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; case ARMISD::VEXT: return "ARMISD::VEXT"; case ARMISD::VREV64: return "ARMISD::VREV64"; case ARMISD::VREV32: return "ARMISD::VREV32"; case ARMISD::VREV16: return "ARMISD::VREV16"; case ARMISD::VZIP: return "ARMISD::VZIP"; case ARMISD::VUZP: return "ARMISD::VUZP"; case ARMISD::VTRN: return "ARMISD::VTRN"; case ARMISD::VTBL1: return "ARMISD::VTBL1"; case ARMISD::VTBL2: return "ARMISD::VTBL2"; case ARMISD::VMOVN: return "ARMISD::VMOVN"; case ARMISD::VQMOVNs: return "ARMISD::VQMOVNs"; case ARMISD::VQMOVNu: return "ARMISD::VQMOVNu"; case ARMISD::VCVTN: return "ARMISD::VCVTN"; case ARMISD::VCVTL: return "ARMISD::VCVTL"; case ARMISD::VMULLs: return "ARMISD::VMULLs"; case ARMISD::VMULLu: return "ARMISD::VMULLu"; case ARMISD::VQDMULH: return "ARMISD::VQDMULH"; case ARMISD::VADDVs: return "ARMISD::VADDVs"; case ARMISD::VADDVu: return "ARMISD::VADDVu"; case ARMISD::VADDVps: return "ARMISD::VADDVps"; case ARMISD::VADDVpu: return "ARMISD::VADDVpu"; case ARMISD::VADDLVs: return "ARMISD::VADDLVs"; case ARMISD::VADDLVu: return "ARMISD::VADDLVu"; case ARMISD::VADDLVAs: return "ARMISD::VADDLVAs"; case ARMISD::VADDLVAu: return "ARMISD::VADDLVAu"; case ARMISD::VADDLVps: return "ARMISD::VADDLVps"; case ARMISD::VADDLVpu: return "ARMISD::VADDLVpu"; case ARMISD::VADDLVAps: return "ARMISD::VADDLVAps"; case ARMISD::VADDLVApu: return "ARMISD::VADDLVApu"; case ARMISD::VMLAVs: return "ARMISD::VMLAVs"; case ARMISD::VMLAVu: return "ARMISD::VMLAVu"; case ARMISD::VMLAVps: return "ARMISD::VMLAVps"; case ARMISD::VMLAVpu: return "ARMISD::VMLAVpu"; case ARMISD::VMLALVs: return "ARMISD::VMLALVs"; case ARMISD::VMLALVu: return "ARMISD::VMLALVu"; case ARMISD::VMLALVps: return "ARMISD::VMLALVps"; case ARMISD::VMLALVpu: return "ARMISD::VMLALVpu"; case ARMISD::VMLALVAs: return "ARMISD::VMLALVAs"; case ARMISD::VMLALVAu: return "ARMISD::VMLALVAu"; case ARMISD::VMLALVAps: return "ARMISD::VMLALVAps"; case ARMISD::VMLALVApu: return "ARMISD::VMLALVApu"; case ARMISD::VMINVu: return "ARMISD::VMINVu"; case ARMISD::VMINVs: return "ARMISD::VMINVs"; case ARMISD::VMAXVu: return "ARMISD::VMAXVu"; case ARMISD::VMAXVs: return "ARMISD::VMAXVs"; case ARMISD::UMAAL: return "ARMISD::UMAAL"; case ARMISD::UMLAL: return "ARMISD::UMLAL"; case ARMISD::SMLAL: return "ARMISD::SMLAL"; case ARMISD::SMLALBB: return "ARMISD::SMLALBB"; case ARMISD::SMLALBT: return "ARMISD::SMLALBT"; case ARMISD::SMLALTB: return "ARMISD::SMLALTB"; case ARMISD::SMLALTT: return "ARMISD::SMLALTT"; case ARMISD::SMULWB: return "ARMISD::SMULWB"; case ARMISD::SMULWT: return "ARMISD::SMULWT"; case ARMISD::SMLALD: return "ARMISD::SMLALD"; case ARMISD::SMLALDX: return "ARMISD::SMLALDX"; case ARMISD::SMLSLD: return "ARMISD::SMLSLD"; case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX"; case ARMISD::SMMLAR: return "ARMISD::SMMLAR"; case ARMISD::SMMLSR: return "ARMISD::SMMLSR"; case ARMISD::QADD16b: return "ARMISD::QADD16b"; case ARMISD::QSUB16b: return "ARMISD::QSUB16b"; case ARMISD::QADD8b: return "ARMISD::QADD8b"; case ARMISD::QSUB8b: return "ARMISD::QSUB8b"; case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; case ARMISD::BFI: return "ARMISD::BFI"; case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; case ARMISD::VBSP: return "ARMISD::VBSP"; case ARMISD::MEMCPY: return "ARMISD::MEMCPY"; case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP"; case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD"; case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; case ARMISD::WLS: return "ARMISD::WLS"; case ARMISD::LE: return "ARMISD::LE"; case ARMISD::LOOP_DEC: return "ARMISD::LOOP_DEC"; case ARMISD::CSINV: return "ARMISD::CSINV"; case ARMISD::CSNEG: return "ARMISD::CSNEG"; case ARMISD::CSINC: return "ARMISD::CSINC"; } return nullptr; } EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const { if (!VT.isVector()) return getPointerTy(DL); // MVE has a predicate register. if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8)) return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); return VT.changeVectorElementTypeToInteger(); } /// getRegClassFor - Return the register class that should be used for the /// specified value type. const TargetRegisterClass * ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { (void)isDivergent; // Map v4i64 to QQ registers but do not make the type legal. Similarly map // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive // MVE Q registers. if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) { if (VT == MVT::v4i64) return &ARM::QQPRRegClass; if (VT == MVT::v8i64) return &ARM::QQQQPRRegClass; } return TargetLowering::getRegClassFor(VT); } // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the // source/dest is aligned and the copy size is large enough. We therefore want // to align such objects passed to memory intrinsics. bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, unsigned &PrefAlign) const { if (!isa(CI)) return false; MinSize = 8; // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1 // cycle faster than 4-byte aligned LDM. PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4); return true; } // Create a fast isel object. FastISel * ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return ARM::createFastISel(funcInfo, libInfo); } Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { unsigned NumVals = N->getNumValues(); if (!NumVals) return Sched::RegPressure; for (unsigned i = 0; i != NumVals; ++i) { EVT VT = N->getValueType(i); if (VT == MVT::Glue || VT == MVT::Other) continue; if (VT.isFloatingPoint() || VT.isVector()) return Sched::ILP; } if (!N->isMachineOpcode()) return Sched::RegPressure; // Load are scheduled for latency even if there instruction itinerary // is not available. const TargetInstrInfo *TII = Subtarget->getInstrInfo(); const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); if (MCID.getNumDefs() == 0) return Sched::RegPressure; if (!Itins->isEmpty() && Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) return Sched::ILP; return Sched::RegPressure; } //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// static bool isSRL16(const SDValue &Op) { if (Op.getOpcode() != ISD::SRL) return false; if (auto Const = dyn_cast(Op.getOperand(1))) return Const->getZExtValue() == 16; return false; } static bool isSRA16(const SDValue &Op) { if (Op.getOpcode() != ISD::SRA) return false; if (auto Const = dyn_cast(Op.getOperand(1))) return Const->getZExtValue() == 16; return false; } static bool isSHL16(const SDValue &Op) { if (Op.getOpcode() != ISD::SHL) return false; if (auto Const = dyn_cast(Op.getOperand(1))) return Const->getZExtValue() == 16; return false; } // Check for a signed 16-bit value. We special case SRA because it makes it // more simple when also looking for SRAs that aren't sign extending a // smaller value. Without the check, we'd need to take extra care with // checking order for some operations. static bool isS16(const SDValue &Op, SelectionDAG &DAG) { if (isSRA16(Op)) return isSHL16(Op.getOperand(0)); return DAG.ComputeNumSignBits(Op) == 17; } /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETNE: return ARMCC::NE; case ISD::SETEQ: return ARMCC::EQ; case ISD::SETGT: return ARMCC::GT; case ISD::SETGE: return ARMCC::GE; case ISD::SETLT: return ARMCC::LT; case ISD::SETLE: return ARMCC::LE; case ISD::SETUGT: return ARMCC::HI; case ISD::SETUGE: return ARMCC::HS; case ISD::SETULT: return ARMCC::LO; case ISD::SETULE: return ARMCC::LS; } } /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, ARMCC::CondCodes &CondCode2) { CondCode2 = ARMCC::AL; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = ARMCC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = ARMCC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = ARMCC::GE; break; case ISD::SETOLT: CondCode = ARMCC::MI; break; case ISD::SETOLE: CondCode = ARMCC::LS; break; case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; case ISD::SETO: CondCode = ARMCC::VC; break; case ISD::SETUO: CondCode = ARMCC::VS; break; case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; case ISD::SETUGT: CondCode = ARMCC::HI; break; case ISD::SETUGE: CondCode = ARMCC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = ARMCC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = ARMCC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = ARMCC::NE; break; } } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// /// getEffectiveCallingConv - Get the effective calling convention, taking into /// account presence of floating point hardware and calling convention /// limitations, such as support for variadic functions. CallingConv::ID ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC, bool isVarArg) const { switch (CC) { default: report_fatal_error("Unsupported calling convention"); case CallingConv::ARM_AAPCS: case CallingConv::ARM_APCS: case CallingConv::GHC: case CallingConv::CFGuard_Check: return CC; case CallingConv::PreserveMost: return CallingConv::PreserveMost; case CallingConv::ARM_AAPCS_VFP: case CallingConv::Swift: return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP; case CallingConv::C: if (!Subtarget->isAAPCS_ABI()) return CallingConv::ARM_APCS; else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && getTargetMachine().Options.FloatABIType == FloatABI::Hard && !isVarArg) return CallingConv::ARM_AAPCS_VFP; else return CallingConv::ARM_AAPCS; case CallingConv::Fast: case CallingConv::CXX_FAST_TLS: if (!Subtarget->isAAPCS_ABI()) { if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg) return CallingConv::Fast; return CallingConv::ARM_APCS; } else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg) return CallingConv::ARM_AAPCS_VFP; else return CallingConv::ARM_AAPCS; } } CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC, bool isVarArg) const { return CCAssignFnForNode(CC, false, isVarArg); } CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, bool isVarArg) const { return CCAssignFnForNode(CC, true, isVarArg); } /// CCAssignFnForNode - Selects the correct CCAssignFn for the given /// CallingConvention. CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const { switch (getEffectiveCallingConv(CC, isVarArg)) { default: report_fatal_error("Unsupported calling convention"); case CallingConv::ARM_APCS: return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); case CallingConv::ARM_AAPCS: return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); case CallingConv::ARM_AAPCS_VFP: return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); case CallingConv::Fast: return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); case CallingConv::GHC: return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); case CallingConv::PreserveMost: return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); case CallingConv::CFGuard_Check: return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); } } SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG, MVT LocVT, MVT ValVT, SDValue Val) const { Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()), Val); if (Subtarget->hasFullFP16()) { Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val); } else { Val = DAG.getNode(ISD::TRUNCATE, dl, MVT::getIntegerVT(ValVT.getSizeInBits()), Val); Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val); } return Val; } SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG, MVT LocVT, MVT ValVT, SDValue Val) const { if (Subtarget->hasFullFP16()) { Val = DAG.getNode(ARMISD::VMOVrh, dl, MVT::getIntegerVT(LocVT.getSizeInBits()), Val); } else { Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(ValVT.getSizeInBits()), Val); Val = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::getIntegerVT(LocVT.getSizeInBits()), Val); } return DAG.getNode(ISD::BITCAST, dl, LocVT, Val); } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue ARMTargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal) const { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg)); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; // Pass 'this' value directly from the argument to return value, to avoid // reg unit interference if (i == 0 && isThisReturn) { assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && "unexpected return calling convention register assignment"); InVals.push_back(ThisVal); continue; } SDValue Val; if (VA.needsCustom() && (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) { // Handle f64 or half of a v2f64. SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); if (!Subtarget->isLittle()) std::swap (Lo, Hi); Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); if (VA.getLocVT() == MVT::v2f64) { SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(0, dl, MVT::i32)); VA = RVLocs[++i]; // skip ahead to next loc Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); if (!Subtarget->isLittle()) std::swap (Lo, Hi); Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(1, dl, MVT::i32)); } } else { Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); break; } // f16 arguments have their size extended to 4 bytes and passed as if they // had been copied to the LSBs of a 32-bit register. // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI) if (VA.needsCustom() && (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val); InVals.push_back(Val); } return Chain; } /// LowerMemOpCallTo - Store the argument to the stack. SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), StackPtr, PtrOff); return DAG.getStore( Chain, dl, Arg, PtrOff, MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset)); } void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, RegsToPassVector &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, SDValue &StackPtr, SmallVectorImpl &MemOpChains, ISD::ArgFlagsTy Flags) const { SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Arg); unsigned id = Subtarget->isLittle() ? 0 : 1; RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id))); if (NextVA.isRegLoc()) RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id))); else { assert(NextVA.isMemLoc()); if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout())); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id), dl, DAG, NextVA, Flags)); } } /// LowerCall - Lowering a call into a callseq_start <- /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter /// nodes. SDValue ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool doesNotRet = CLI.DoesNotReturn; bool isVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); MachineFunction::CallSiteInfo CSInfo; bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); bool isThisReturn = false; bool isCmseNSCall = false; bool PreferIndirect = false; // Determine whether this is a non-secure function call. if (CLI.CB && CLI.CB->getAttributes().hasFnAttribute("cmse_nonsecure_call")) isCmseNSCall = true; // Disable tail calls if they're not supported. if (!Subtarget->supportsTailCall()) isTailCall = false; // For both the non-secure calls and the returns from a CMSE entry function, // the function needs to do some extra work afte r the call, or before the // return, respectively, thus it cannot end with atail call if (isCmseNSCall || AFI->isCmseNSEntryFunction()) isTailCall = false; if (isa(Callee)) { // If we're optimizing for minimum size and the function is called three or // more times in this block, we can improve codesize by calling indirectly // as BLXr has a 16-bit encoding. auto *GV = cast(Callee)->getGlobal(); if (CLI.CB) { auto *BB = CLI.CB->getParent(); PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() && count_if(GV->users(), [&BB](const User *U) { return isa(U) && cast(U)->getParent() == BB; }) > 2; } } if (isTailCall) { // Check if it's really possible to do a tail call. isTailCall = IsEligibleForTailCallOptimization( Callee, CallConv, isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG, PreferIndirect); if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); // We don't support GuaranteedTailCallOpt for ARM, only automatically // detected sibcalls. if (isTailCall) ++NumTailCalls; } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg)); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (isTailCall) { // For tail calls, memory operands are available in our caller's stack. NumBytes = 0; } else { // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); } SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout())); RegsToPassVector RegsToPass; SmallVector MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization, arguments are handled later. for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; bool isByVal = Flags.isByVal(); // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } // f16 arguments have their size extended to 4 bytes and passed as if they // had been copied to the LSBs of a 32-bit register. // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI) if (VA.needsCustom() && (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) { Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg); } else { // f16 arguments could have been extended prior to argument lowering. // Mask them arguments if this is a CMSE nonsecure call. auto ArgVT = Outs[realArgIdx].ArgVT; if (isCmseNSCall && (ArgVT == MVT::f16)) { auto LocBits = VA.getLocVT().getSizeInBits(); auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits()); SDValue Mask = DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits)); Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg); Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask); Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); } } // f64 and v2f64 might be passed in i32 pairs and must be split into pieces if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) { SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, dl, MVT::i32)); SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, dl, MVT::i32)); PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); VA = ArgLocs[++i]; // skip ahead to next loc if (VA.isRegLoc()) { PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } else { assert(VA.isMemLoc()); MemOpChains.push_back( LowerMemOpCallTo(Chain, StackPtr, Op1, dl, DAG, VA, Flags)); } } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) { PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } else if (VA.isRegLoc()) { if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && Outs[0].VT == MVT::i32) { assert(VA.getLocVT() == MVT::i32 && "unexpected calling convention register assignment"); assert(!Ins.empty() && Ins[0].VT == MVT::i32 && "unexpected use of 'returned'"); isThisReturn = true; } const TargetOptions &Options = DAG.getTarget().Options; if (Options.EmitCallSiteInfo) CSInfo.emplace_back(VA.getLocReg(), i); RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else if (isByVal) { assert(VA.isMemLoc()); unsigned offset = 0; // True if this byval aggregate will be split between registers // and memory. unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed(); if (CurByValIdx < ByValArgsCount) { unsigned RegBegin, RegEnd; CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); unsigned int i, j; for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { SDValue Const = DAG.getConstant(4*i, dl, MVT::i32); SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(), DAG.InferPtrAlign(AddArg)); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(j, Load)); } // If parameter size outsides register area, "offset" value // helps us to calculate stack slot for remained part properly. offset = RegEnd - RegBegin; CCInfo.nextInRegsParam(); } if (Flags.getByValSize() > 4*offset) { auto PtrVT = getPointerTy(DAG.getDataLayout()); unsigned LocMemOffset = VA.getLocMemOffset(); SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff); SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl); SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset); SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl, MVT::i32); SDValue AlignNode = DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32); SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, Ops)); } } else if (!isTailCall) { assert(VA.isMemLoc()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. bool isDirect = false; const TargetMachine &TM = getTargetMachine(); const Module *Mod = MF.getFunction().getParent(); const GlobalValue *GV = nullptr; if (GlobalAddressSDNode *G = dyn_cast(Callee)) GV = G->getGlobal(); bool isStub = !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO(); bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); bool isLocalARMFunc = false; auto PtrVt = getPointerTy(DAG.getDataLayout()); if (Subtarget->genLongCalls()) { assert((!isPositionIndependent() || Subtarget->isTargetWindows()) && "long-calls codegen is not position independent!"); // Handle a global address or an external symbol. If it's not one of // those, the target's already in a register, so we don't need to do // anything extra. if (isa(Callee)) { // Create a constant pool entry for the callee address unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); // Get the address of the callee into a register SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4)); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad( PtrVt, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); } else if (ExternalSymbolSDNode *S=dyn_cast(Callee)) { const char *Sym = S->getSymbol(); // Create a constant pool entry for the callee address unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, ARMPCLabelIndex, 0); // Get the address of the callee into a register SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4)); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad( PtrVt, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); } } else if (isa(Callee)) { if (!PreferIndirect) { isDirect = true; bool isDef = GV->isStrongDefinitionForLinker(); // ARM call to a local ARM function is predicable. isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking); // tBX takes a register source operand. if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?"); Callee = DAG.getNode( ARMISD::WrapperPIC, dl, PtrVt, DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY)); Callee = DAG.getLoad( PtrVt, dl, DAG.getEntryNode(), Callee, MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(), MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } else if (Subtarget->isTargetCOFF()) { assert(Subtarget->isTargetWindows() && "Windows is the only supported COFF target"); unsigned TargetFlags = ARMII::MO_NO_FLAG; if (GV->hasDLLImportStorageClass()) TargetFlags = ARMII::MO_DLLIMPORT; else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) TargetFlags = ARMII::MO_COFFSTUB; Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0, TargetFlags); if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)) Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee), MachinePointerInfo::getGOT(DAG.getMachineFunction())); } else { Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0); } } } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { isDirect = true; // tBX takes a register source operand. const char *Sym = S->getSymbol(); if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, ARMPCLabelIndex, 4); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4)); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad( PtrVt, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel); } else { Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0); } } if (isCmseNSCall) { assert(!isARMFunc && !isDirect && "Cannot handle call to ARM function or direct call"); if (NumBytes > 0) { DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(), "call to non-secure function would " "require passing arguments on stack", dl.getDebugLoc()); DAG.getContext()->diagnose(Diag); } if (isStructRet) { DiagnosticInfoUnsupported Diag( DAG.getMachineFunction().getFunction(), "call to non-secure function would return value through pointer", dl.getDebugLoc()); DAG.getContext()->diagnose(Diag); } } // FIXME: handle tail calls differently. unsigned CallOpc; if (Subtarget->isThumb()) { if (isCmseNSCall) CallOpc = ARMISD::tSECALL; else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) CallOpc = ARMISD::CALL_NOLINK; else CallOpc = ARMISD::CALL; } else { if (!isDirect && !Subtarget->hasV5TOps()) CallOpc = ARMISD::CALL_NOLINK; else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() && // Emit regular call when code size is the priority !Subtarget->hasMinSize()) // "mov lr, pc; b _foo" to avoid confusing the RSP CallOpc = ARMISD::CALL_NOLINK; else CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. if (!isTailCall) { const uint32_t *Mask; const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo(); if (isThisReturn) { // For 'this' returns, use the R0-preserving mask if applicable Mask = ARI->getThisReturnPreservedMask(MF, CallConv); if (!Mask) { // Set isThisReturn to false if the calling convention is not one that // allows 'returned' to be modeled in this way, so LowerCallResult does // not try to pass 'this' straight through isThisReturn = false; Mask = ARI->getCallPreservedMask(MF, CallConv); } } else Mask = ARI->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); } if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); if (isTailCall) { MF.getFrameInfo().setHasTailCall(); SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops); DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); return Ret; } // Returns a chain and a flag for retval copy to use. Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); InFlag = Chain.getValue(1); DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), DAG.getIntPtrConstant(0, dl, true), InFlag, dl); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals, isThisReturn, isThisReturn ? OutVals[0] : SDValue()); } /// HandleByVal - Every parameter *after* a byval parameter is passed /// on the stack. Remember the next parameter register to allocate, /// and then confiscate the rest of the parameter registers to insure /// this. void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size, Align Alignment) const { // Byval (as with any stack) slots are always at least 4 byte aligned. Alignment = std::max(Alignment, Align(4)); unsigned Reg = State->AllocateReg(GPRArgRegs); if (!Reg) return; unsigned AlignInRegs = Alignment.value() / 4; unsigned Waste = (ARM::R4 - Reg) % AlignInRegs; for (unsigned i = 0; i < Waste; ++i) Reg = State->AllocateReg(GPRArgRegs); if (!Reg) return; unsigned Excess = 4 * (ARM::R4 - Reg); // Special case when NSAA != SP and parameter size greater than size of // all remained GPR regs. In that case we can't split parameter, we must // send it to stack. We also must set NCRN to R4, so waste all // remained registers. const unsigned NSAAOffset = State->getNextStackOffset(); if (NSAAOffset != 0 && Size > Excess) { while (State->AllocateReg(GPRArgRegs)) ; return; } // First register for byval parameter is the first register that wasn't // allocated before this method call, so it would be "reg". // If parameter is small enough to be saved in range [reg, r4), then // the end (first after last) register would be reg + param-size-in-regs, // else parameter would be splitted between registers and stack, // end register would be r4 in this case. unsigned ByValRegBegin = Reg; unsigned ByValRegEnd = std::min(Reg + Size / 4, ARM::R4); State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); // Note, first register is allocated in the beginning of function already, // allocate remained amount of registers we need. for (unsigned i = Reg + 1; i != ByValRegEnd; ++i) State->AllocateReg(GPRArgRegs); // A byval parameter that is split between registers and memory needs its // size truncated here. // In the case where the entire structure fits in registers, we set the // size in memory to zero. Size = std::max(Size - Excess, 0); } /// MatchingStackOffset - Return true if the given stack call argument is /// already available in the same position (relatively) of the caller's /// incoming argument stack. static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { unsigned Bytes = Arg.getValueSizeInBits() / 8; int FI = std::numeric_limits::max(); if (Arg.getOpcode() == ISD::CopyFromReg) { unsigned VR = cast(Arg.getOperand(1))->getReg(); if (!Register::isVirtualRegister(VR)) return false; MachineInstr *Def = MRI->getVRegDef(VR); if (!Def) return false; if (!Flags.isByVal()) { if (!TII->isLoadFromStackSlot(*Def, FI)) return false; } else { return false; } } else if (LoadSDNode *Ld = dyn_cast(Arg)) { if (Flags.isByVal()) // ByVal argument is passed in as a pointer but it's now being // dereferenced. e.g. // define @foo(%struct.X* %A) { // tail call @bar(%struct.X* byval %A) // } return false; SDValue Ptr = Ld->getBasePtr(); FrameIndexSDNode *FINode = dyn_cast(Ptr); if (!FINode) return false; FI = FINode->getIndex(); } else return false; assert(FI != std::numeric_limits::max()); if (!MFI.isFixedObjectIndex(FI)) return false; return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI); } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool ARMTargetLowering::IsEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG, const bool isIndirect) const { MachineFunction &MF = DAG.getMachineFunction(); const Function &CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF.getCallingConv(); assert(Subtarget->supportsTailCall()); // Indirect tail calls cannot be optimized for Thumb1 if the args // to the call take up r0-r3. The reason is that there are no legal registers // left to hold the pointer to the function to be called. if (Subtarget->isThumb1Only() && Outs.size() >= 4 && (!isa(Callee.getNode()) || isIndirect)) return false; // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. This is what gcc calls sibcall. // Exception-handling functions need a special set of instructions to indicate // a return to the hardware. Tail-calling another function would probably // break this. if (CallerF.hasFnAttribute("interrupt")) return false; // Also avoid sibcall optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // Externally-defined functions with weak linkage should not be // tail-called on ARM when the OS does not support dynamic // pre-emption of symbols, as the AAELF spec requires normal calls // to undefined weak functions to be replaced with a NOP or jump to the // next instruction. The behaviour of branch instructions in this // situation (as used for tail calls) is implementation-defined, so we // cannot rely on the linker replacing the tail call with a return. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { const GlobalValue *GV = G->getGlobal(); const Triple &TT = getTargetMachine().getTargetTriple(); if (GV->hasExternalWeakLinkage() && (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) return false; } // Check that the call results are passed in the same way. LLVMContext &C = *DAG.getContext(); if (!CCState::resultsCompatible( getEffectiveCallingConv(CalleeCC, isVarArg), getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins, CCAssignFnForReturn(CalleeCC, isVarArg), CCAssignFnForReturn(CallerCC, CallerF.isVarArg()))) return false; // The callee has to preserve all registers the caller needs to preserve. const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); if (CalleeCC != CallerCC) { const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) return false; } // If Caller's vararg or byval argument has been split between registers and // stack, do not perform tail call, since part of the argument is in caller's // local frame. const ARMFunctionInfo *AFI_Caller = MF.getInfo(); if (AFI_Caller->getArgRegsSaveSize()) return false; // If the callee takes no arguments then go on to check the results of the // call. if (!Outs.empty()) { // Check if stack adjustment is needed. For now, do not do this if any // argument is passed on the stack. SmallVector ArgLocs; CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); if (CCInfo.getNextStackOffset()) { // Check if the arguments are already laid out in the right way as // the caller's fixed stack objects. MachineFrameInfo &MFI = MF.getFrameInfo(); const MachineRegisterInfo *MRI = &MF.getRegInfo(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) { // f64 and vector types are split into multiple registers or // register/stack-slot combinations. The types will not match // the registers; give up on memory f64 refs until we figure // out what to do about this. if (!VA.isRegLoc()) return false; if (!ArgLocs[++i].isRegLoc()) return false; if (RegVT == MVT::v2f64) { if (!ArgLocs[++i].isRegLoc()) return false; if (!ArgLocs[++i].isRegLoc()) return false; } } else if (!VA.isRegLoc()) { if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI, TII)) return false; } } } const MachineRegisterInfo &MRI = MF.getRegInfo(); if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) return false; } return true; } bool ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); } static SDValue LowerInterruptReturn(SmallVectorImpl &RetOps, const SDLoc &DL, SelectionDAG &DAG) { const MachineFunction &MF = DAG.getMachineFunction(); const Function &F = MF.getFunction(); StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString(); // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset // version of the "preferred return address". These offsets affect the return // instruction if this is a return from PL1 without hypervisor extensions. // IRQ/FIQ: +4 "subs pc, lr, #4" // SWI: 0 "subs pc, lr, #0" // ABORT: +4 "subs pc, lr, #4" // UNDEF: +4/+2 "subs pc, lr, #0" // UNDEF varies depending on where the exception came from ARM or Thumb // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0. int64_t LROffset; if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" || IntKind == "ABORT") LROffset = 4; else if (IntKind == "SWI" || IntKind == "UNDEF") LROffset = 0; else report_fatal_error("Unsupported interrupt attribute. If present, value " "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF"); RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, DL, MVT::i32, false)); return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps); } SDValue ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to a location. SmallVector RVLocs; // CCState - Info about the registers and stack slots. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); SDValue Flag; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) bool isLittleEndian = Subtarget->isLittle(); MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); AFI->setReturnRegsCount(RVLocs.size()); // Report error if cmse entry function returns structure through first ptr arg. if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) { // Note: using an empty SDLoc(), as the first line of the function is a // better place to report than the last line. DiagnosticInfoUnsupported Diag( DAG.getMachineFunction().getFunction(), "secure entry function would return value through pointer", SDLoc().getDebugLoc()); DAG.getContext()->diagnose(Diag); } // Copy the result values into the output registers. for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[realRVLocIdx]; bool ReturnF16 = false; if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) { // Half-precision return values can be returned like this: // // t11 f16 = fadd ... // t12: i16 = bitcast t11 // t13: i32 = zero_extend t12 // t14: f32 = bitcast t13 <~~~~~~~ Arg // // to avoid code generation for bitcasts, we simply set Arg to the node // that produces the f16 value, t11 in this case. // if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) { SDValue ZE = Arg.getOperand(0); if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) { SDValue BC = ZE.getOperand(0); if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) { Arg = BC.getOperand(0); ReturnF16 = true; } } } } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: if (!ReturnF16) Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } // Mask f16 arguments if this is a CMSE nonsecure entry. auto RetVT = Outs[realRVLocIdx].ArgVT; if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) { if (VA.needsCustom() && VA.getValVT() == MVT::f16) { Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg); } else { auto LocBits = VA.getLocVT().getSizeInBits(); auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits()); SDValue Mask = DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits)); Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg); Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask); Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); } } if (VA.needsCustom() && (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) { if (VA.getLocVT() == MVT::v2f64) { // Extract the first half and return it in two registers. SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, dl, MVT::i32)); SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Half); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc // Extract the 2nd half and fall through to handle it as an f64 value. Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, dl, MVT::i32)); } // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is // available. SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Arg); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(isLittleEndian ? 0 : 1), Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(isLittleEndian ? 1 : 0), Flag); } else Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); // Guarantee that all emitted copies are // stuck together, avoiding something bad. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister( VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT())); } const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); if (I) { for (; *I; ++I) { if (ARM::GPRRegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i32)); else if (ARM::DPRRegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); } } // Update chain and glue. RetOps[0] = Chain; if (Flag.getNode()) RetOps.push_back(Flag); // CPUs which aren't M-class use a special sequence to return from // exceptions (roughly, any instruction setting pc and cpsr simultaneously, // though we use "subs pc, lr, #N"). // // M-class CPUs actually use a normal return sequence with a special // (hardware-provided) value in LR, so the normal code path works. if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") && !Subtarget->isMClass()) { if (Subtarget->isThumb1Only()) report_fatal_error("interrupt attribute is not supported in Thumb1"); return LowerInterruptReturn(RetOps, dl, DAG); } ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG : ARMISD::RET_FLAG; return DAG.getNode(RetNode, dl, MVT::Other, RetOps); } bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { SDNode *VMov = Copy; // f64 returned in a pair of GPRs. SmallPtrSet Copies; for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != ISD::CopyToReg) return false; Copies.insert(*UI); } if (Copies.size() > 2) return false; for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); UI != UE; ++UI) { SDValue UseChain = UI->getOperand(0); if (Copies.count(UseChain.getNode())) // Second CopyToReg Copy = *UI; else { // We are at the top of this chain. // If the copy has a glue operand, we conservatively assume it // isn't safe to perform a tail call. if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue) return false; // First CopyToReg TCChain = UseChain; } } } else if (Copy->getOpcode() == ISD::BITCAST) { // f32 returned in a single GPR. if (!Copy->hasOneUse()) return false; Copy = *Copy->use_begin(); if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) return false; // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else { return false; } bool HasRet = false; for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != ARMISD::RET_FLAG && UI->getOpcode() != ARMISD::INTRET_FLAG) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { if (!Subtarget->supportsTailCall()) return false; if (!CI->isTailCall()) return false; return true; } // Trying to write a 64 bit value so need to split into two 32 bit values first, // and pass the lower and high parts through. static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); SDValue WriteValue = Op->getOperand(2); // This function is only supposed to be called for i64 type argument. assert(WriteValue.getValueType() == MVT::i64 && "LowerWRITE_REGISTER called for non-i64 type argument."); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, DAG.getConstant(0, DL, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, DAG.getConstant(1, DL, MVT::i32)); SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi }; return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOVi. SDValue ARMTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); // FIXME there is no actual debug info here SDLoc dl(Op); ConstantPoolSDNode *CP = cast(Op); SDValue Res; // When generating execute-only code Constant Pools must be promoted to the // global data section. It's a bit ugly that we can't share them across basic // blocks, but this way we guarantee that execute-only behaves correct with // position-independent addressing modes. if (Subtarget->genExecuteOnly()) { auto AFI = DAG.getMachineFunction().getInfo(); auto T = const_cast(CP->getType()); auto C = const_cast(CP->getConstVal()); auto M = const_cast(DAG.getMachineFunction(). getFunction().getParent()); auto GV = new GlobalVariable( *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C, Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" + Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" + Twine(AFI->createPICLabelUId()) ); SDValue GA = DAG.getTargetGlobalAddress(dyn_cast(GV), dl, PtrVT); return LowerGlobalAddress(GA, DAG); } if (CP->isMachineConstantPoolEntry()) Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); else Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign()); return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); } unsigned ARMTargetLowering::getJumpTableEncoding() const { return MachineJumpTableInfo::EK_Inline; } SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = 0; SDLoc DL(Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); const BlockAddress *BA = cast(Op)->getBlockAddress(); SDValue CPAddr; bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI(); if (!IsPositionIndependent) { CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4)); } else { unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, ARMCP::CPBlockAddress, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); } CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); SDValue Result = DAG.getLoad( PtrVT, DL, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); if (!IsPositionIndependent) return Result; SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32); return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); } /// Convert a TLS address reference into the correct sequence of loads /// and calls to compute the variable's address for Darwin, and return an /// SDValue containing the final node. /// Darwin only has one TLS scheme which must be capable of dealing with the /// fully general situation, in the worst case. This means: /// + "extern __thread" declaration. /// + Defined in a possibly unknown dynamic library. /// /// The general system is that each __thread variable has a [3 x i32] descriptor /// which contains information used by the runtime to calculate the address. The /// only part of this the compiler needs to know about is the first word, which /// contains a function pointer that must be called with the address of the /// entire descriptor in "r0". /// /// Since this descriptor may be in a different unit, in general access must /// proceed along the usual ARM rules. A common sequence to produce is: /// /// movw rT1, :lower16:_var$non_lazy_ptr /// movt rT1, :upper16:_var$non_lazy_ptr /// ldr r0, [rT1] /// ldr rT2, [r0] /// blx rT2 /// [...address now in r0...] SDValue ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && "This function expects a Darwin target"); SDLoc DL(Op); // First step is to get the address of the actua global symbol. This is where // the TLS descriptor lives. SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG); // The first entry in the descriptor is a function pointer that we must call // to obtain the address of the variable. SDValue Chain = DAG.getEntryNode(); SDValue FuncTLVGet = DAG.getLoad( MVT::i32, DL, Chain, DescAddr, MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4), MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); Chain = FuncTLVGet.getValue(1); MachineFunction &F = DAG.getMachineFunction(); MachineFrameInfo &MFI = F.getFrameInfo(); MFI.setAdjustsStack(true); // TLS calls preserve all registers except those that absolutely must be // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be // silly). auto TRI = getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo(); auto ARI = static_cast(TRI); const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction()); // Finally, we can make the call. This is just a degenerate version of a // normal AArch64 call node: r0 takes the address of the descriptor, and // returns the address of the variable in this thread. Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue()); Chain = DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32), DAG.getRegisterMask(Mask), Chain.getValue(1)); return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1)); } SDValue ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); SDValue Chain = DAG.getEntryNode(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); // Load the current TEB (thread environment block) SDValue Ops[] = {Chain, DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32), DAG.getTargetConstant(15, DL, MVT::i32), DAG.getTargetConstant(0, DL, MVT::i32), DAG.getTargetConstant(13, DL, MVT::i32), DAG.getTargetConstant(0, DL, MVT::i32), DAG.getTargetConstant(2, DL, MVT::i32)}; SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, DAG.getVTList(MVT::i32, MVT::Other), Ops); SDValue TEB = CurrentTEB.getValue(0); Chain = CurrentTEB.getValue(1); // Load the ThreadLocalStoragePointer from the TEB // A pointer to the TLS array is located at offset 0x2c from the TEB. SDValue TLSArray = DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL)); TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); // The pointer to the thread's TLS data area is at the TLS Index scaled by 4 // offset into the TLSArray. // Load the TLS index from the C runtime SDValue TLSIndex = DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG); TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex); TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo()); SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, DAG.getConstant(2, DL, MVT::i32)); SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), MachinePointerInfo()); // Get the offset of the start of the .tls section (section base) const auto *GA = cast(Op); auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL); SDValue Offset = DAG.getLoad( PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32, DAG.getTargetConstantPool(CPV, PtrVT, Align(4))), MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model SDValue ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); EVT PtrVT = getPointerTy(DAG.getDataLayout()); unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); Argument = DAG.getLoad( PtrVT, dl, DAG.getEntryNode(), Argument, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); SDValue Chain = Argument.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); // call __tls_get_addr. ArgListTy Args; ArgListEntry Entry; Entry.Node = Argument; Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); Args.push_back(Entry); // FIXME: is there useful debug info available here? TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( CallingConv::C, Type::getInt32Ty(*DAG.getContext()), DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args)); std::pair CallResult = LowerCallTo(CLI); return CallResult.first; } // Lower ISD::GlobalTLSAddress using the "initial exec" or // "local exec" model. SDValue ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, SelectionDAG &DAG, TLSModel::Model model) const { const GlobalValue *GV = GA->getGlobal(); SDLoc dl(GA); SDValue Offset; SDValue Chain = DAG.getEntryNode(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); // Get the Thread Pointer SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); if (model == TLSModel::InitialExec) { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); // Initial exec model. unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true); Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad( PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); Chain = Offset.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); Offset = DAG.getLoad( PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); } else { // local exec model assert(model == TLSModel::LocalExec); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad( PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); } // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast(Op); if (DAG.getTarget().useEmulatedTLS()) return LowerToTLSEmulatedModel(GA, DAG); if (Subtarget->isTargetDarwin()) return LowerGlobalTLSAddressDarwin(Op, DAG); if (Subtarget->isTargetWindows()) return LowerGlobalTLSAddressWindows(Op, DAG); // TODO: implement the "local dynamic" model assert(Subtarget->isTargetELF() && "Only ELF implemented here"); TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); switch (model) { case TLSModel::GeneralDynamic: case TLSModel::LocalDynamic: return LowerToTLSGeneralDynamicModel(GA, DAG); case TLSModel::InitialExec: case TLSModel::LocalExec: return LowerToTLSExecModels(GA, DAG, model); } llvm_unreachable("bogus TLS model"); } /// Return true if all users of V are within function F, looking through /// ConstantExprs. static bool allUsersAreInFunction(const Value *V, const Function *F) { SmallVector Worklist; for (auto *U : V->users()) Worklist.push_back(U); while (!Worklist.empty()) { auto *U = Worklist.pop_back_val(); if (isa(U)) { for (auto *UU : U->users()) Worklist.push_back(UU); continue; } auto *I = dyn_cast(U); if (!I || I->getParent()->getParent() != F) return false; } return true; } static SDValue promoteToConstantPool(const ARMTargetLowering *TLI, const GlobalValue *GV, SelectionDAG &DAG, EVT PtrVT, const SDLoc &dl) { // If we're creating a pool entry for a constant global with unnamed address, // and the global is small enough, we can emit it inline into the constant pool // to save ourselves an indirection. // // This is a win if the constant is only used in one function (so it doesn't // need to be duplicated) or duplicating the constant wouldn't increase code // size (implying the constant is no larger than 4 bytes). const Function &F = DAG.getMachineFunction().getFunction(); // We rely on this decision to inline being idemopotent and unrelated to the // use-site. We know that if we inline a variable at one use site, we'll // inline it elsewhere too (and reuse the constant pool entry). Fast-isel // doesn't know about this optimization, so bail out if it's enabled else // we could decide to inline here (and thus never emit the GV) but require // the GV from fast-isel generated code. if (!EnableConstpoolPromotion || DAG.getMachineFunction().getTarget().Options.EnableFastISel) return SDValue(); auto *GVar = dyn_cast(GV); if (!GVar || !GVar->hasInitializer() || !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() || !GVar->hasLocalLinkage()) return SDValue(); // If we inline a value that contains relocations, we move the relocations // from .data to .text. This is not allowed in position-independent code. auto *Init = GVar->getInitializer(); if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) && Init->needsRelocation()) return SDValue(); // The constant islands pass can only really deal with alignment requests // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote // any type wanting greater alignment requirements than 4 bytes. We also // can only promote constants that are multiples of 4 bytes in size or // are paddable to a multiple of 4. Currently we only try and pad constants // that are strings for simplicity. auto *CDAInit = dyn_cast(Init); unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType()); Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar); unsigned RequiredPadding = 4 - (Size % 4); bool PaddingPossible = RequiredPadding == 4 || (CDAInit && CDAInit->isString()); if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize || Size == 0) return SDValue(); unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding); MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); // We can't bloat the constant pool too much, else the ConstantIslands pass // may fail to converge. If we haven't promoted this global yet (it may have // multiple uses), and promoting it would increase the constant pool size (Sz // > 4), ensure we have space to do so up to MaxTotal. if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4) if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >= ConstpoolPromotionMaxTotal) return SDValue(); // This is only valid if all users are in a single function; we can't clone // the constant in general. The LLVM IR unnamed_addr allows merging // constants, but not cloning them. // // We could potentially allow cloning if we could prove all uses of the // constant in the current function don't care about the address, like // printf format strings. But that isn't implemented for now. if (!allUsersAreInFunction(GVar, &F)) return SDValue(); // We're going to inline this global. Pad it out if needed. if (RequiredPadding != 4) { StringRef S = CDAInit->getAsString(); SmallVector V(S.size()); std::copy(S.bytes_begin(), S.bytes_end(), V.begin()); while (RequiredPadding--) V.push_back(0); Init = ConstantDataArray::get(*DAG.getContext(), V); } auto CPVal = ARMConstantPoolConstant::Create(GVar, Init); SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4)); if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) { AFI->markGlobalAsPromotedToConstantPool(GVar); AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() + PaddedSize - 4); } ++NumConstpoolPromoted; return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); } bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const { if (const GlobalAlias *GA = dyn_cast(GV)) if (!(GV = GA->getBaseObject())) return false; if (const auto *V = dyn_cast(GV)) return V->isConstant(); return isa(GV); } SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { switch (Subtarget->getTargetTriple().getObjectFormat()) { default: llvm_unreachable("unknown object format"); case Triple::COFF: return LowerGlobalAddressWindows(Op, DAG); case Triple::ELF: return LowerGlobalAddressELF(Op, DAG); case Triple::MachO: return LowerGlobalAddressDarwin(Op, DAG); } } SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc dl(Op); const GlobalValue *GV = cast(Op)->getGlobal(); const TargetMachine &TM = getTargetMachine(); bool IsRO = isReadOnly(GV); // promoteToConstantPool only if not generating XO text section if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly()) if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl)) return V; if (isPositionIndependent()) { bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, UseGOT_PREL ? ARMII::MO_GOT : 0); SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G); if (UseGOT_PREL) Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction())); return Result; } else if (Subtarget->isROPI() && IsRO) { // PC-relative. SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT); SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G); return Result; } else if (Subtarget->isRWPI() && !IsRO) { // SB-relative. SDValue RelAddr; if (Subtarget->useMovt()) { ++NumMovwMovt; SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL); RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G); } else { // use literal pool for address constant ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMCP::SBREL); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); RelAddr = DAG.getLoad( PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); } SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT); SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr); return Result; } // If we have T2 ops, we can materialize the address directly via movt/movw // pair. This is always cheaper. if (Subtarget->useMovt()) { ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes. return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, DAG.getTargetGlobalAddress(GV, dl, PtrVT)); } else { SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4)); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); return DAG.getLoad( PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); } } SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const { assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && "ROPI/RWPI not currently supported for Darwin"); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc dl(Op); const GlobalValue *GV = cast(Op)->getGlobal(); if (Subtarget->useMovt()) ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into multiple nodes unsigned Wrapper = isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper; SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY); SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G); if (Subtarget->isGVIndirectSymbol(GV)) Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction())); return Result; } SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported"); assert(Subtarget->useMovt() && "Windows on ARM expects to use movw/movt"); assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && "ROPI/RWPI not currently supported for Windows"); const TargetMachine &TM = getTargetMachine(); const GlobalValue *GV = cast(Op)->getGlobal(); ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG; if (GV->hasDLLImportStorageClass()) TargetFlags = ARMII::MO_DLLIMPORT; else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) TargetFlags = ARMII::MO_COFFSTUB; EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result; SDLoc DL(Op); ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes. Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0, TargetFlags)); if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)) Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction())); return Result; } SDValue ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Val = DAG.getConstant(0, dl, MVT::i32); return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1), Val); } SDValue ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); } SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other, Op.getOperand(0)); } SDValue ARMTargetLowering::LowerINTRINSIC_VOID( SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const { unsigned IntNo = cast( Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other)) ->getZExtValue(); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::arm_gnu_eabi_mcount: { MachineFunction &MF = DAG.getMachineFunction(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc dl(Op); SDValue Chain = Op.getOperand(0); // call "\01__gnu_mcount_nc" const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo(); const uint32_t *Mask = ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); assert(Mask && "Missing call preserved mask for calling convention"); // Mark LR an implicit live-in. unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); SDValue ReturnAddress = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT); constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue}; SDValue Callee = DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0); SDValue RegisterMask = DAG.getRegisterMask(Mask); if (Subtarget->isThumb()) return SDValue( DAG.getMachineNode( ARM::tBL_PUSHLR, dl, ResultTys, {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT), DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}), 0); return SDValue( DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys, {ReturnAddress, Callee, RegisterMask, Chain}), 0); } } } SDValue ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const { unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); SDLoc dl(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::thread_pointer: { EVT PtrVT = getPointerTy(DAG.getDataLayout()); return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); } case Intrinsic::arm_cls: { const SDValue &Operand = Op.getOperand(1); const EVT VTy = Op.getValueType(); SDValue SRA = DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy)); SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand); SDValue SHL = DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy)); SDValue OR = DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy)); SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR); return Result; } case Intrinsic::arm_cls64: { // cls(x) = if cls(hi(x)) != 31 then cls(hi(x)) // else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x))) const SDValue &Operand = Op.getOperand(1); const EVT VTy = Op.getValueType(); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand, DAG.getConstant(1, dl, VTy)); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand, DAG.getConstant(0, dl, VTy)); SDValue Constant0 = DAG.getConstant(0, dl, VTy); SDValue Constant1 = DAG.getConstant(1, dl, VTy); SDValue Constant31 = DAG.getConstant(31, dl, VTy); SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31); SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi); SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1); SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1); SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi); SDValue CheckLo = DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ); SDValue HiIsZero = DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ); SDValue AdjustedLo = DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy)); SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo); SDValue Result = DAG.getSelect(dl, VTy, CheckLo, DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi); return Result; } case Intrinsic::eh_sjlj_lsda: { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue CPAddr; bool IsPositionIndependent = isPositionIndependent(); unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex, ARMCP::CPLSDA, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad( PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); if (IsPositionIndependent) { SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); } return Result; } case Intrinsic::arm_neon_vabs: return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(), Op.getOperand(1)); case Intrinsic::arm_neon_vmulls: case Intrinsic::arm_neon_vmullu: { unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) ? ARMISD::VMULLs : ARMISD::VMULLu; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::arm_neon_vminnm: case Intrinsic::arm_neon_vmaxnm: { unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm) ? ISD::FMINNUM : ISD::FMAXNUM; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::arm_neon_vminu: case Intrinsic::arm_neon_vmaxu: { if (Op.getValueType().isFloatingPoint()) return SDValue(); unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu) ? ISD::UMIN : ISD::UMAX; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::arm_neon_vmins: case Intrinsic::arm_neon_vmaxs: { // v{min,max}s is overloaded between signed integers and floats. if (!Op.getValueType().isFloatingPoint()) { unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) ? ISD::SMIN : ISD::SMAX; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) ? ISD::FMINIMUM : ISD::FMAXIMUM; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::arm_neon_vtbl1: return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::arm_neon_vtbl2: return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::arm_mve_pred_i2v: case Intrinsic::arm_mve_pred_v2i: return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(), Op.getOperand(1)); case Intrinsic::arm_mve_vreinterpretq: return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(), Op.getOperand(1)); case Intrinsic::arm_mve_lsll: return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::arm_mve_asrl: return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } } static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { SDLoc dl(Op); ConstantSDNode *SSIDNode = cast(Op.getOperand(2)); auto SSID = static_cast(SSIDNode->getZExtValue()); if (SSID == SyncScope::SingleThread) return Op; if (!Subtarget->hasDataBarrier()) { // Some ARMv6 cpus can support data barriers with an mcr instruction. // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get // here. assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"); return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), DAG.getConstant(0, dl, MVT::i32)); } ConstantSDNode *OrdN = cast(Op.getOperand(1)); AtomicOrdering Ord = static_cast(OrdN->getZExtValue()); ARM_MB::MemBOpt Domain = ARM_MB::ISH; if (Subtarget->isMClass()) { // Only a full system barrier exists in the M-class architectures. Domain = ARM_MB::SY; } else if (Subtarget->preferISHSTBarriers() && Ord == AtomicOrdering::Release) { // Swift happens to implement ISHST barriers in a way that's compatible with // Release semantics but weaker than ISH so we'd be fools not to use // it. Beware: other processors probably don't! Domain = ARM_MB::ISHST; } return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0), DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32), DAG.getConstant(Domain, dl, MVT::i32)); } static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { // ARM pre v5TE and Thumb1 does not have preload instructions. if (!(Subtarget->isThumb2() || (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) // Just preserve the chain. return Op.getOperand(0); SDLoc dl(Op); unsigned isRead = ~cast(Op.getOperand(2))->getZExtValue() & 1; if (!isRead && (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) // ARMv7 with MP extension has PLDW. return Op.getOperand(0); unsigned isData = cast(Op.getOperand(4))->getZExtValue(); if (Subtarget->isThumb()) { // Invert the bits. isRead = ~isRead & 1; isData = ~isData & 1; } return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32), DAG.getConstant(isData, dl, MVT::i32)); } static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *FuncInfo = MF.getInfo(); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDLoc dl(Op); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, const SDLoc &dl) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); const TargetRegisterClass *RC; if (AFI->isThumb1OnlyFunction()) RC = &ARM::tGPRRegClass; else RC = &ARM::GPRRegClass; // Transform the arguments stored in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); SDValue ArgValue2; if (NextVA.isMemLoc()) { MachineFrameInfo &MFI = MF.getFrameInfo(); int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true); // Create load node to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); ArgValue2 = DAG.getLoad( MVT::i32, dl, Root, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); } else { Reg = MF.addLiveIn(NextVA.getLocReg(), RC); ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); } if (!Subtarget->isLittle()) std::swap (ArgValue, ArgValue2); return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); } // The remaining GPRs hold either the beginning of variable-argument // data, or the beginning of an aggregate passed by value (usually // byval). Either way, we allocate stack slots adjacent to the data // provided by our caller, and store the unallocated registers there. // If this is a variadic function, the va_list pointer will begin with // these values; otherwise, this reassembles a (byval) structure that // was split between registers and memory. // Return: The frame index registers were stored into. int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, const Value *OrigArg, unsigned InRegsParamRecordIdx, int ArgOffset, unsigned ArgSize) const { // Currently, two use-cases possible: // Case #1. Non-var-args function, and we meet first byval parameter. // Setup first unallocated register as first byval register; // eat all remained registers // (these two actions are performed by HandleByVal method). // Then, here, we initialize stack frame with // "store-reg" instructions. // Case #2. Var-args function, that doesn't contain byval parameters. // The same: eat all remained unallocated registers, // initialize stack frame. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned RBegin, REnd; if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); } else { unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs); RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx]; REnd = ARM::R4; } if (REnd != RBegin) ArgOffset = -4 * (ARM::R4 - RBegin); auto PtrVT = getPointerTy(DAG.getDataLayout()); int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false); SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT); SmallVector MemOps; const TargetRegisterClass *RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass; for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) { unsigned VReg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(OrigArg, 4 * i)); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT)); } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return FrameIndex; } // Setup stack frame, the va_list pointer will start from. void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, unsigned ArgOffset, unsigned TotalArgRegsSaveSize, bool ForceMutable) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); // Try to store any remaining integer argument regs // to their spots on the stack so that they may be loaded by dereferencing // the result of va_next. // If there is no regs to be stored, just point address after last // argument passed via stack. int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr, CCInfo.getInRegsParamsCount(), CCInfo.getNextStackOffset(), std::max(4U, TotalArgRegsSaveSize)); AFI->setVarArgsFrameIndex(FrameIndex); } bool ARMTargetLowering::splitValueIntoRegisterParts( SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, Optional CC) const { bool IsABIRegCopy = CC.hasValue(); EVT ValueVT = Val.getValueType(); if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) { unsigned ValueBits = ValueVT.getSizeInBits(); unsigned PartBits = PartVT.getSizeInBits(); Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val); Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val); Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); Parts[0] = Val; return true; } return false; } SDValue ARMTargetLowering::joinRegisterPartsIntoValue( SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, Optional CC) const { bool IsABIRegCopy = CC.hasValue(); if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) { unsigned ValueBits = ValueVT.getSizeInBits(); unsigned PartBits = PartVT.getSizeInBits(); SDValue Val = Parts[0]; Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val); Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val); Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); return Val; } return SDValue(); } SDValue ARMTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg)); SmallVector ArgValues; SDValue ArgValue; Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); unsigned CurArgIdx = 0; // Initially ArgRegsSaveSize is zero. // Then we increase this value each time we meet byval parameter. // We also increase this value in case of varargs function. AFI->setArgRegsSaveSize(0); // Calculate the amount of stack space that we need to allocate to store // byval and variadic arguments that are passed in registers. // We need to know this before we allocate the first byval or variadic // argument, as they will be allocated a stack slot below the CFA (Canonical // Frame Address, the stack pointer at entry to the function). unsigned ArgRegBegin = ARM::R4; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount()) break; CCValAssign &VA = ArgLocs[i]; unsigned Index = VA.getValNo(); ISD::ArgFlagsTy Flags = Ins[Index].Flags; if (!Flags.isByVal()) continue; assert(VA.isMemLoc() && "unexpected byval pointer in reg"); unsigned RBegin, REnd; CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd); ArgRegBegin = std::min(ArgRegBegin, RBegin); CCInfo.nextInRegsParam(); } CCInfo.rewindByValRegsInfo(); int lastInsIndex = -1; if (isVarArg && MFI.hasVAStart()) { unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs); if (RegIdx != array_lengthof(GPRArgRegs)) ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]); } unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin); AFI->setArgRegsSaveSize(TotalArgRegsSaveSize); auto PtrVT = getPointerTy(DAG.getDataLayout()); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (Ins[VA.getValNo()].isOrigArg()) { std::advance(CurOrigArg, Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx); CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex(); } // Arguments stored in registers. if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) { // f64 and vector types are split up into multiple registers or // combinations of registers and stack slots. SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); VA = ArgLocs[++i]; // skip ahead to next loc SDValue ArgValue2; if (VA.isMemLoc()) { int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); ArgValue2 = DAG.getLoad( MVT::f64, dl, Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); } else { ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); } ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue1, DAG.getIntPtrConstant(0, dl)); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue2, DAG.getIntPtrConstant(1, dl)); } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) { ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); } else { const TargetRegisterClass *RC; if (RegVT == MVT::f16 || RegVT == MVT::bf16) RC = &ARM::HPRRegClass; else if (RegVT == MVT::f32) RC = &ARM::SPRRegClass; else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 || RegVT == MVT::v4bf16) RC = &ARM::DPRRegClass; else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 || RegVT == MVT::v8bf16) RC = &ARM::QPRRegClass; else if (RegVT == MVT::i32) RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass; else llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); // Transform the arguments in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this value is passed in r0 and has the returned attribute (e.g. // C++ 'structors), record this fact for later use. if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) { AFI->setPreservesR0(); } } // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); break; case CCValAssign::SExt: ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; case CCValAssign::ZExt: ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; } // f16 arguments have their size extended to 4 bytes and passed as if they // had been copied to the LSBs of a 32-bit register. // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI) if (VA.needsCustom() && (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue); InVals.push_back(ArgValue); } else { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); int index = VA.getValNo(); // Some Ins[] entries become multiple ArgLoc[] entries. // Process them only once. if (index != lastInsIndex) { ISD::ArgFlagsTy Flags = Ins[index].Flags; // FIXME: For now, all byval parameter objects are marked mutable. // This can be changed with more analysis. // In case of tail call optimization mark all arguments mutable. // Since they could be overwritten by lowering of arguments in case of // a tail call. if (Flags.isByVal()) { assert(Ins[index].isOrigArg() && "Byval arguments cannot be implicit"); unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed(); int FrameIndex = StoreByValRegs( CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex, VA.getLocMemOffset(), Flags.getByValSize()); InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT)); CCInfo.nextInRegsParam(); } else { unsigned FIOffset = VA.getLocMemOffset(); int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8, FIOffset, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack( DAG.getMachineFunction(), FI))); } lastInsIndex = index; } } } // varargs if (isVarArg && MFI.hasVAStart()) { VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(), TotalArgRegsSaveSize); if (AFI->isCmseNSEntryFunction()) { DiagnosticInfoUnsupported Diag( DAG.getMachineFunction().getFunction(), "secure entry function must not be variadic", dl.getDebugLoc()); DAG.getContext()->diagnose(Diag); } } AFI->setArgumentStackSize(CCInfo.getNextStackOffset()); if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) { DiagnosticInfoUnsupported Diag( DAG.getMachineFunction().getFunction(), "secure entry function requires arguments on stack", dl.getDebugLoc()); DAG.getContext()->diagnose(Diag); } return Chain; } /// isFloatingPointZero - Return true if this is +0.0. static bool isFloatingPointZero(SDValue Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->getValueAPF().isPosZero(); else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { // Maybe this has already been legalized into the constant pool? if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { SDValue WrapperOp = Op.getOperand(1).getOperand(0); if (ConstantPoolSDNode *CP = dyn_cast(WrapperOp)) if (const ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->getValueAPF().isPosZero(); } } else if (Op->getOpcode() == ISD::BITCAST && Op->getValueType(0) == MVT::f64) { // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64) // created by LowerConstantFP(). SDValue BitcastOp = Op->getOperand(0); if (BitcastOp->getOpcode() == ARMISD::VMOVIMM && isNullConstant(BitcastOp->getOperand(0))) return true; } return false; } /// Returns appropriate ARM CMP (cmp) and corresponding condition code for /// the given operands. SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &ARMcc, SelectionDAG &DAG, const SDLoc &dl) const { if (ConstantSDNode *RHSC = dyn_cast(RHS.getNode())) { unsigned C = RHSC->getZExtValue(); if (!isLegalICmpImmediate((int32_t)C)) { // Constant does not fit, try adjusting it by one. switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; RHS = DAG.getConstant(C - 1, dl, MVT::i32); } break; case ISD::SETULT: case ISD::SETUGE: if (C != 0 && isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; RHS = DAG.getConstant(C - 1, dl, MVT::i32); } break; case ISD::SETLE: case ISD::SETGT: if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; RHS = DAG.getConstant(C + 1, dl, MVT::i32); } break; case ISD::SETULE: case ISD::SETUGT: if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; RHS = DAG.getConstant(C + 1, dl, MVT::i32); } break; } } } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) && (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) { // In ARM and Thumb-2, the compare instructions can shift their second // operand. CC = ISD::getSetCCSwappedOperands(CC); std::swap(LHS, RHS); } // Thumb1 has very limited immediate modes, so turning an "and" into a // shift can save multiple instructions. // // If we have (x & C1), and C1 is an appropriate mask, we can transform it // into "((x << n) >> n)". But that isn't necessarily profitable on its // own. If it's the operand to an unsigned comparison with an immediate, // we can eliminate one of the shifts: we transform // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)". // // We avoid transforming cases which aren't profitable due to encoding // details: // // 1. C2 fits into the immediate field of a cmp, and the transformed version // would not; in that case, we're essentially trading one immediate load for // another. // 2. C1 is 255 or 65535, so we can use uxtb or uxth. // 3. C2 is zero; we have other code for this special case. // // FIXME: Figure out profitability for Thumb2; we usually can't save an // instruction, since the AND is always one instruction anyway, but we could // use narrow instructions in some cases. if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND && LHS->hasOneUse() && isa(LHS.getOperand(1)) && LHS.getValueType() == MVT::i32 && isa(RHS) && !isSignedIntSetCC(CC)) { unsigned Mask = cast(LHS.getOperand(1))->getZExtValue(); auto *RHSC = cast(RHS.getNode()); uint64_t RHSV = RHSC->getZExtValue(); if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) { unsigned ShiftBits = countLeadingZeros(Mask); if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) { SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32); LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt); RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32); } } } // The specific comparison "(x< 0x80000000U" can be optimized to a // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same // way a cmp would. // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and // some tweaks to the heuristics for the previous and->shift transform. // FIXME: Optimize cases where the LHS isn't a shift. if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL && isa(RHS) && cast(RHS)->getZExtValue() == 0x80000000U && CC == ISD::SETUGT && isa(LHS.getOperand(1)) && cast(LHS.getOperand(1))->getZExtValue() < 31) { unsigned ShiftAmt = cast(LHS.getOperand(1))->getZExtValue() + 1; SDValue Shift = DAG.getNode(ARMISD::LSLS, dl, DAG.getVTList(MVT::i32, MVT::i32), LHS.getOperand(0), DAG.getConstant(ShiftAmt, dl, MVT::i32)); SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR, Shift.getValue(1), SDValue()); ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32); return Chain.getValue(1); } ARMCC::CondCodes CondCode = IntCCToARMCC(CC); // If the RHS is a constant zero then the V (overflow) flag will never be // set. This can allow us to simplify GE to PL or LT to MI, which can be // simpler for other passes (like the peephole optimiser) to deal with. if (isNullConstant(RHS)) { switch (CondCode) { default: break; case ARMCC::GE: CondCode = ARMCC::PL; break; case ARMCC::LT: CondCode = ARMCC::MI; break; } } ARMISD::NodeType CompareType; switch (CondCode) { default: CompareType = ARMISD::CMP; break; case ARMCC::EQ: case ARMCC::NE: // Uses only Z Flag CompareType = ARMISD::CMPZ; break; } ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); } /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl, bool Signaling) const { assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64); SDValue Cmp; if (!isFloatingPointZero(RHS)) Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); else Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0, dl, MVT::Glue, LHS); return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); } /// duplicateCmp - Glue values can have only one use, so this function /// duplicates a comparison node. SDValue ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { unsigned Opc = Cmp.getOpcode(); SDLoc DL(Cmp); if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); Cmp = Cmp.getOperand(0); Opc = Cmp.getOpcode(); if (Opc == ARMISD::CMPFP) Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); else { assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); } return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); } // This function returns three things: the arithmetic computation itself // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The // comparison and the condition code define the case in which the arithmetic // computation *does not* overflow. std::pair ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG, SDValue &ARMcc) const { assert(Op.getValueType() == MVT::i32 && "Unsupported value type"); SDValue Value, OverflowCmp; SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDLoc dl(Op); // FIXME: We are currently always generating CMPs because we don't support // generating CMN through the backend. This is not as good as the natural // CMP case because it causes a register dependency and cannot be folded // later. switch (Op.getOpcode()) { default: llvm_unreachable("Unknown overflow instruction!"); case ISD::SADDO: ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); break; case ISD::UADDO: ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); // We use ADDC here to correspond to its use in LowerUnsignedALUO. // We do not use it in the USUBO case as Value may not be used. Value = DAG.getNode(ARMISD::ADDC, dl, DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS) .getValue(0); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); break; case ISD::SSUBO: ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); break; case ISD::USUBO: ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); break; case ISD::UMULO: // We generate a UMUL_LOHI and then check if the high word is 0. ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32); Value = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(Op.getValueType(), Op.getValueType()), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1), DAG.getConstant(0, dl, MVT::i32)); Value = Value.getValue(0); // We only want the low 32 bits for the result. break; case ISD::SMULO: // We generate a SMUL_LOHI and then check if all the bits of the high word // are the same as the sign bit of the low word. ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32); Value = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(Op.getValueType(), Op.getValueType()), LHS, RHS); OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1), DAG.getNode(ISD::SRA, dl, Op.getValueType(), Value.getValue(0), DAG.getConstant(31, dl, MVT::i32))); Value = Value.getValue(0); // We only want the low 32 bits for the result. break; } // switch (...) return std::make_pair(Value, OverflowCmp); } SDValue ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const { // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) return SDValue(); SDValue Value, OverflowCmp; SDValue ARMcc; std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDLoc dl(Op); // We use 0 and 1 as false and true values. SDValue TVal = DAG.getConstant(1, dl, MVT::i32); SDValue FVal = DAG.getConstant(0, dl, MVT::i32); EVT VT = Op.getValueType(); SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal, ARMcc, CCR, OverflowCmp); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); } static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry, SelectionDAG &DAG) { SDLoc DL(BoolCarry); EVT CarryVT = BoolCarry.getValueType(); // This converts the boolean value carry into the carry flag by doing // ARMISD::SUBC Carry, 1 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL, DAG.getVTList(CarryVT, MVT::i32), BoolCarry, DAG.getConstant(1, DL, CarryVT)); return Carry.getValue(1); } static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT, SelectionDAG &DAG) { SDLoc DL(Flags); // Now convert the carry flag into a boolean carry. We do this // using ARMISD:ADDE 0, 0, Carry return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32), DAG.getConstant(0, DL, MVT::i32), DAG.getConstant(0, DL, MVT::i32), Flags); } SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op, SelectionDAG &DAG) const { // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) return SDValue(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); SDVTList VTs = DAG.getVTList(VT, MVT::i32); SDValue Value; SDValue Overflow; switch (Op.getOpcode()) { default: llvm_unreachable("Unknown overflow instruction!"); case ISD::UADDO: Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS); // Convert the carry flag into a boolean value. Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG); break; case ISD::USUBO: { Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS); // Convert the carry flag into a boolean value. Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG); // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow // value. So compute 1 - C. Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(1, dl, MVT::i32), Overflow); break; } } return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); } static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { EVT VT = Op.getValueType(); if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) return SDValue(); if (!VT.isSimple()) return SDValue(); unsigned NewOpcode; bool IsAdd = Op->getOpcode() == ISD::SADDSAT; switch (VT.getSimpleVT().SimpleTy) { default: return SDValue(); case MVT::i8: NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b; break; case MVT::i16: NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b; break; } SDLoc dl(Op); SDValue Add = DAG.getNode(NewOpcode, dl, MVT::i32, DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32), DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Add); } SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue Cond = Op.getOperand(0); SDValue SelectTrue = Op.getOperand(1); SDValue SelectFalse = Op.getOperand(2); SDLoc dl(Op); unsigned Opc = Cond.getOpcode(); if (Cond.getResNo() == 1 && (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || Opc == ISD::USUBO)) { if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) return SDValue(); SDValue Value, OverflowCmp; SDValue ARMcc; std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); EVT VT = Op.getValueType(); return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR, OverflowCmp, DAG); } // Convert: // // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) // if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { const ConstantSDNode *CMOVTrue = dyn_cast(Cond.getOperand(0)); const ConstantSDNode *CMOVFalse = dyn_cast(Cond.getOperand(1)); if (CMOVTrue && CMOVFalse) { unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); SDValue True; SDValue False; if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { True = SelectTrue; False = SelectFalse; } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { True = SelectFalse; False = SelectTrue; } if (True.getNode() && False.getNode()) { EVT VT = Op.getValueType(); SDValue ARMcc = Cond.getOperand(2); SDValue CCR = Cond.getOperand(3); SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); assert(True.getValueType() == VT); return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG); } } } // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the // undefined bits before doing a full-word comparison with zero. Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, DAG.getConstant(1, dl, Cond.getValueType())); return DAG.getSelectCC(dl, Cond, DAG.getConstant(0, dl, Cond.getValueType()), SelectTrue, SelectFalse, ISD::SETNE); } static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, bool &swpCmpOps, bool &swpVselOps) { // Start by selecting the GE condition code for opcodes that return true for // 'equality' if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE) CondCode = ARMCC::GE; // and GT for opcodes that return false for 'equality'. else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT || CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT) CondCode = ARMCC::GT; // Since we are constrained to GE/GT, if the opcode contains 'less', we need // to swap the compare operands. if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT || CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT) swpCmpOps = true; // Both GT and GE are ordered comparisons, and return false for 'unordered'. // If we have an unordered opcode, we need to swap the operands to the VSEL // instruction (effectively negating the condition). // // This also has the effect of swapping which one of 'less' or 'greater' // returns true, so we also swap the compare operands. It also switches // whether we return true for 'equality', so we compensate by picking the // opposite condition code to our original choice. if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE || CC == ISD::SETUGT) { swpCmpOps = !swpCmpOps; swpVselOps = !swpVselOps; CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT; } // 'ordered' is 'anything but unordered', so use the VS condition code and // swap the VSEL operands. if (CC == ISD::SETO) { CondCode = ARMCC::VS; swpVselOps = true; } // 'unordered or not equal' is 'anything but equal', so use the EQ condition // code and swap the VSEL operands. Also do this if we don't care about the // unordered case. if (CC == ISD::SETUNE || CC == ISD::SETNE) { CondCode = ARMCC::EQ; swpVselOps = true; } } SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal, SDValue TrueVal, SDValue ARMcc, SDValue CCR, SDValue Cmp, SelectionDAG &DAG) const { if (!Subtarget->hasFP64() && VT == MVT::f64) { FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), FalseVal); TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), TrueVal); SDValue TrueLow = TrueVal.getValue(0); SDValue TrueHigh = TrueVal.getValue(1); SDValue FalseLow = FalseVal.getValue(0); SDValue FalseHigh = FalseVal.getValue(1); SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow, ARMcc, CCR, Cmp); SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh, ARMcc, CCR, duplicateCmp(Cmp, DAG)); return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High); } else { return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp); } } static bool isGTorGE(ISD::CondCode CC) { return CC == ISD::SETGT || CC == ISD::SETGE; } static bool isLTorLE(ISD::CondCode CC) { return CC == ISD::SETLT || CC == ISD::SETLE; } // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating. // All of these conditions (and their <= and >= counterparts) will do: // x < k ? k : x // x > k ? x : k // k < x ? x : k // k > x ? k : x static bool isLowerSaturate(const SDValue LHS, const SDValue RHS, const SDValue TrueVal, const SDValue FalseVal, const ISD::CondCode CC, const SDValue K) { return (isGTorGE(CC) && ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) || (isLTorLE(CC) && ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))); } // Check if two chained conditionals could be converted into SSAT or USAT. // // SSAT can replace a set of two conditional selectors that bound a number to an // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples: // // x < -k ? -k : (x > k ? k : x) // x < -k ? -k : (x < k ? x : k) // x > -k ? (x > k ? k : x) : -k // x < k ? (x < -k ? -k : x) : k // etc. // // LLVM canonicalizes these to either a min(max()) or a max(min()) // pattern. This function tries to match one of these and will return true // if successful. // // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is // a power of 2. // // It returns true if the conversion can be done, false otherwise. // Additionally, the variable is returned in parameter V, the constant in K and // usat is set to true if the conditional represents an unsigned saturation static bool isSaturatingConditional(const SDValue &Op, SDValue &V, uint64_t &K, bool &Usat) { SDValue V1 = Op.getOperand(0); SDValue K1 = Op.getOperand(1); SDValue TrueVal1 = Op.getOperand(2); SDValue FalseVal1 = Op.getOperand(3); ISD::CondCode CC1 = cast(Op.getOperand(4))->get(); const SDValue Op2 = isa(TrueVal1) ? FalseVal1 : TrueVal1; if (Op2.getOpcode() != ISD::SELECT_CC) return false; SDValue V2 = Op2.getOperand(0); SDValue K2 = Op2.getOperand(1); SDValue TrueVal2 = Op2.getOperand(2); SDValue FalseVal2 = Op2.getOperand(3); ISD::CondCode CC2 = cast(Op2.getOperand(4))->get(); SDValue V1Tmp = V1; SDValue V2Tmp = V2; if (V1.getOpcode() == ISD::SIGN_EXTEND_INREG && V2.getOpcode() == ISD::SIGN_EXTEND_INREG) { V1Tmp = V1.getOperand(0); V2Tmp = V2.getOperand(0); } // Check that the registers and the constants match a max(min()) or min(max()) // pattern if (V1Tmp == TrueVal1 && V2Tmp == TrueVal2 && K1 == FalseVal1 && K2 == FalseVal2 && ((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2)))) { // Check that the constant in the lower-bound check is // the opposite of the constant in the upper-bound check // in 1's complement. if (!isa(K1) || !isa(K2)) return false; int64_t Val1 = cast(K1)->getSExtValue(); int64_t Val2 = cast(K2)->getSExtValue(); int64_t PosVal = std::max(Val1, Val2); int64_t NegVal = std::min(Val1, Val2); if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) || !isPowerOf2_64(PosVal + 1)) return false; // Handle the difference between USAT (unsigned) and SSAT (signed) // saturation if (Val1 == ~Val2) Usat = false; else if (NegVal == 0) Usat = true; else return false; V = V2Tmp; // At this point, PosVal is guaranteed to be positive K = (uint64_t) PosVal; return true; } return false; } // Check if a condition of the type x < k ? k : x can be converted into a // bit operation instead of conditional moves. // Currently this is allowed given: // - The conditions and values match up // - k is 0 or -1 (all ones) // This function will not check the last condition, thats up to the caller // It returns true if the transformation can be made, and in such case // returns x in V, and k in SatK. static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V, SDValue &SatK) { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); SDValue *K = isa(LHS) ? &LHS : isa(RHS) ? &RHS : nullptr; // No constant operation in comparison, early out if (!K) return false; SDValue KTmp = isa(TrueVal) ? TrueVal : FalseVal; V = (KTmp == TrueVal) ? FalseVal : TrueVal; SDValue VTmp = (K && *K == LHS) ? RHS : LHS; // If the constant on left and right side, or variable on left and right, // does not match, early out if (*K != KTmp || V != VTmp) return false; if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) { SatK = *K; return true; } return false; } bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const { if (VT == MVT::f32) return !Subtarget->hasVFP2Base(); if (VT == MVT::f64) return !Subtarget->hasFP64(); if (VT == MVT::f16) return !Subtarget->hasFullFP16(); return false; } SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc dl(Op); // Try to convert two saturating conditional selects into a single SSAT SDValue SatValue; uint64_t SatConstant; bool SatUSat; if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) && isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) { if (SatUSat) return DAG.getNode(ARMISD::USAT, dl, VT, SatValue, DAG.getConstant(countTrailingOnes(SatConstant), dl, VT)); else return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue, DAG.getConstant(countTrailingOnes(SatConstant), dl, VT)); } // Try to convert expressions of the form x < k ? k : x (and similar forms) // into more efficient bit operations, which is possible when k is 0 or -1 // On ARM and Thumb-2 which have flexible operand 2 this will result in // single instructions. On Thumb the shift and the bit operation will be two // instructions. // Only allow this transformation on full-width (32-bit) operations SDValue LowerSatConstant; if (VT == MVT::i32 && isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) { SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue, DAG.getConstant(31, dl, VT)); if (isNullConstant(LowerSatConstant)) { SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV, DAG.getAllOnesConstant(dl, VT)); return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV); } else if (isAllOnesConstant(LowerSatConstant)) return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV); } SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); ConstantSDNode *CFVal = dyn_cast(FalseVal); ConstantSDNode *CTVal = dyn_cast(TrueVal); if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal && LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) { unsigned TVal = CTVal->getZExtValue(); unsigned FVal = CFVal->getZExtValue(); unsigned Opcode = 0; if (TVal == ~FVal) { Opcode = ARMISD::CSINV; } else if (TVal == ~FVal + 1) { Opcode = ARMISD::CSNEG; } else if (TVal + 1 == FVal) { Opcode = ARMISD::CSINC; } else if (TVal == FVal + 1) { Opcode = ARMISD::CSINC; std::swap(TrueVal, FalseVal); std::swap(TVal, FVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } if (Opcode) { // If one of the constants is cheaper than another, materialise the // cheaper one and let the csel generate the other. if (Opcode != ARMISD::CSINC && HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) { std::swap(TrueVal, FalseVal); std::swap(TVal, FVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } // Attempt to use ZR checking TVal is 0, possibly inverting the condition // to get there. CSINC not is invertable like the other two (~(~a) == a, // -(-a) == a, but (a+1)+1 != a). if (FVal == 0 && Opcode != ARMISD::CSINC) { std::swap(TrueVal, FalseVal); std::swap(TVal, FVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } if (TVal == 0) TrueVal = DAG.getRegister(ARM::ZR, MVT::i32); // Drops F's value because we can get it by inverting/negating TVal. FalseVal = TrueVal; SDValue ARMcc; SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); EVT VT = TrueVal.getValueType(); return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp); } } if (isUnsupportedFloatingType(LHS.getValueType())) { DAG.getTargetLoweringInfo().softenSetCCOperands( DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS); // If softenSetCCOperands only returned one value, we should compare it to // zero. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } if (LHS.getValueType() == MVT::i32) { // Try to generate VSEL on ARMv8. // The VSEL instruction can't use all the usual ARM condition // codes: it only has two bits to select the condition code, so it's // constrained to use only GE, GT, VS and EQ. // // To implement all the various ISD::SETXXX opcodes, we sometimes need to // swap the operands of the previous compare instruction (effectively // inverting the compare condition, swapping 'less' and 'greater') and // sometimes need to swap the operands to the VSEL (which inverts the // condition in the sense of firing whenever the previous condition didn't) if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 || TrueVal.getValueType() == MVT::f32 || TrueVal.getValueType() == MVT::f64)) { ARMCC::CondCodes CondCode = IntCCToARMCC(CC); if (CondCode == ARMCC::LT || CondCode == ARMCC::LE || CondCode == ARMCC::VC || CondCode == ARMCC::NE) { CC = ISD::getSetCCInverse(CC, LHS.getValueType()); std::swap(TrueVal, FalseVal); } } SDValue ARMcc; SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); // Choose GE over PL, which vsel does now support if (cast(ARMcc)->getZExtValue() == ARMCC::PL) ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32); return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); } ARMCC::CondCodes CondCode, CondCode2; FPCCToARMCC(CC, CondCode, CondCode2); // Normalize the fp compare. If RHS is zero we prefer to keep it there so we // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we // must use VSEL (limited condition codes), due to not having conditional f16 // moves. if (Subtarget->hasFPARMv8Base() && !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) && (TrueVal.getValueType() == MVT::f16 || TrueVal.getValueType() == MVT::f32 || TrueVal.getValueType() == MVT::f64)) { bool swpCmpOps = false; bool swpVselOps = false; checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps); if (CondCode == ARMCC::GT || CondCode == ARMCC::GE || CondCode == ARMCC::VS || CondCode == ARMCC::EQ) { if (swpCmpOps) std::swap(LHS, RHS); if (swpVselOps) std::swap(TrueVal, FalseVal); } } SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); if (CondCode2 != ARMCC::AL) { SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32); // FIXME: Needs another CMP because flag can have but one use. SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG); } return Result; } /// canChangeToInt - Given the fp compare operand, return true if it is suitable /// to morph to an integer compare sequence. static bool canChangeToInt(SDValue Op, bool &SeenZero, const ARMSubtarget *Subtarget) { SDNode *N = Op.getNode(); if (!N->hasOneUse()) // Otherwise it requires moving the value from fp to integer registers. return false; if (!N->getNumValues()) return false; EVT VT = Op.getValueType(); if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) // f32 case is generally profitable. f64 case only makes sense when vcmpe + // vmrs are very slow, e.g. cortex-a8. return false; if (isFloatingPointZero(Op)) { SeenZero = true; return true; } return ISD::isNormalLoad(N); } static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { if (isFloatingPointZero(Op)) return DAG.getConstant(0, SDLoc(Op), MVT::i32); if (LoadSDNode *Ld = dyn_cast(Op)) return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->getAlignment(), Ld->getMemOperand()->getFlags()); llvm_unreachable("Unknown VFP cmp argument!"); } static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, SDValue &RetVal1, SDValue &RetVal2) { SDLoc dl(Op); if (isFloatingPointZero(Op)) { RetVal1 = DAG.getConstant(0, dl, MVT::i32); RetVal2 = DAG.getConstant(0, dl, MVT::i32); return; } if (LoadSDNode *Ld = dyn_cast(Op)) { SDValue Ptr = Ld->getBasePtr(); RetVal1 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->getAlignment(), Ld->getMemOperand()->getFlags()); EVT PtrType = Ptr.getValueType(); unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); SDValue NewPtr = DAG.getNode(ISD::ADD, dl, PtrType, Ptr, DAG.getConstant(4, dl, PtrType)); RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr, Ld->getPointerInfo().getWithOffset(4), NewAlign, Ld->getMemOperand()->getFlags()); return; } llvm_unreachable("Unknown VFP cmp argument!"); } /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some /// f32 and even f64 comparisons to integer ones. SDValue ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); bool LHSSeenZero = false; bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); bool RHSSeenZero = false; bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { // If unsafe fp math optimization is enabled and there are no other uses of // the CMP operands, and the condition code is EQ or NE, we can optimize it // to an integer comparison. if (CC == ISD::SETOEQ) CC = ISD::SETEQ; else if (CC == ISD::SETUNE) CC = ISD::SETNE; SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32); SDValue ARMcc; if (LHS.getValueType() == MVT::f32) { LHS = DAG.getNode(ISD::AND, dl, MVT::i32, bitcastf32Toi32(LHS, DAG), Mask); RHS = DAG.getNode(ISD::AND, dl, MVT::i32, bitcastf32Toi32(RHS, DAG), Mask); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, Cmp); } SDValue LHS1, LHS2; SDValue RHS1, RHS2; expandf64Toi32(LHS, DAG, LHS1, LHS2); expandf64Toi32(RHS, DAG, RHS1, RHS2); LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); ARMCC::CondCodes CondCode = IntCCToARMCC(CC); ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops); } return SDValue(); } SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Cond = Op.getOperand(1); SDValue Dest = Op.getOperand(2); SDLoc dl(Op); // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch // instruction. unsigned Opc = Cond.getOpcode(); bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) && !Subtarget->isThumb1Only(); if (Cond.getResNo() == 1 && (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || Opc == ISD::USUBO || OptimizeMul)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) return SDValue(); // The actual operation with overflow check. SDValue Value, OverflowCmp; SDValue ARMcc; std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); // Reverse the condition code. ARMCC::CondCodes CondCode = (ARMCC::CondCodes)cast(ARMcc)->getZExtValue(); CondCode = ARMCC::getOppositeCondition(CondCode); ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, OverflowCmp); } return SDValue(); } SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); if (isUnsupportedFloatingType(LHS.getValueType())) { DAG.getTargetLoweringInfo().softenSetCCOperands( DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS); // If softenSetCCOperands only returned one value, we should compare it to // zero. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch // instruction. unsigned Opc = LHS.getOpcode(); bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) && !Subtarget->isThumb1Only(); if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) && (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || Opc == ISD::USUBO || OptimizeMul) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) return SDValue(); // The actual operation with overflow check. SDValue Value, OverflowCmp; SDValue ARMcc; std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc); if ((CC == ISD::SETNE) != isOneConstant(RHS)) { // Reverse the condition code. ARMCC::CondCodes CondCode = (ARMCC::CondCodes)cast(ARMcc)->getZExtValue(); CondCode = ARMCC::getOppositeCondition(CondCode); ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32); } SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, OverflowCmp); } if (LHS.getValueType() == MVT::i32) { SDValue ARMcc; SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, Cmp); } if (getTargetMachine().Options.UnsafeFPMath && (CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETNE || CC == ISD::SETUNE)) { if (SDValue Result = OptimizeVFPBrcond(Op, DAG)) return Result; } ARMCC::CondCodes CondCode, CondCode2; FPCCToARMCC(CC, CondCode, CondCode2); SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); if (CondCode2 != ARMCC::AL) { ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32); SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); } return Res; } SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Table = Op.getOperand(1); SDValue Index = Op.getOperand(2); SDLoc dl(Op); EVT PTy = getPointerTy(DAG.getDataLayout()); JumpTableSDNode *JT = cast(Table); SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI); Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy)); SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index); if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) { // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table // which does another jump to the destination. This also makes it easier // to translate it to TBB / TBH later (Thumb2 only). // FIXME: This might not work if the function is extremely large. return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, Addr, Op.getOperand(2), JTI); } if (isPositionIndependent() || Subtarget->isROPI()) { Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, MachinePointerInfo::getJumpTable(DAG.getMachineFunction())); Chain = Addr.getValue(1); Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); } else { Addr = DAG.getLoad(PTy, dl, Chain, Addr, MachinePointerInfo::getJumpTable(DAG.getMachineFunction())); Chain = Addr.getValue(1); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); } } static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); SDLoc dl(Op); if (Op.getValueType().getVectorElementType() == MVT::i32) { if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) return Op; return DAG.UnrollVectorOp(Op.getNode()); } const bool HasFullFP16 = static_cast(DAG.getSubtarget()).hasFullFP16(); EVT NewTy; const EVT OpTy = Op.getOperand(0).getValueType(); if (OpTy == MVT::v4f32) NewTy = MVT::v4i32; else if (OpTy == MVT::v4f16 && HasFullFP16) NewTy = MVT::v4i16; else if (OpTy == MVT::v8f16 && HasFullFP16) NewTy = MVT::v8i16; else llvm_unreachable("Invalid type for custom lowering!"); if (VT != MVT::v4i16 && VT != MVT::v8i16) return DAG.UnrollVectorOp(Op.getNode()); Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); } SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.isVector()) return LowerVectorFP_TO_INT(Op, DAG); bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); if (isUnsupportedFloatingType(SrcVal.getValueType())) { RTLIB::Libcall LC; if (Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::STRICT_FP_TO_SINT) LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), Op.getValueType()); else LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), Op.getValueType()); SDLoc Loc(Op); MakeLibCallOptions CallOptions; SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); SDValue Result; std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal, CallOptions, Loc, Chain); return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result; } // FIXME: Remove this when we have strict fp instruction selection patterns if (IsStrict) { SDLoc Loc(Op); SDValue Result = DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, Loc, Op.getValueType(), SrcVal); return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc); } return Op; } static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); SDLoc dl(Op); if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { if (VT.getVectorElementType() == MVT::f32) return Op; return DAG.UnrollVectorOp(Op.getNode()); } assert((Op.getOperand(0).getValueType() == MVT::v4i16 || Op.getOperand(0).getValueType() == MVT::v8i16) && "Invalid type for custom lowering!"); const bool HasFullFP16 = static_cast(DAG.getSubtarget()).hasFullFP16(); EVT DestVecType; if (VT == MVT::v4f32) DestVecType = MVT::v4i32; else if (VT == MVT::v4f16 && HasFullFP16) DestVecType = MVT::v4i16; else if (VT == MVT::v8f16 && HasFullFP16) DestVecType = MVT::v8i16; else return DAG.UnrollVectorOp(Op.getNode()); unsigned CastOpc; unsigned Opc; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid opcode!"); case ISD::SINT_TO_FP: CastOpc = ISD::SIGN_EXTEND; Opc = ISD::SINT_TO_FP; break; case ISD::UINT_TO_FP: CastOpc = ISD::ZERO_EXTEND; Opc = ISD::UINT_TO_FP; break; } Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0)); return DAG.getNode(Opc, dl, VT, Op); } SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.isVector()) return LowerVectorINT_TO_FP(Op, DAG); if (isUnsupportedFloatingType(VT)) { RTLIB::Libcall LC; if (Op.getOpcode() == ISD::SINT_TO_FP) LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); else LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); MakeLibCallOptions CallOptions; return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), CallOptions, SDLoc(Op)).first; } return Op; } SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { // Implement fcopysign with a fabs and a conditional fneg. SDValue Tmp0 = Op.getOperand(0); SDValue Tmp1 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT SrcVT = Tmp1.getValueType(); bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || Tmp0.getOpcode() == ARMISD::VMOVDRR; bool UseNEON = !InGPR && Subtarget->hasNEON(); if (UseNEON) { // Use VBSL to copy the sign bit. unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80); SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, DAG.getTargetConstant(EncodedVal, dl, MVT::i32)); EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; if (VT == MVT::f64) Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), DAG.getConstant(32, dl, MVT::i32)); else /*if (VT == MVT::f32)*/ Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); if (SrcVT == MVT::f32) { Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); if (VT == MVT::f64) Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), DAG.getConstant(32, dl, MVT::i32)); } else if (VT == MVT::f32) Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64, DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), DAG.getConstant(32, dl, MVT::i32)); Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32); AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); if (VT == MVT::f32) { Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, DAG.getConstant(0, dl, MVT::i32)); } else { Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); } return Res; } // Bitcast operand 1 to i32. if (SrcVT == MVT::f64) Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Tmp1).getValue(1); Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); // Or in the signbit with integer operations. SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32); SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32); Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); if (VT == MVT::f32) { Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); } // f64: Or the high part with signbit and then combine two parts. Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Tmp0); SDValue Lo = Tmp0.getValue(0); SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); } SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(4, dl, MVT::i32); return DAG.getLoad(VT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), MachinePointerInfo()); } // Return LR, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); } SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { const ARMBaseRegisterInfo &ARI = *static_cast(RegInfo); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); // FIXME probably not meaningful unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); Register FrameReg = ARI.getFrameRegister(MF); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo()); return FrameAddr; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { Register Reg = StringSwitch(RegName) .Case("sp", ARM::SP) .Default(0); if (Reg) return Reg; report_fatal_error(Twine("Invalid register name \"" + StringRef(RegName) + "\".")); } // Result is 64 bit value so split into two 32 bit values and return as a // pair of values. static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) { SDLoc DL(N); // This function is only supposed to be called for i64 type destination. assert(N->getValueType(0) == MVT::i64 && "ExpandREAD_REGISTER called for non-i64 type result."); SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL, DAG.getVTList(MVT::i32, MVT::i32, MVT::Other), N->getOperand(0), N->getOperand(1)); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0), Read.getValue(1))); Results.push_back(Read.getOperand(0)); } /// \p BC is a bitcast that is about to be turned into a VMOVDRR. /// When \p DstVT, the destination type of \p BC, is on the vector /// register bank and the source of bitcast, \p Op, operates on the same bank, /// it might be possible to combine them, such that everything stays on the /// vector register bank. /// \p return The node that would replace \p BT, if the combine /// is possible. static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC, SelectionDAG &DAG) { SDValue Op = BC->getOperand(0); EVT DstVT = BC->getValueType(0); // The only vector instruction that can produce a scalar (remember, // since the bitcast was about to be turned into VMOVDRR, the source // type is i64) from a vector is EXTRACT_VECTOR_ELT. // Moreover, we can do this combine only if there is one use. // Finally, if the destination type is not a vector, there is not // much point on forcing everything on the vector bank. if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !Op.hasOneUse()) return SDValue(); // If the index is not constant, we will introduce an additional // multiply that will stick. // Give up in that case. ConstantSDNode *Index = dyn_cast(Op.getOperand(1)); if (!Index) return SDValue(); unsigned DstNumElt = DstVT.getVectorNumElements(); // Compute the new index. const APInt &APIntIndex = Index->getAPIntValue(); APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt); NewIndex *= APIntIndex; // Check if the new constant index fits into i32. if (NewIndex.getBitWidth() > 32) return SDValue(); // vMTy bitcast(i64 extractelt vNi64 src, i32 index) -> // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M) SDLoc dl(Op); SDValue ExtractSrc = Op.getOperand(0); EVT VecVT = EVT::getVectorVT( *DAG.getContext(), DstVT.getScalarType(), ExtractSrc.getValueType().getVectorNumElements() * DstNumElt); SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast, DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32)); } /// ExpandBITCAST - If the target supports VFP, this function is called to /// expand a bit convert where either the source or destination type is i64 to /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 /// operand type is illegal (e.g., v2f32 for a target that doesn't support /// vectors), since the legalizer won't know what to do with that. SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc dl(N); SDValue Op = N->getOperand(0); // This function is only supposed to be called for i16 and i64 types, either // as the source or destination of the bit convert. EVT SrcVT = Op.getValueType(); EVT DstVT = N->getValueType(0); if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) && (DstVT == MVT::f16 || DstVT == MVT::bf16)) return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(), DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op)); if ((DstVT == MVT::i16 || DstVT == MVT::i32) && (SrcVT == MVT::f16 || SrcVT == MVT::bf16)) return DAG.getNode( ISD::TRUNCATE, SDLoc(N), DstVT, MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op)); if (!(SrcVT == MVT::i64 || DstVT == MVT::i64)) return SDValue(); // Turn i64->f64 into VMOVDRR. if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { // Do not force values to GPRs (this is what VMOVDRR does for the inputs) // if we can combine the bitcast with its source. if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG)) return Val; SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(0, dl, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(1, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, DstVT, DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); } // Turn f64->i64 into VMOVRRD. if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { SDValue Cvt; if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() && SrcVT.getVectorNumElements() > 1) Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op)); else Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Op); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); } return SDValue(); } /// getZeroVector - Returns a vector of specified type with all zero elements. /// Zero vectors are used to represent vector negation and in those cases /// will be implemented with the NEON VNEG instruction. However, VNEG does /// not support i64 elements, so sometimes the zero vectors will need to be /// explicitly constructed. Regardless, use a canonical VMOV to create the /// zero vector. static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) { assert(VT.isVector() && "Expected a vector type"); // The canonical modified immediate encoding of a zero vector is....0! SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32); EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } /// LowerShiftRightParts - Lower SRA_PARTS, which returns two /// i32 values and take a 2 x i32 value to shift plus a shift amount. SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift, ARMcc, CCR, CmpLo); SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); SDValue HiBigShift = Opc == ISD::SRA ? DAG.getNode(Opc, dl, VT, ShOpHi, DAG.getConstant(VTBits - 1, dl, VT)) : DAG.getConstant(0, dl, VT); SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, ARMcc, CCR, CmpHi); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two /// i32 values and take a 2 x i32 value to shift plus a shift amount. SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); assert(Op.getOpcode() == ISD::SHL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32)); SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, ARMcc, CCR, CmpHi); SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { // The rounding mode is in bits 23:22 of the FPSCR. // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) // so that the shift + and get folded into a bitfield extract. SDLoc dl(Op); SDValue Chain = Op.getOperand(0); SDValue Ops[] = {Chain, DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)}; SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops); Chain = FPSCR.getValue(1); SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, DAG.getConstant(1U << 22, dl, MVT::i32)); SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, DAG.getConstant(22, dl, MVT::i32)); SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, DAG.getConstant(3, dl, MVT::i32)); return DAG.getMergeValues({And, Chain}, dl); } static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { SDLoc dl(N); EVT VT = N->getValueType(0); if (VT.isVector() && ST->hasNEON()) { // Compute the least significant set bit: LSB = X & -X SDValue X = N->getOperand(0); SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X); SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX); EVT ElemTy = VT.getVectorElementType(); if (ElemTy == MVT::i8) { // Compute with: cttz(x) = ctpop(lsb - 1) SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(1, dl, ElemTy)); SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); return DAG.getNode(ISD::CTPOP, dl, VT, Bits); } if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) && (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) { // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0 unsigned NumBits = ElemTy.getSizeInBits(); SDValue WidthMinus1 = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(NumBits - 1, dl, ElemTy)); SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB); return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ); } // Compute with: cttz(x) = ctpop(lsb - 1) // Compute LSB - 1. SDValue Bits; if (ElemTy == MVT::i64) { // Load constant 0xffff'ffff'ffff'ffff to register. SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(0x1eff, dl, MVT::i32)); Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF); } else { SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(1, dl, ElemTy)); Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); } return DAG.getNode(ISD::CTPOP, dl, VT, Bits); } if (!ST->hasV6T2Ops()) return SDValue(); SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0)); return DAG.getNode(ISD::CTLZ, dl, VT, rbit); } static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc DL(N); assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0)); Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res); // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. unsigned EltSize = 8; unsigned NumElts = VT.is64BitVector() ? 8 : 16; while (EltSize != VT.getScalarSizeInBits()) { SmallVector Ops; Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL, TLI.getPointerTy(DAG.getDataLayout()))); Ops.push_back(Res); EltSize *= 2; NumElts /= 2; MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops); } return Res; } /// Getvshiftimm - Check if this is a valid build_vector for the immediate /// operand of a vector shift operation, where all the elements of the /// build_vector must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// isVShiftLImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits for a left shift; or /// 0 <= Value <= ElementBits for a long left shift. static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getScalarSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); } /// isVShiftRImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift right operation. For a shift opcode, the value /// is positive, but for an intrinsic the value count must be negative. The /// absolute value must be in the range: /// 1 <= |Value| <= ElementBits for a right shift; or /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getScalarSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; if (!isIntrinsic) return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) { Cnt = -Cnt; return true; } return false; } static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc dl(N); int64_t Cnt; if (!VT.isVector()) return SDValue(); // We essentially have two forms here. Shift by an immediate and shift by a // vector register (there are also shift by a gpr, but that is just handled // with a tablegen pattern). We cannot easily match shift by an immediate in // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM. // For shifting by a vector, we don't have VSHR, only VSHL (which can be // signed or unsigned, and a negative shift indicates a shift right). if (N->getOpcode() == ISD::SHL) { if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0), DAG.getConstant(Cnt, dl, MVT::i32)); return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0), N->getOperand(1)); } assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM); return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), DAG.getConstant(Cnt, dl, MVT::i32)); } // Other right shifts we don't have operations for (we use a shift left by a // negative number). EVT ShiftVT = N->getOperand(1).getValueType(); SDValue NegatedCount = DAG.getNode( ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1)); unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu); return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount); } static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc dl(N); // We can get here for a node like i32 = ISD::SHL i32, i64 if (VT != MVT::i64) return SDValue(); assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SHL) && "Unknown shift to lower!"); unsigned ShOpc = N->getOpcode(); if (ST->hasMVEIntegerOps()) { SDValue ShAmt = N->getOperand(1); unsigned ShPartsOpc = ARMISD::LSLL; ConstantSDNode *Con = dyn_cast(ShAmt); // If the shift amount is greater than 32 or has a greater bitwidth than 64 // then do the default optimisation if (ShAmt->getValueType(0).getSizeInBits() > 64 || (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32))) return SDValue(); // Extract the lower 32 bits of the shift amount if it's not an i32 if (ShAmt->getValueType(0) != MVT::i32) ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32); if (ShOpc == ISD::SRL) { if (!Con) // There is no t2LSRLr instruction so negate and perform an lsll if the // shift amount is in a register, emulating a right shift. ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(0, dl, MVT::i32), ShAmt); else // Else generate an lsrl on the immediate shift amount ShPartsOpc = ARMISD::LSRL; } else if (ShOpc == ISD::SRA) ShPartsOpc = ARMISD::ASRL; // Lower 32 bits of the destination/source SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(0, dl, MVT::i32)); // Upper 32 bits of the destination/source SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(1, dl, MVT::i32)); // Generate the shift operation as computed above Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi, ShAmt); // The upper 32 bits come from the second return value of lsll Hi = SDValue(Lo.getNode(), 1); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } // We only lower SRA, SRL of 1 here, all others use generic lowering. if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL) return SDValue(); // If we are in thumb mode, we don't have RRX. if (ST->isThumb1Only()) return SDValue(); // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(0, dl, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(1, dl, MVT::i32)); // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and // captures the result into a carry flag. unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi); // The low part is an ARMISD::RRX operand, which shifts the carry in. Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { bool Invert = false; bool Swap = false; unsigned Opc = ARMCC::AL; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); EVT VT = Op.getValueType(); ISD::CondCode SetCCOpcode = cast(CC)->get(); SDLoc dl(Op); EVT CmpVT; if (ST->hasNEON()) CmpVT = Op0.getValueType().changeVectorElementTypeToInteger(); else { assert(ST->hasMVEIntegerOps() && "No hardware support for integer vector comparison!"); if (Op.getValueType().getVectorElementType() != MVT::i1) return SDValue(); // Make sure we expand floating point setcc to scalar if we do not have // mve.fp, so that we can handle them from there. if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps()) return SDValue(); CmpVT = VT; } if (Op0.getValueType().getVectorElementType() == MVT::i64 && (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) { // Special-case integer 64-bit equality comparisons. They aren't legal, // but they can be lowered with a few vector instructions. unsigned CmpElements = CmpVT.getVectorNumElements() * 2; EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements); SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0); SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1); SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1, DAG.getCondCode(ISD::SETEQ)); SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp); SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed); Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged); if (SetCCOpcode == ISD::SETNE) Merged = DAG.getNOT(dl, Merged, CmpVT); Merged = DAG.getSExtOrTrunc(Merged, dl, VT); return Merged; } if (CmpVT.getVectorElementType() == MVT::i64) // 64-bit comparisons are not legal in general. return SDValue(); if (Op1.getValueType().isFloatingPoint()) { switch (SetCCOpcode) { default: llvm_unreachable("Illegal FP comparison"); case ISD::SETUNE: case ISD::SETNE: if (ST->hasMVEFloatOps()) { Opc = ARMCC::NE; break; } else { Invert = true; LLVM_FALLTHROUGH; } case ISD::SETOEQ: case ISD::SETEQ: Opc = ARMCC::EQ; break; case ISD::SETOLT: case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH; case ISD::SETOGT: case ISD::SETGT: Opc = ARMCC::GT; break; case ISD::SETOLE: case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH; case ISD::SETOGE: case ISD::SETGE: Opc = ARMCC::GE; break; case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH; case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break; case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH; case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break; case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH; case ISD::SETONE: { // Expand this to (OLT | OGT). SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0, DAG.getConstant(ARMCC::GT, dl, MVT::i32)); SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1, DAG.getConstant(ARMCC::GT, dl, MVT::i32)); SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1); if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH; case ISD::SETO: { // Expand this to (OLT | OGE). SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0, DAG.getConstant(ARMCC::GT, dl, MVT::i32)); SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1, DAG.getConstant(ARMCC::GE, dl, MVT::i32)); SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1); if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } } } else { // Integer comparisons. switch (SetCCOpcode) { default: llvm_unreachable("Illegal integer comparison"); case ISD::SETNE: if (ST->hasMVEIntegerOps()) { Opc = ARMCC::NE; break; } else { Invert = true; LLVM_FALLTHROUGH; } case ISD::SETEQ: Opc = ARMCC::EQ; break; case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH; case ISD::SETGT: Opc = ARMCC::GT; break; case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH; case ISD::SETGE: Opc = ARMCC::GE; break; case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH; case ISD::SETUGT: Opc = ARMCC::HI; break; case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH; case ISD::SETUGE: Opc = ARMCC::HS; break; } // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). if (ST->hasNEON() && Opc == ARMCC::EQ) { SDValue AndOp; if (ISD::isBuildVectorAllZeros(Op1.getNode())) AndOp = Op0; else if (ISD::isBuildVectorAllZeros(Op0.getNode())) AndOp = Op1; // Ignore bitconvert. if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) AndOp = AndOp.getOperand(0); if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0)); Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1)); SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1); if (!Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } } } if (Swap) std::swap(Op0, Op1); // If one of the operands is a constant vector zero, attempt to fold the // comparison to a specialized compare-against-zero form. SDValue SingleOp; if (ISD::isBuildVectorAllZeros(Op1.getNode())) SingleOp = Op0; else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { if (Opc == ARMCC::GE) Opc = ARMCC::LE; else if (Opc == ARMCC::GT) Opc = ARMCC::LT; SingleOp = Op1; } SDValue Result; if (SingleOp.getNode()) { Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp, DAG.getConstant(Opc, dl, MVT::i32)); } else { Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1, DAG.getConstant(Opc, dl, MVT::i32)); } Result = DAG.getSExtOrTrunc(Result, dl, VT); if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Carry = Op.getOperand(2); SDValue Cond = Op.getOperand(3); SDLoc DL(Op); assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only."); // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we // have to invert the carry first. Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, DAG.getConstant(1, DL, MVT::i32), Carry); // This converts the boolean value carry into the carry flag. Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry); SDValue FVal = DAG.getConstant(0, DL, MVT::i32); SDValue TVal = DAG.getConstant(1, DL, MVT::i32); SDValue ARMcc = DAG.getConstant( IntCCToARMCC(cast(Cond)->get()), DL, MVT::i32); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR, Cmp.getValue(1), SDValue()); return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc, CCR, Chain.getValue(1)); } /// isVMOVModifiedImm - Check if the specified splat value corresponds to a /// valid vector constant for a NEON or MVE instruction with a "modified /// immediate" operand (e.g., VMOV). If so, return the encoded value. static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, unsigned SplatBitSize, SelectionDAG &DAG, const SDLoc &dl, EVT &VT, EVT VectorVT, VMOVModImmType type) { unsigned OpCmode, Imm; bool is128Bits = VectorVT.is128BitVector(); // SplatBitSize is set to the smallest size that splats the vector, so a // zero vector will always have SplatBitSize == 8. However, NEON modified // immediate instructions others than VMOV do not support the 8-bit encoding // of a zero vector, and the default encoding of zero is supposed to be the // 32-bit version. if (SplatBits == 0) SplatBitSize = 32; switch (SplatBitSize) { case 8: if (type != VMOVModImm) return SDValue(); // Any 1-byte value is OK. Op=0, Cmode=1110. assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); OpCmode = 0xe; Imm = SplatBits; VT = is128Bits ? MVT::v16i8 : MVT::v8i8; break; case 16: // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. VT = is128Bits ? MVT::v8i16 : MVT::v4i16; if ((SplatBits & ~0xff) == 0) { // Value = 0x00nn: Op=x, Cmode=100x. OpCmode = 0x8; Imm = SplatBits; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0xnn00: Op=x, Cmode=101x. OpCmode = 0xa; Imm = SplatBits >> 8; break; } return SDValue(); case 32: // NEON's 32-bit VMOV supports splat values where: // * only one byte is nonzero, or // * the least significant byte is 0xff and the second byte is nonzero, or // * the least significant 2 bytes are 0xff and the third is nonzero. VT = is128Bits ? MVT::v4i32 : MVT::v2i32; if ((SplatBits & ~0xff) == 0) { // Value = 0x000000nn: Op=x, Cmode=000x. OpCmode = 0; Imm = SplatBits; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0x0000nn00: Op=x, Cmode=001x. OpCmode = 0x2; Imm = SplatBits >> 8; break; } if ((SplatBits & ~0xff0000) == 0) { // Value = 0x00nn0000: Op=x, Cmode=010x. OpCmode = 0x4; Imm = SplatBits >> 16; break; } if ((SplatBits & ~0xff000000) == 0) { // Value = 0xnn000000: Op=x, Cmode=011x. OpCmode = 0x6; Imm = SplatBits >> 24; break; } // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC if (type == OtherModImm) return SDValue(); if ((SplatBits & ~0xffff) == 0 && ((SplatBits | SplatUndef) & 0xff) == 0xff) { // Value = 0x0000nnff: Op=x, Cmode=1100. OpCmode = 0xc; Imm = SplatBits >> 8; break; } // cmode == 0b1101 is not supported for MVE VMVN if (type == MVEVMVNModImm) return SDValue(); if ((SplatBits & ~0xffffff) == 0 && ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { // Value = 0x00nnffff: Op=x, Cmode=1101. OpCmode = 0xd; Imm = SplatBits >> 16; break; } // Note: there are a few 32-bit splat values (specifically: 00ffff00, // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not // VMOV.I32. A (very) minor optimization would be to replicate the value // and fall through here to test for a valid 64-bit splat. But, then the // caller would also need to check and handle the change in size. return SDValue(); case 64: { if (type != VMOVModImm) return SDValue(); // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. uint64_t BitMask = 0xff; uint64_t Val = 0; unsigned ImmMask = 1; Imm = 0; for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { if (((SplatBits | SplatUndef) & BitMask) == BitMask) { Val |= BitMask; Imm |= ImmMask; } else if ((SplatBits & BitMask) != 0) { return SDValue(); } BitMask <<= 8; ImmMask <<= 1; } if (DAG.getDataLayout().isBigEndian()) { // Reverse the order of elements within the vector. unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8; unsigned Mask = (1 << BytesPerElem) - 1; unsigned NumElems = 8 / BytesPerElem; unsigned NewImm = 0; for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) { unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask); NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem; } Imm = NewImm; } // Op=1, Cmode=1110. OpCmode = 0x1e; VT = is128Bits ? MVT::v2i64 : MVT::v1i64; break; } default: llvm_unreachable("unexpected size for isVMOVModifiedImm"); } unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm); return DAG.getTargetConstant(EncodedVal, dl, MVT::i32); } SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const { EVT VT = Op.getValueType(); bool IsDouble = (VT == MVT::f64); ConstantFPSDNode *CFP = cast(Op); const APFloat &FPVal = CFP->getValueAPF(); // Prevent floating-point constants from using literal loads // when execute-only is enabled. if (ST->genExecuteOnly()) { // If we can represent the constant as an immediate, don't lower it if (isFPImmLegal(FPVal, VT)) return Op; // Otherwise, construct as integer, and move to float register APInt INTVal = FPVal.bitcastToAPInt(); SDLoc DL(CFP); switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unknown floating point type!"); break; case MVT::f64: { SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32); SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32); return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi); } case MVT::f32: return DAG.getNode(ARMISD::VMOVSR, DL, VT, DAG.getConstant(INTVal, DL, MVT::i32)); } } if (!ST->hasVFP3Base()) return SDValue(); // Use the default (constant pool) lowering for double constants when we have // an SP-only FPU if (IsDouble && !Subtarget->hasFP64()) return SDValue(); // Try splatting with a VMOV.f32... int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal); if (ImmVal != -1) { if (IsDouble || !ST->useNEONForSinglePrecisionFP()) { // We have code in place to select a valid ConstantFP already, no need to // do any mangling. return Op; } // It's a float and we are trying to use NEON operations where // possible. Lower it to a splat followed by an extract. SDLoc DL(Op); SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32); SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, NewVal); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, DAG.getConstant(0, DL, MVT::i32)); } // The rest of our options are NEON only, make sure that's allowed before // proceeding.. if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP())) return SDValue(); EVT VMovVT; uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue(); // It wouldn't really be worth bothering for doubles except for one very // important value, which does happen to match: 0.0. So make sure we don't do // anything stupid. if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32)) return SDValue(); // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too). SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT, VT, VMOVModImm); if (NewVal != SDValue()) { SDLoc DL(Op); SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, NewVal); if (IsDouble) return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); // It's a float: cast and extract a vector element. SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, VecConstant); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, DAG.getConstant(0, DL, MVT::i32)); } // Finally, try a VMVN.i32 NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT, VT, VMVNModImm); if (NewVal != SDValue()) { SDLoc DL(Op); SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); if (IsDouble) return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); // It's a float: cast and extract a vector element. SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, VecConstant); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, DAG.getConstant(0, DL, MVT::i32)); } return SDValue(); } // check if an VEXT instruction can handle the shuffle mask when the // vector sources of the shuffle are the same. static bool isSingletonVEXTMask(ArrayRef M, EVT VT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, just follow it // back to index zero and keep going. ++ExpectedElt; if (ExpectedElt == NumElts) ExpectedElt = 0; if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast(M[i])) return false; } return true; } static bool isVEXTMask(ArrayRef M, EVT VT, bool &ReverseVEXT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); ReverseVEXT = false; // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, it may still be // a VEXT but the source vectors must be swapped. ExpectedElt += 1; if (ExpectedElt == NumElts * 2) { ExpectedElt = 0; ReverseVEXT = true; } if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast(M[i])) return false; } // Adjust the index value if the source operands will be swapped. if (ReverseVEXT) Imm -= NumElts; return true; } /// isVREVMask - Check if a vector shuffle corresponds to a VREV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) static bool isVREVMask(ArrayRef M, EVT VT, unsigned BlockSize) { assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && "Only possible block sizes for VREV are: 16, 32, 64"); unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSz; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) return false; } return true; } static bool isVTBLMask(ArrayRef M, EVT VT) { // We can handle <8 x i8> vector shuffles. If the index in the mask is out of // range, then 0 is placed into the resulting vector. So pretty much any mask // of 8 elements can work here. return VT == MVT::v8i8 && M.size() == 8; } static unsigned SelectPairHalf(unsigned Elements, ArrayRef Mask, unsigned Index) { if (Mask.size() == Elements * 2) return Index / Elements; return Mask[Index] == 0 ? 0 : 1; } // Checks whether the shuffle mask represents a vector transpose (VTRN) by // checking that pairs of elements in the shuffle mask represent the same index // in each vector, incrementing the expected index by 2 at each step. // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6] // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g} // v2={e,f,g,h} // WhichResult gives the offset for each element in the mask based on which // of the two results it belongs to. // // The transpose can be represented either as: // result1 = shufflevector v1, v2, result1_shuffle_mask // result2 = shufflevector v1, v2, result2_shuffle_mask // where v1/v2 and the shuffle masks have the same number of elements // (here WhichResult (see below) indicates which result is being checked) // // or as: // results = shufflevector v1, v2, shuffle_mask // where both results are returned in one vector and the shuffle mask has twice // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we // want to check the low half and high half of the shuffle mask as if it were // the other case static bool isVTRNMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; // If the mask is twice as long as the input vector then we need to check the // upper and lower parts of the mask with a matching value for WhichResult // FIXME: A mask with only even values will be rejected in case the first // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only // M[0] is used to determine WhichResult for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = SelectPairHalf(NumElts, M, i); for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult)) return false; } } if (M.size() == NumElts*2) WhichResult = 0; return true; } /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. static bool isVTRN_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = SelectPairHalf(NumElts, M, i); for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult)) return false; } } if (M.size() == NumElts*2) WhichResult = 0; return true; } // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking // that the mask elements are either all even and in steps of size 2 or all odd // and in steps of size 2. // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6] // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g} // v2={e,f,g,h} // Requires similar checks to that of isVTRNMask with // respect the how results are returned. static bool isVUZPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = SelectPairHalf(NumElts, M, i); for (unsigned j = 0; j < NumElts; ++j) { if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult) return false; } } if (M.size() == NumElts*2) WhichResult = 0; // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, static bool isVUZP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; unsigned Half = NumElts / 2; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = SelectPairHalf(NumElts, M, i); for (unsigned j = 0; j < NumElts; j += Half) { unsigned Idx = WhichResult; for (unsigned k = 0; k < Half; ++k) { int MIdx = M[i + j + k]; if (MIdx >= 0 && (unsigned) MIdx != Idx) return false; Idx += 2; } } } if (M.size() == NumElts*2) WhichResult = 0; // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } // Checks whether the shuffle mask represents a vector zip (VZIP) by checking // that pairs of elements of the shufflemask represent the same index in each // vector incrementing sequentially through the vectors. // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5] // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f} // v2={e,f,g,h} // Requires similar checks to that of isVTRNMask with respect the how results // are returned. static bool isVZIPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = SelectPairHalf(NumElts, M, i); unsigned Idx = WhichResult * NumElts / 2; for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts)) return false; Idx += 1; } } if (M.size() == NumElts*2) WhichResult = 0; // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. static bool isVZIP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); if (M.size() != NumElts && M.size() != NumElts*2) return false; for (unsigned i = 0; i < M.size(); i += NumElts) { WhichResult = SelectPairHalf(NumElts, M, i); unsigned Idx = WhichResult * NumElts / 2; for (unsigned j = 0; j < NumElts; j += 2) { if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx)) return false; Idx += 1; } } if (M.size() == NumElts*2) WhichResult = 0; // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN), /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't. static unsigned isNEONTwoResultShuffleMask(ArrayRef ShuffleMask, EVT VT, unsigned &WhichResult, bool &isV_UNDEF) { isV_UNDEF = false; if (isVTRNMask(ShuffleMask, VT, WhichResult)) return ARMISD::VTRN; if (isVUZPMask(ShuffleMask, VT, WhichResult)) return ARMISD::VUZP; if (isVZIPMask(ShuffleMask, VT, WhichResult)) return ARMISD::VZIP; isV_UNDEF = true; if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) return ARMISD::VTRN; if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) return ARMISD::VUZP; if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) return ARMISD::VZIP; return 0; } /// \return true if this is a reverse operation on an vector. static bool isReverseMask(ArrayRef M, EVT VT) { unsigned NumElts = VT.getVectorNumElements(); // Make sure the mask has the right size. if (NumElts != M.size()) return false; // Look for <15, ..., 3, -1, 1, 0>. for (unsigned i = 0; i != NumElts; ++i) if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) return false; return true; } static bool isVMOVNMask(ArrayRef M, EVT VT, bool Top) { unsigned NumElts = VT.getVectorNumElements(); // Make sure the mask has the right size. if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8)) return false; // If Top // Look for <0, N, 2, N+2, 4, N+4, ..>. // This inserts Input2 into Input1 // else if not Top // Look for <0, N+1, 2, N+3, 4, N+5, ..> // This inserts Input1 into Input2 unsigned Offset = Top ? 0 : 1; for (unsigned i = 0; i < NumElts; i+=2) { if (M[i] >= 0 && M[i] != (int)i) return false; if (M[i+1] >= 0 && M[i+1] != (int)(NumElts + i + Offset)) return false; } return true; } // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted // from a pair of inputs. For example: // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0), // FP_ROUND(EXTRACT_ELT(Y, 0), // FP_ROUND(EXTRACT_ELT(X, 1), // FP_ROUND(EXTRACT_ELT(Y, 1), ...) static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG, const ARMSubtarget *ST) { assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); if (!ST->hasMVEFloatOps()) return SDValue(); SDLoc dl(BV); EVT VT = BV.getValueType(); if (VT != MVT::v8f16) return SDValue(); // We are looking for a buildvector of fptrunc elements, where all the // elements are interleavingly extracted from two sources. Check the first two // items are valid enough and extract some info from them (they are checked // properly in the loop below). if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND || BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0) return SDValue(); if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND || BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0) return SDValue(); SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0); SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0); if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32) return SDValue(); // Check all the values in the BuildVector line up with our expectations. for (unsigned i = 1; i < 4; i++) { auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) { return Trunc.getOpcode() == ISD::FP_ROUND && Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && Trunc.getOperand(0).getOperand(0) == Op && Trunc.getOperand(0).getConstantOperandVal(1) == Idx; }; if (!Check(BV.getOperand(i * 2 + 0), Op0, i)) return SDValue(); if (!Check(BV.getOperand(i * 2 + 1), Op1, i)) return SDValue(); } SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0, DAG.getConstant(0, dl, MVT::i32)); return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1, DAG.getConstant(1, dl, MVT::i32)); } // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted // from a single input on alternating lanes. For example: // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0), // FP_ROUND(EXTRACT_ELT(X, 2), // FP_ROUND(EXTRACT_ELT(X, 4), ...) static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG, const ARMSubtarget *ST) { assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); if (!ST->hasMVEFloatOps()) return SDValue(); SDLoc dl(BV); EVT VT = BV.getValueType(); if (VT != MVT::v4f32) return SDValue(); // We are looking for a buildvector of fptext elements, where all the // elements are alternating lanes from a single source. For example <0,2,4,6> // or <1,3,5,7>. Check the first two items are valid enough and extract some // info from them (they are checked properly in the loop below). if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND || BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0); int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1); if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1)) return SDValue(); // Check all the values in the BuildVector line up with our expectations. for (unsigned i = 1; i < 4; i++) { auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) { return Trunc.getOpcode() == ISD::FP_EXTEND && Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && Trunc.getOperand(0).getOperand(0) == Op && Trunc.getOperand(0).getConstantOperandVal(1) == Idx; }; if (!Check(BV.getOperand(i), Op0, 2 * i + Offset)) return SDValue(); } return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0, DAG.getConstant(Offset, dl, MVT::i32)); } // If N is an integer constant that can be moved into a register in one // instruction, return an SDValue of such a constant (will become a MOV // instruction). Otherwise return null. static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, const ARMSubtarget *ST, const SDLoc &dl) { uint64_t Val; if (!isa(N)) return SDValue(); Val = cast(N)->getZExtValue(); if (ST->isThumb1Only()) { if (Val <= 255 || ~Val <= 255) return DAG.getConstant(Val, dl, MVT::i32); } else { if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) return DAG.getConstant(Val, dl, MVT::i32); } return SDValue(); } static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { SDLoc dl(Op); EVT VT = Op.getValueType(); assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!"); unsigned NumElts = VT.getVectorNumElements(); unsigned BoolMask; unsigned BitsPerBool; if (NumElts == 4) { BitsPerBool = 4; BoolMask = 0xf; } else if (NumElts == 8) { BitsPerBool = 2; BoolMask = 0x3; } else if (NumElts == 16) { BitsPerBool = 1; BoolMask = 0x1; } else return SDValue(); // If this is a single value copied into all lanes (a splat), we can just sign // extend that single value SDValue FirstOp = Op.getOperand(0); if (!isa(FirstOp) && std::all_of(std::next(Op->op_begin()), Op->op_end(), [&FirstOp](SDUse &U) { return U.get().isUndef() || U.get() == FirstOp; })) { SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp, DAG.getValueType(MVT::i1)); return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext); } // First create base with bits set where known unsigned Bits32 = 0; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (!isa(V) && !V.isUndef()) continue; bool BitSet = V.isUndef() ? false : cast(V)->getZExtValue(); if (BitSet) Bits32 |= BoolMask << (i * BitsPerBool); } // Add in unknown nodes SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, DAG.getConstant(Bits32, dl, MVT::i32)); for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (isa(V) || V.isUndef()) continue; Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V, DAG.getConstant(i, dl, MVT::i32)); } return Base; } // If this is a case we can't handle, return null and let the default // expansion code take care of it. SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const { BuildVectorSDNode *BVN = cast(Op.getNode()); SDLoc dl(Op); EVT VT = Op.getValueType(); if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1) return LowerBUILD_VECTOR_i1(Op, DAG, ST); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatUndef.isAllOnesValue()) return DAG.getUNDEF(VT); if ((ST->hasNEON() && SplatBitSize <= 64) || (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) { // Check if an immediate VMOV works. EVT VmovVT; SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm); if (Val.getNode()) { SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } // Try an immediate VMVN. uint64_t NegatedImm = (~SplatBits).getZExtValue(); Val = isVMOVModifiedImm( NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT, VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm); if (Val.getNode()) { SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } // Use vmov.f32 to materialize other v2f32 and v4f32 splats. if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { int ImmVal = ARM_AM::getFP32Imm(SplatBits); if (ImmVal != -1) { SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32); return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); } } } } // Scan through the operands to see if only one value is used. // // As an optimisation, even if more than one value is used it may be more // profitable to splat with one value then change some lanes. // // Heuristically we decide to do this if the vector has a "dominant" value, // defined as splatted to more than half of the lanes. unsigned NumElts = VT.getVectorNumElements(); bool isOnlyLowElement = true; bool usesOnlyOneValue = true; bool hasDominantValue = false; bool isConstant = true; // Map of the number of times a particular SDValue appears in the // element list. DenseMap ValueCounts; SDValue Value; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.isUndef()) continue; if (i > 0) isOnlyLowElement = false; if (!isa(V) && !isa(V)) isConstant = false; ValueCounts.insert(std::make_pair(V, 0)); unsigned &Count = ValueCounts[V]; // Is this value dominant? (takes up more than half of the lanes) if (++Count > (NumElts / 2)) { hasDominantValue = true; Value = V; } } if (ValueCounts.size() != 1) usesOnlyOneValue = false; if (!Value.getNode() && !ValueCounts.empty()) Value = ValueCounts.begin()->first; if (ValueCounts.empty()) return DAG.getUNDEF(VT); // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR. // Keep going if we are hitting this case. if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode())) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); unsigned EltSize = VT.getScalarSizeInBits(); // Use VDUP for non-constant splats. For f32 constant splats, reduce to // i32 and try again. if (hasDominantValue && EltSize <= 32) { if (!isConstant) { SDValue N; // If we are VDUPing a value that comes directly from a vector, that will // cause an unnecessary move to and from a GPR, where instead we could // just use VDUPLANE. We can only do this if the lane being extracted // is at a constant index, as the VDUP from lane instructions only have // constant-index forms. ConstantSDNode *constIndex; if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && (constIndex = dyn_cast(Value->getOperand(1)))) { // We need to create a new undef vector to use for the VDUPLANE if the // size of the vector from which we get the value is different than the // size of the vector that we need to create. We will insert the element // such that the register coalescer will remove unnecessary copies. if (VT != Value->getOperand(0).getValueType()) { unsigned index = constIndex->getAPIntValue().getLimitedValue() % VT.getVectorNumElements(); N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), Value, DAG.getConstant(index, dl, MVT::i32)), DAG.getConstant(index, dl, MVT::i32)); } else N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, Value->getOperand(0), Value->getOperand(1)); } else N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); if (!usesOnlyOneValue) { // The dominant value was splatted as 'N', but we now have to insert // all differing elements. for (unsigned I = 0; I < NumElts; ++I) { if (Op.getOperand(I) == Value) continue; SmallVector Ops; Ops.push_back(N); Ops.push_back(Op.getOperand(I)); Ops.push_back(DAG.getConstant(I, dl, MVT::i32)); N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops); } } return N; } if (VT.getVectorElementType().isFloatingPoint()) { SmallVector Ops; MVT FVT = VT.getVectorElementType().getSimpleVT(); assert(FVT == MVT::f32 || FVT == MVT::f16); MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16; for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT, Op.getOperand(i))); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts); SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); Val = LowerBUILD_VECTOR(Val, DAG, ST); if (Val.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, Val); } if (usesOnlyOneValue) { SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); if (isConstant && Val.getNode()) return DAG.getNode(ARMISD::VDUP, dl, VT, Val); } } // If all elements are constants and the case above didn't get hit, fall back // to the default expansion, which will generate a load from the constant // pool. if (isConstant) return SDValue(); // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and // vmovn). Empirical tests suggest this is rarely worth it for vectors of // length <= 2. if (NumElts >= 4) if (SDValue shuffle = ReconstructShuffle(Op, DAG)) return shuffle; // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into // VCVT's if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget)) return VCVT; if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget)) return VCVT; if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) { // If we haven't found an efficient lowering, try splitting a 128-bit vector // into two 64-bit vectors; we might discover a better way to lower it. SmallVector Ops(Op->op_begin(), Op->op_begin() + NumElts); EVT ExtVT = VT.getVectorElementType(); EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2); SDValue Lower = DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2)); if (Lower.getOpcode() == ISD::BUILD_VECTOR) Lower = LowerBUILD_VECTOR(Lower, DAG, ST); SDValue Upper = DAG.getBuildVector( HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2)); if (Upper.getOpcode() == ISD::BUILD_VECTOR) Upper = LowerBUILD_VECTOR(Upper, DAG, ST); if (Lower && Upper) return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper); } // Vectors with 32- or 64-bit elements can be built by directly assigning // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands // will be legalized. if (EltSize >= 32) { // Do the expansion with floating-point types, since that is what the VFP // registers are defined to use, and since i64 is not legal. EVT EltVT = EVT::getFloatingPointVT(EltSize); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); SmallVector Ops; for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, Val); } // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we // know the default expansion would otherwise fall back on something even // worse. For a vector with one or two non-undef values, that's // scalar_to_vector for the elements followed by a shuffle (provided the // shuffle is valid for the target) and materialization element by element // on the stack followed by a load for everything else. if (!isConstant && !usesOnlyOneValue) { SDValue Vec = DAG.getUNDEF(VT); for (unsigned i = 0 ; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.isUndef()) continue; SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); } return Vec; } return SDValue(); } // Gather data to see if the operation can be modelled as a // shuffle in combination with VEXTs. SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned NumElts = VT.getVectorNumElements(); struct ShuffleSourceInfo { SDValue Vec; unsigned MinElt = std::numeric_limits::max(); unsigned MaxElt = 0; // We may insert some combination of BITCASTs and VEXT nodes to force Vec to // be compatible with the shuffle we intend to construct. As a result // ShuffleVec will be some sliding window into the original Vec. SDValue ShuffleVec; // Code should guarantee that element i in Vec starts at element "WindowBase // + i * WindowScale in ShuffleVec". int WindowBase = 0; int WindowScale = 1; ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {} bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } }; // First gather all vectors used as an immediate source for this BUILD_VECTOR // node. SmallVector Sources; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.isUndef()) continue; else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { // A shuffle can only come from building a vector from various // elements of other vectors. return SDValue(); } else if (!isa(V.getOperand(1))) { // Furthermore, shuffles require a constant mask, whereas extractelts // accept variable indices. return SDValue(); } // Add this element source to the list if it's not already there. SDValue SourceVec = V.getOperand(0); auto Source = llvm::find(Sources, SourceVec); if (Source == Sources.end()) Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); // Update the minimum and maximum lane number seen. unsigned EltNo = cast(V.getOperand(1))->getZExtValue(); Source->MinElt = std::min(Source->MinElt, EltNo); Source->MaxElt = std::max(Source->MaxElt, EltNo); } // Currently only do something sane when at most two source vectors // are involved. if (Sources.size() > 2) return SDValue(); // Find out the smallest element size among result and two sources, and use // it as element size to build the shuffle_vector. EVT SmallestEltTy = VT.getVectorElementType(); for (auto &Source : Sources) { EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); if (SrcEltTy.bitsLT(SmallestEltTy)) SmallestEltTy = SrcEltTy; } unsigned ResMultiplier = VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); // If the source vector is too wide or too narrow, we may nevertheless be able // to construct a compatible shuffle either by concatenating it with UNDEF or // extracting a suitable range of elements. for (auto &Src : Sources) { EVT SrcVT = Src.ShuffleVec.getValueType(); uint64_t SrcVTSize = SrcVT.getFixedSizeInBits(); uint64_t VTSize = VT.getFixedSizeInBits(); if (SrcVTSize == VTSize) continue; // This stage of the search produces a source with the same element type as // the original, but with a total width matching the BUILD_VECTOR output. EVT EltVT = SrcVT.getVectorElementType(); unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits(); EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); if (SrcVTSize < VTSize) { if (2 * SrcVTSize != VTSize) return SDValue(); // We can pad out the smaller vector for free, so if it's part of a // shuffle... Src.ShuffleVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, DAG.getUNDEF(Src.ShuffleVec.getValueType())); continue; } if (SrcVTSize != 2 * VTSize) return SDValue(); if (Src.MaxElt - Src.MinElt >= NumSrcElts) { // Span too large for a VEXT to cope return SDValue(); } if (Src.MinElt >= NumSrcElts) { // The extraction can just take the second half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i32)); Src.WindowBase = -NumSrcElts; } else if (Src.MaxElt < NumSrcElts) { // The extraction can just take the first half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i32)); } else { // An actual VEXT is needed SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i32)); SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i32)); Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1, VEXTSrc2, DAG.getConstant(Src.MinElt, dl, MVT::i32)); Src.WindowBase = -Src.MinElt; } } // Another possible incompatibility occurs from the vector element types. We // can fix this by bitcasting the source vectors to the same type we intend // for the shuffle. for (auto &Src : Sources) { EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); if (SrcEltTy == SmallestEltTy) continue; assert(ShuffleVT.getVectorElementType() == SmallestEltTy); Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec); Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); Src.WindowBase *= Src.WindowScale; } // Final sanity check before we try to actually produce a shuffle. LLVM_DEBUG(for (auto Src : Sources) assert(Src.ShuffleVec.getValueType() == ShuffleVT);); // The stars all align, our next step is to produce the mask for the shuffle. SmallVector Mask(ShuffleVT.getVectorNumElements(), -1); int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { SDValue Entry = Op.getOperand(i); if (Entry.isUndef()) continue; auto Src = llvm::find(Sources, Entry.getOperand(0)); int EltNo = cast(Entry.getOperand(1))->getSExtValue(); // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit // trunc. So only std::min(SrcBits, DestBits) actually get defined in this // segment. EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(), VT.getScalarSizeInBits()); int LanesDefined = BitsDefined / BitsPerShuffleLane; // This source is expected to fill ResMultiplier lanes of the final shuffle, // starting at the appropriate offset. int *LaneMask = &Mask[i * ResMultiplier]; int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; ExtractBase += NumElts * (Src - Sources.begin()); for (int j = 0; j < LanesDefined; ++j) LaneMask[j] = ExtractBase + j; } // We can't handle more than two sources. This should have already // been checked before this point. assert(Sources.size() <= 2 && "Too many sources!"); SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; for (unsigned i = 0; i < Sources.size(); ++i) ShuffleOps[i] = Sources[i].ShuffleVec; SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0], ShuffleOps[1], Mask, DAG); if (!Shuffle) return SDValue(); return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle); } enum ShuffleOpCodes { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VREV, OP_VDUP0, OP_VDUP1, OP_VDUP2, OP_VDUP3, OP_VEXT1, OP_VEXT2, OP_VEXT3, OP_VUZPL, // VUZP, left result OP_VUZPR, // VUZP, right result OP_VZIPL, // VZIP, left result OP_VZIPR, // VZIP, right result OP_VTRNL, // VTRN, left result OP_VTRNR // VTRN, right result }; static bool isLegalMVEShuffleOp(unsigned PFEntry) { unsigned OpNum = (PFEntry >> 26) & 0x0F; switch (OpNum) { case OP_COPY: case OP_VREV: case OP_VDUP0: case OP_VDUP1: case OP_VDUP2: case OP_VDUP3: return true; } return false; } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef M, EVT VT) const { if (VT.getVectorNumElements() == 4 && (VT.is128BitVector() || VT.is64BitVector())) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (M[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = M[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry))) return true; } bool ReverseVEXT, isV_UNDEF; unsigned Imm, WhichResult; unsigned EltSize = VT.getScalarSizeInBits(); if (EltSize >= 32 || ShuffleVectorSDNode::isSplatMask(&M[0], VT) || ShuffleVectorInst::isIdentityMask(M) || isVREVMask(M, VT, 64) || isVREVMask(M, VT, 32) || isVREVMask(M, VT, 16)) return true; else if (Subtarget->hasNEON() && (isVEXTMask(M, VT, ReverseVEXT, Imm) || isVTBLMask(M, VT) || isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF))) return true; else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)) return true; else if (Subtarget->hasMVEIntegerOps() && (isVMOVNMask(M, VT, 0) || isVMOVNMask(M, VT, 1))) return true; else return false; } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); EVT VT = OpLHS.getValueType(); switch (OpNum) { default: llvm_unreachable("Unknown shuffle opcode!"); case OP_VREV: // VREV divides the vector in half and swaps within the half. if (VT.getVectorElementType() == MVT::i32 || VT.getVectorElementType() == MVT::f32) return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); // vrev <4 x i16> -> VREV32 if (VT.getVectorElementType() == MVT::i16) return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); // vrev <4 x i8> -> VREV16 assert(VT.getVectorElementType() == MVT::i8); return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); case OP_VDUP0: case OP_VDUP1: case OP_VDUP2: case OP_VDUP3: return DAG.getNode(ARMISD::VDUPLANE, dl, VT, OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32)); case OP_VEXT1: case OP_VEXT2: case OP_VEXT3: return DAG.getNode(ARMISD::VEXT, dl, VT, OpLHS, OpRHS, DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32)); case OP_VUZPL: case OP_VUZPR: return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); case OP_VZIPL: case OP_VZIPR: return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); case OP_VTRNL: case OP_VTRNR: return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); } } static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, ArrayRef ShuffleMask, SelectionDAG &DAG) { // Check to see if we can use the VTBL instruction. SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc DL(Op); SmallVector VTBLMask; for (ArrayRef::iterator I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32)); if (V2.getNode()->isUndef()) return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, DAG.getBuildVector(MVT::v8i8, DL, VTBLMask)); return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, DAG.getBuildVector(MVT::v8i8, DL, VTBLMask)); } static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); SDValue OpLHS = Op.getOperand(0); EVT VT = OpLHS.getValueType(); assert((VT == MVT::v8i16 || VT == MVT::v16i8) && "Expect an v8i16/v16i8 type"); OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, // extract the first 8 bytes into the top double word and the last 8 bytes // into the bottom double word. The v8i16 case is similar. unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, DAG.getConstant(ExtractNum, DL, MVT::i32)); } static EVT getVectorTyFromPredicateVector(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { case MVT::v4i1: return MVT::v4i32; case MVT::v8i1: return MVT::v8i16; case MVT::v16i1: return MVT::v16i8; default: llvm_unreachable("Unexpected vector predicate type"); } } static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT, SelectionDAG &DAG) { // Converting from boolean predicates to integers involves creating a vector // of all ones or all zeroes and selecting the lanes based upon the real // predicate. SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32); AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes); SDValue AllZeroes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32); AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes); // Get full vector type from predicate type EVT NewVT = getVectorTyFromPredicateVector(VT); SDValue RecastV1; // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast // this to a v16i1. This cannot be done with an ordinary bitcast because the // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node, // since we know in hardware the sizes are really the same. if (VT != MVT::v16i1) RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred); else RecastV1 = Pred; // Select either all ones or zeroes depending upon the real predicate bits. SDValue PredAsVector = DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes); // Recast our new predicate-as-integer v16i8 vector into something // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate. return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector); } static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op.getNode()); ArrayRef ShuffleMask = SVN->getMask(); assert(ST->hasMVEIntegerOps() && "No support for vector shuffle of boolean predicates"); SDValue V1 = Op.getOperand(0); SDLoc dl(Op); if (isReverseMask(ShuffleMask, VT)) { SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1); SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast); SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit, DAG.getConstant(16, dl, MVT::i32)); return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl); } // Until we can come up with optimised cases for every single vector // shuffle in existence we have chosen the least painful strategy. This is // to essentially promote the boolean predicate to a 8-bit integer, where // each predicate represents a byte. Then we fall back on a normal integer // vector shuffle and convert the result back into a predicate vector. In // many cases the generated code might be even better than scalar code // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit // fields in a register into 8 other arbitrary 2-bit fields! SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG); EVT NewVT = PredAsVector.getValueType(); // Do the shuffle! SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector, DAG.getUNDEF(NewVT), ShuffleMask); // Now return the result of comparing the shuffled vector with zero, // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled, DAG.getConstant(ARMCC::NE, dl, MVT::i32)); } static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op, ArrayRef ShuffleMask, SelectionDAG &DAG) { // Attempt to lower the vector shuffle using as many whole register movs as // possible. This is useful for types smaller than 32bits, which would // often otherwise become a series for grp movs. SDLoc dl(Op); EVT VT = Op.getValueType(); if (VT.getScalarSizeInBits() >= 32) return SDValue(); assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) && "Unexpected vector type"); int NumElts = VT.getVectorNumElements(); int QuarterSize = NumElts / 4; // The four final parts of the vector, as i32's SDValue Parts[4]; // Look for full lane vmovs like <0,1,2,3> or etc, (but not // ), returning the vmov lane index auto getMovIdx = [](ArrayRef ShuffleMask, int Start, int Length) { // Detect which mov lane this would be from the first non-undef element. int MovIdx = -1; for (int i = 0; i < Length; i++) { if (ShuffleMask[Start + i] >= 0) { if (ShuffleMask[Start + i] % Length != i) return -1; MovIdx = ShuffleMask[Start + i] / Length; break; } } // If all items are undef, leave this for other combines if (MovIdx == -1) return -1; // Check the remaining values are the correct part of the same mov for (int i = 1; i < Length; i++) { if (ShuffleMask[Start + i] >= 0 && (ShuffleMask[Start + i] / Length != MovIdx || ShuffleMask[Start + i] % Length != i)) return -1; } return MovIdx; }; for (int Part = 0; Part < 4; ++Part) { // Does this part look like a mov int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize); if (Elt != -1) { SDValue Input = Op->getOperand(0); if (Elt >= 4) { Input = Op->getOperand(1); Elt -= 4; } SDValue BitCast = DAG.getBitcast(MVT::v4i32, Input); Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, BitCast, DAG.getConstant(Elt, dl, MVT::i32)); } } // Nothing interesting found, just return if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3]) return SDValue(); // The other parts need to be built with the old shuffle vector, cast to a // v4i32 and extract_vector_elts if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) { SmallVector NewShuffleMask; for (int Part = 0; Part < 4; ++Part) for (int i = 0; i < QuarterSize; i++) NewShuffleMask.push_back( Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]); SDValue NewShuffle = DAG.getVectorShuffle( VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask); SDValue BitCast = DAG.getBitcast(MVT::v4i32, NewShuffle); for (int Part = 0; Part < 4; ++Part) if (!Parts[Part]) Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, BitCast, DAG.getConstant(Part, dl, MVT::i32)); } // Build a vector out of the various parts and bitcast it back to the original // type. SDValue NewVec = DAG.getBuildVector(MVT::v4i32, dl, Parts); return DAG.getBitcast(VT, NewVec); } static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op.getNode()); unsigned EltSize = VT.getScalarSizeInBits(); if (ST->hasMVEIntegerOps() && EltSize == 1) return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST); // Convert shuffles that are directly supported on NEON to target-specific // DAG nodes, instead of keeping them as shuffles and matching them again // during code selection. This is more efficient and avoids the possibility // of inconsistencies between legalization and selection. // FIXME: floating-point vectors should be canonicalized to integer vectors // of the same time so that they get CSEd properly. ArrayRef ShuffleMask = SVN->getMask(); if (EltSize <= 32) { if (SVN->isSplat()) { int Lane = SVN->getSplatIndex(); // If this is undef splat, generate it via "just" vdup, if possible. if (Lane == -1) Lane = 0; // Test if V1 is a SCALAR_TO_VECTOR. if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); } // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR // (and probably will turn into a SCALAR_TO_VECTOR once legalization // reaches it). if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && !isa(V1.getOperand(0))) { bool IsScalarToVector = true; for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) if (!V1.getOperand(i).isUndef()) { IsScalarToVector = false; break; } if (IsScalarToVector) return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); } return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i32)); } bool ReverseVEXT = false; unsigned Imm = 0; if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { if (ReverseVEXT) std::swap(V1, V2); return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, DAG.getConstant(Imm, dl, MVT::i32)); } if (isVREVMask(ShuffleMask, VT, 64)) return DAG.getNode(ARMISD::VREV64, dl, VT, V1); if (isVREVMask(ShuffleMask, VT, 32)) return DAG.getNode(ARMISD::VREV32, dl, VT, V1); if (isVREVMask(ShuffleMask, VT, 16)) return DAG.getNode(ARMISD::VREV16, dl, VT, V1); if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) { return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, DAG.getConstant(Imm, dl, MVT::i32)); } // Check for Neon shuffles that modify both input vectors in place. // If both results are used, i.e., if there are two shuffles with the same // source operands and with masks corresponding to both results of one of // these operations, DAG memoization will ensure that a single node is // used for both shuffles. unsigned WhichResult = 0; bool isV_UNDEF = false; if (ST->hasNEON()) { if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( ShuffleMask, VT, WhichResult, isV_UNDEF)) { if (isV_UNDEF) V2 = V1; return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2) .getValue(WhichResult); } } if (ST->hasMVEIntegerOps()) { if (isVMOVNMask(ShuffleMask, VT, 0)) return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1, DAG.getConstant(0, dl, MVT::i32)); if (isVMOVNMask(ShuffleMask, VT, 1)) return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2, DAG.getConstant(1, dl, MVT::i32)); } // Also check for these shuffles through CONCAT_VECTORS: we canonicalize // shuffles that produce a result larger than their operands with: // shuffle(concat(v1, undef), concat(v2, undef)) // -> // shuffle(concat(v1, v2), undef) // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine). // // This is useful in the general case, but there are special cases where // native shuffles produce larger results: the two-result ops. // // Look through the concat when lowering them: // shuffle(concat(v1, v2), undef) // -> // concat(VZIP(v1, v2):0, :1) // if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) { SDValue SubV1 = V1->getOperand(0); SDValue SubV2 = V1->getOperand(1); EVT SubVT = SubV1.getValueType(); // We expect these to have been canonicalized to -1. assert(llvm::all_of(ShuffleMask, [&](int i) { return i < (int)VT.getVectorNumElements(); }) && "Unexpected shuffle index into UNDEF operand!"); if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( ShuffleMask, SubVT, WhichResult, isV_UNDEF)) { if (isV_UNDEF) SubV2 = SubV1; assert((WhichResult == 0) && "In-place shuffle of concat can only have one result!"); SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT), SubV1, SubV2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0), Res.getValue(1)); } } } // If the shuffle is not directly supported and it has 4 elements, use // the PerfectShuffle-generated table to synthesize it from other shuffles. unsigned NumElts = VT.getVectorNumElements(); if (NumElts == 4) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (ShuffleMask[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = ShuffleMask[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) { if (ST->hasNEON()) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); else if (isLegalMVEShuffleOp(PFEntry)) { unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); unsigned PFEntryLHS = PerfectShuffleTable[LHSID]; unsigned PFEntryRHS = PerfectShuffleTable[RHSID]; if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS)) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } } } // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. if (EltSize >= 32) { // Do the expansion with floating-point types, since that is what the VFP // registers are defined to use, and since i64 is not legal. EVT EltVT = EVT::getFloatingPointVT(EltSize); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); SmallVector Ops; for (unsigned i = 0; i < NumElts; ++i) { if (ShuffleMask[i] < 0) Ops.push_back(DAG.getUNDEF(EltVT)); else Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ShuffleMask[i] < (int)NumElts ? V1 : V2, DAG.getConstant(ShuffleMask[i] & (NumElts-1), dl, MVT::i32))); } SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, Val); } if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); if (ST->hasNEON() && VT == MVT::v8i8) if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG)) return NewOp; if (ST->hasMVEIntegerOps()) if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG)) return NewOp; return SDValue(); } static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VecVT = Op.getOperand(0).getValueType(); SDLoc dl(Op); assert(ST->hasMVEIntegerOps() && "LowerINSERT_VECTOR_ELT_i1 called without MVE!"); SDValue Conv = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0)); unsigned Lane = cast(Op.getOperand(2))->getZExtValue(); unsigned LaneWidth = getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8; unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth; SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, Op.getOperand(1), DAG.getValueType(MVT::i1)); SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext, DAG.getConstant(~Mask, dl, MVT::i32)); return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI); } SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { // INSERT_VECTOR_ELT is legal only for immediate indexes. SDValue Lane = Op.getOperand(2); if (!isa(Lane)) return SDValue(); SDValue Elt = Op.getOperand(1); EVT EltVT = Elt.getValueType(); if (Subtarget->hasMVEIntegerOps() && Op.getValueType().getScalarSizeInBits() == 1) return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget); if (getTypeAction(*DAG.getContext(), EltVT) == TargetLowering::TypePromoteFloat) { // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32, // but the type system will try to do that if we don't intervene. // Reinterpret any such vector-element insertion as one with the // corresponding integer types. SDLoc dl(Op); EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits()); assert(getTypeAction(*DAG.getContext(), IEltVT) != TargetLowering::TypePromoteFloat); SDValue VecIn = Op.getOperand(0); EVT VecVT = VecIn.getValueType(); EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT, VecVT.getVectorNumElements()); SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt); SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn); SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT, IVecIn, IElt, Lane); return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut); } return Op; } static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VecVT = Op.getOperand(0).getValueType(); SDLoc dl(Op); assert(ST->hasMVEIntegerOps() && "LowerINSERT_VECTOR_ELT_i1 called without MVE!"); SDValue Conv = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0)); unsigned Lane = cast(Op.getOperand(1))->getZExtValue(); unsigned LaneWidth = getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8; SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv, DAG.getConstant(Lane * LaneWidth, dl, MVT::i32)); return Shift; } static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { // EXTRACT_VECTOR_ELT is legal only for immediate indexes. SDValue Lane = Op.getOperand(1); if (!isa(Lane)) return SDValue(); SDValue Vec = Op.getOperand(0); EVT VT = Vec.getValueType(); if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1) return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST); if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) { SDLoc dl(Op); return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); } return Op; } static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT Op1VT = V1.getValueType(); EVT Op2VT = V2.getValueType(); unsigned NumElts = VT.getVectorNumElements(); assert(Op1VT == Op2VT && "Operand types don't match!"); assert(VT.getScalarSizeInBits() == 1 && "Unexpected custom CONCAT_VECTORS lowering"); assert(ST->hasMVEIntegerOps() && "CONCAT_VECTORS lowering only supported for MVE"); SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG); SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG); // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets // promoted to v8i16, etc. MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT(); // Extract the vector elements from Op1 and Op2 one by one and truncate them // to be the right size for the destination. For example, if Op1 is v4i1 then // the promoted vector is v4i32. The result of concatentation gives a v8i1, // which when promoted is v8i16. That means each i32 element from Op1 needs // truncating to i16 and inserting in the result. EVT ConcatVT = MVT::getVectorVT(ElType, NumElts); SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT); auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) { EVT NewVT = NewV.getValueType(); EVT ConcatVT = ConVec.getValueType(); for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) { SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV, DAG.getIntPtrConstant(i, dl)); ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt, DAG.getConstant(j, dl, MVT::i32)); } return ConVec; }; unsigned j = 0; ConVec = ExractInto(NewV1, ConVec, j); ConVec = ExractInto(NewV2, ConVec, j); // Now return the result of comparing the subvector with zero, // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec, DAG.getConstant(ARMCC::NE, dl, MVT::i32)); } static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = Op->getValueType(0); if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1) return LowerCONCAT_VECTORS_i1(Op, DAG, ST); // The only time a CONCAT_VECTORS operation can have legal types is when // two 64-bit vectors are concatenated to a 128-bit vector. assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && "unexpected CONCAT_VECTORS"); SDLoc dl(Op); SDValue Val = DAG.getUNDEF(MVT::v2f64); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); if (!Op0.isUndef()) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), DAG.getIntPtrConstant(0, dl)); if (!Op1.isUndef()) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), DAG.getIntPtrConstant(1, dl)); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); } static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT Op1VT = V1.getValueType(); unsigned NumElts = VT.getVectorNumElements(); unsigned Index = cast(V2)->getZExtValue(); assert(VT.getScalarSizeInBits() == 1 && "Unexpected custom EXTRACT_SUBVECTOR lowering"); assert(ST->hasMVEIntegerOps() && "EXTRACT_SUBVECTOR lowering only supported for MVE"); SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG); // We now have Op1 promoted to a vector of integers, where v8i1 gets // promoted to v8i16, etc. MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT(); EVT SubVT = MVT::getVectorVT(ElType, NumElts); SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT); for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) { SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1, DAG.getIntPtrConstant(i, dl)); SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt, DAG.getConstant(j, dl, MVT::i32)); } // Now return the result of comparing the subvector with zero, // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec, DAG.getConstant(ARMCC::NE, dl, MVT::i32)); } /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each /// element has been zero/sign-extended, depending on the isSigned parameter, /// from an integer type half its size. static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, bool isSigned) { // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. EVT VT = N->getValueType(0); if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { SDNode *BVN = N->getOperand(0).getNode(); if (BVN->getValueType(0) != MVT::v4i32 || BVN->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; unsigned HiElt = 1 - LoElt; ConstantSDNode *Lo0 = dyn_cast(BVN->getOperand(LoElt)); ConstantSDNode *Hi0 = dyn_cast(BVN->getOperand(HiElt)); ConstantSDNode *Lo1 = dyn_cast(BVN->getOperand(LoElt+2)); ConstantSDNode *Hi1 = dyn_cast(BVN->getOperand(HiElt+2)); if (!Lo0 || !Hi0 || !Lo1 || !Hi1) return false; if (isSigned) { if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) return true; } else { if (Hi0->isNullValue() && Hi1->isNullValue()) return true; } return false; } if (N->getOpcode() != ISD::BUILD_VECTOR) return false; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *Elt = N->getOperand(i).getNode(); if (ConstantSDNode *C = dyn_cast(Elt)) { unsigned EltSize = VT.getScalarSizeInBits(); unsigned HalfSize = EltSize / 2; if (isSigned) { if (!isIntN(HalfSize, C->getSExtValue())) return false; } else { if (!isUIntN(HalfSize, C->getZExtValue())) return false; } continue; } return false; } return true; } /// isSignExtended - Check if a node is a vector value that is sign-extended /// or a constant BUILD_VECTOR with sign-extended elements. static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) return true; if (isExtendedBUILD_VECTOR(N, DAG, true)) return true; return false; } /// isZeroExtended - Check if a node is a vector value that is zero-extended /// or a constant BUILD_VECTOR with zero-extended elements. static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) return true; if (isExtendedBUILD_VECTOR(N, DAG, false)) return true; return false; } static EVT getExtensionTo64Bits(const EVT &OrigVT) { if (OrigVT.getSizeInBits() >= 64) return OrigVT; assert(OrigVT.isSimple() && "Expecting a simple value type"); MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; switch (OrigSimpleTy) { default: llvm_unreachable("Unexpected Vector Type"); case MVT::v2i8: case MVT::v2i16: return MVT::v2i32; case MVT::v4i8: return MVT::v4i16; } } /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. /// We insert the required extension here to get the vector to fill a D register. static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, const EVT &OrigTy, const EVT &ExtTy, unsigned ExtOpcode) { // The vector originally had a size of OrigTy. It was then extended to ExtTy. // We expect the ExtTy to be 128-bits total. If the OrigTy is less than // 64-bits we need to insert a new extension so that it will be 64-bits. assert(ExtTy.is128BitVector() && "Unexpected extension size"); if (OrigTy.getSizeInBits() >= 64) return N; // Must extend size to at least 64 bits to be used as an operand for VMULL. EVT NewVT = getExtensionTo64Bits(OrigTy); return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); } /// SkipLoadExtensionForVMULL - return a load of the original vector size that /// does not do any sign/zero extension. If the original vector is less /// than 64 bits, an appropriate extension will be added after the load to /// reach a total size of 64 bits. We have to add the extension separately /// because ARM does not have a sign/zero extending load for vectors. static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); // The load already has the right type. if (ExtendedTy == LD->getMemoryVT()) return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), LD->getAlignment(), LD->getMemOperand()->getFlags()); // We need to create a zextload/sextload. We cannot just create a load // followed by a zext/zext node because LowerMUL is also run during normal // operation legalization where we can't create illegal types. return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), LD->getMemoryVT(), LD->getAlignment(), LD->getMemOperand()->getFlags()); } /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, /// extending load, or BUILD_VECTOR with extended elements, return the /// unextended value. The unextended vector should be 64 bits so that it can /// be used as an operand to a VMULL instruction. If the original vector size /// before extension is less than 64 bits we add a an extension to resize /// the vector to 64 bits. static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, N->getOperand(0)->getValueType(0), N->getValueType(0), N->getOpcode()); if (LoadSDNode *LD = dyn_cast(N)) { assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) && "Expected extending load"); SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1)); unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; SDValue extLoad = DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad); return newLoad; } // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will // have been legalized as a BITCAST from v4i32. if (N->getOpcode() == ISD::BITCAST) { SDNode *BVN = N->getOperand(0).getNode(); assert(BVN->getOpcode() == ISD::BUILD_VECTOR && BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; return DAG.getBuildVector( MVT::v2i32, SDLoc(N), {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)}); } // Construct a new BUILD_VECTOR with elements truncated to half the size. assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); EVT VT = N->getValueType(0); unsigned EltSize = VT.getScalarSizeInBits() / 2; unsigned NumElts = VT.getVectorNumElements(); MVT TruncVT = MVT::getIntegerVT(EltSize); SmallVector Ops; SDLoc dl(N); for (unsigned i = 0; i != NumElts; ++i) { ConstantSDNode *C = cast(N->getOperand(i)); const APInt &CInt = C->getAPIntValue(); // Element types smaller than 32 bits are not legal, so use i32 elements. // The values are implicitly truncated so sext vs. zext doesn't matter. Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); } return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); } static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isSignExtended(N0, DAG) && isSignExtended(N1, DAG); } return false; } static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); } return false; } static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { // Multiplications are only custom-lowered for 128-bit vectors so that // VMULL can be detected. Otherwise v2i64 multiplications are not legal. EVT VT = Op.getValueType(); assert(VT.is128BitVector() && VT.isInteger() && "unexpected type for custom-lowering ISD::MUL"); SDNode *N0 = Op.getOperand(0).getNode(); SDNode *N1 = Op.getOperand(1).getNode(); unsigned NewOpc = 0; bool isMLA = false; bool isN0SExt = isSignExtended(N0, DAG); bool isN1SExt = isSignExtended(N1, DAG); if (isN0SExt && isN1SExt) NewOpc = ARMISD::VMULLs; else { bool isN0ZExt = isZeroExtended(N0, DAG); bool isN1ZExt = isZeroExtended(N1, DAG); if (isN0ZExt && isN1ZExt) NewOpc = ARMISD::VMULLu; else if (isN1SExt || isN1ZExt) { // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these // into (s/zext A * s/zext C) + (s/zext B * s/zext C) if (isN1SExt && isAddSubSExt(N0, DAG)) { NewOpc = ARMISD::VMULLs; isMLA = true; } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { NewOpc = ARMISD::VMULLu; isMLA = true; } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { std::swap(N0, N1); NewOpc = ARMISD::VMULLu; isMLA = true; } } if (!NewOpc) { if (VT == MVT::v2i64) // Fall through to expand this. It is not legal. return SDValue(); else // Other vector multiplications are legal. return Op; } } // Legalize to a VMULL instruction. SDLoc DL(Op); SDValue Op0; SDValue Op1 = SkipExtensionForVMULL(N1, DAG); if (!isMLA) { Op0 = SkipExtensionForVMULL(N0, DAG); assert(Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL"); return DAG.getNode(NewOpc, DL, VT, Op0, Op1); } // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during // isel lowering to take advantage of no-stall back to back vmul + vmla. // vmull q0, d4, d6 // vmlal q0, d5, d6 // is faster than // vaddl q0, d4, d5 // vmovl q1, d6 // vmul q0, q0, q1 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); EVT Op1VT = Op1.getValueType(); return DAG.getNode(N0->getOpcode(), DL, VT, DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); } static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl, SelectionDAG &DAG) { // TODO: Should this propagate fast-math-flags? // Convert to float // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); // Get reciprocal estimate. // float4 recip = vrecpeq_f32(yf); Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), Y); // Because char has a smaller range than uchar, we can actually get away // without any newton steps. This requires that we use a weird bias // of 0xb000, however (again, this has been exhaustively tested). // float4 result = as_float4(as_int4(xf*recip) + 0xb000); X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); Y = DAG.getConstant(0xb000, dl, MVT::v4i32); X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); // Convert back to short. X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); return X; } static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl, SelectionDAG &DAG) { // TODO: Should this propagate fast-math-flags? SDValue N2; // Convert to float. // float4 yf = vcvt_f32_s32(vmovl_s16(y)); // float4 xf = vcvt_f32_s32(vmovl_s16(x)); N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); // Use reciprocal estimate and one refinement step. // float4 recip = vrecpeq_f32(yf); // recip *= vrecpsq_f32(yf, recip); N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), N1); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), N1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); // Because short has a smaller range than ushort, we can actually get away // with only a single newton step. This requires that we use a weird bias // of 89, however (again, this has been exhaustively tested). // float4 result = as_float4(as_int4(xf*recip) + 0x89); N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); N1 = DAG.getConstant(0x89, dl, MVT::v4i32); N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); // Convert back to integer and return. // return vmovn_s32(vcvt_s32_f32(result)); N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); return N0; } static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = Op.getValueType(); assert((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::SDIV"); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2, N3; if (VT == MVT::v8i8) { N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(4, dl)); N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(4, dl)); N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(0, dl)); N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(0, dl)); N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); N0 = LowerCONCAT_VECTORS(N0, DAG, ST); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); return N0; } return LowerSDIV_v4i16(N0, N1, dl, DAG); } static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { // TODO: Should this propagate fast-math-flags? EVT VT = Op.getValueType(); assert((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::UDIV"); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2, N3; if (VT == MVT::v8i8) { N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(4, dl)); N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(4, dl)); N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(0, dl)); N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(0, dl)); N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); N0 = LowerCONCAT_VECTORS(N0, DAG, ST); N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl, MVT::i32), N0); return N0; } // v4i16 sdiv ... Convert to float. // float4 yf = vcvt_f32_s32(vmovl_u16(y)); // float4 xf = vcvt_f32_s32(vmovl_u16(x)); N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); // Use reciprocal estimate and two refinement steps. // float4 recip = vrecpeq_f32(yf); // recip *= vrecpsq_f32(yf, recip); // recip *= vrecpsq_f32(yf, recip); N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), BN1); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), BN1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), BN1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); // Simply multiplying by the reciprocal estimate can leave us a few ulps // too low, so we add 2 ulps (exhaustive testing shows that this is enough, // and that it will never cause us to return an answer too large). // float4 result = as_float4(as_int4(xf*recip) + 2); N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); N1 = DAG.getConstant(2, dl, MVT::v4i32); N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); // Convert back to integer and return. // return vmovn_u32(vcvt_s32_f32(result)); N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); return N0; } static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) { SDNode *N = Op.getNode(); EVT VT = N->getValueType(0); SDVTList VTs = DAG.getVTList(VT, MVT::i32); SDValue Carry = Op.getOperand(2); SDLoc DL(Op); SDValue Result; if (Op.getOpcode() == ISD::ADDCARRY) { // This converts the boolean value carry into the carry flag. Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); // Do the addition proper using the carry flag we wanted. Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0), Op.getOperand(1), Carry); // Now convert the carry flag into a boolean value. Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG); } else { // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we // have to invert the carry first. Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, DAG.getConstant(1, DL, MVT::i32), Carry); // This converts the boolean value carry into the carry flag. Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); // Do the subtraction proper using the carry flag we wanted. Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0), Op.getOperand(1), Carry); // Now convert the carry flag into a boolean value. Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG); // But the carry returned by ARMISD::SUBE is not a borrow as expected // by ISD::SUBCARRY, so compute 1 - C. Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, DAG.getConstant(1, DL, MVT::i32), Carry); } // Return both values. return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry); } SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin()); // For iOS, we want to call an alternative entry point: __sincos_stret, // return values are passed via sret. SDLoc dl(Op); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); auto PtrVT = getPointerTy(DAG.getDataLayout()); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Pair of floats / doubles used to pass the result. Type *RetTy = StructType::get(ArgTy, ArgTy); auto &DL = DAG.getDataLayout(); ArgListTy Args; bool ShouldUseSRet = Subtarget->isAPCS_ABI(); SDValue SRet; if (ShouldUseSRet) { // Create stack object for sret. const uint64_t ByteSize = DL.getTypeAllocSize(RetTy); const Align StackAlign = DL.getPrefTypeAlign(RetTy); int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL)); ArgListEntry Entry; Entry.Node = SRet; Entry.Ty = RetTy->getPointerTo(); Entry.IsSExt = false; Entry.IsZExt = false; Entry.IsSRet = true; Args.push_back(Entry); RetTy = Type::getVoidTy(*DAG.getContext()); } ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.IsSExt = false; Entry.IsZExt = false; Args.push_back(Entry); RTLIB::Libcall LC = (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32; const char *LibcallName = getLibcallName(LC); CallingConv::ID CC = getLibcallCallingConv(LC); SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL)); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(DAG.getEntryNode()) .setCallee(CC, RetTy, Callee, std::move(Args)) .setDiscardResult(ShouldUseSRet); std::pair CallResult = LowerCallTo(CLI); if (!ShouldUseSRet) return CallResult.first; SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo()); // Address of cos field. SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet, DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl)); SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo()); SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, LoadSin.getValue(0), LoadCos.getValue(0)); } SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, bool Signed, SDValue &Chain) const { EVT VT = Op.getValueType(); assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected type for custom lowering DIV"); SDLoc dl(Op); const auto &DL = DAG.getDataLayout(); const auto &TLI = DAG.getTargetLoweringInfo(); const char *Name = nullptr; if (Signed) Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64"; else Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64"; SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL)); ARMTargetLowering::ArgListTy Args; for (auto AI : {1, 0}) { ArgListEntry Arg; Arg.Node = Op.getOperand(AI); Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext()); Args.push_back(Arg); } CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(Chain) .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()), ES, std::move(Args)); return LowerCallTo(CLI).first; } // This is a code size optimisation: return the original SDIV node to // DAGCombiner when we don't want to expand SDIV into a sequence of // instructions, and an empty node otherwise which will cause the // SDIV to be expanded in DAGCombine. SDValue ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const { // TODO: Support SREM if (N->getOpcode() != ISD::SDIV) return SDValue(); const auto &ST = static_cast(DAG.getSubtarget()); const bool MinSize = ST.hasMinSize(); const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode() : ST.hasDivideInARMMode(); // Don't touch vector types; rewriting this may lead to scalarizing // the int divs. if (N->getOperand(0).getValueType().isVector()) return SDValue(); // Bail if MinSize is not set, and also for both ARM and Thumb mode we need // hwdiv support for this to be really profitable. if (!(MinSize && HasDivide)) return SDValue(); // ARM mode is a bit simpler than Thumb: we can handle large power // of 2 immediates with 1 mov instruction; no further checks required, // just return the sdiv node. if (!ST.isThumb()) return SDValue(N, 0); // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV, // and thus lose the code size benefits of a MOVS that requires only 2. // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here, // but as it's doing exactly this, it's not worth the trouble to get TTI. if (Divisor.sgt(128)) return SDValue(); return SDValue(N, 0); } SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed) const { assert(Op.getValueType() == MVT::i32 && "unexpected type for custom lowering DIV"); SDLoc dl(Op); SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Op.getOperand(1)); return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); } static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) { SDLoc DL(N); SDValue Op = N->getOperand(1); if (N->getValueType(0) == MVT::i32) return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op, DAG.getConstant(0, DL, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op, DAG.getConstant(1, DL, MVT::i32)); return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi)); } void ARMTargetLowering::ExpandDIV_Windows( SDValue Op, SelectionDAG &DAG, bool Signed, SmallVectorImpl &Results) const { const auto &DL = DAG.getDataLayout(); const auto &TLI = DAG.getTargetLoweringInfo(); assert(Op.getValueType() == MVT::i64 && "unexpected type for custom lowering DIV"); SDLoc dl(Op); SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode()); SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result); SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result, DAG.getConstant(32, dl, TLI.getPointerTy(DL))); Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper)); } static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) { LoadSDNode *LD = cast(Op.getNode()); EVT MemVT = LD->getMemoryVT(); assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) && "Expected a predicate type!"); assert(MemVT == Op.getValueType()); assert(LD->getExtensionType() == ISD::NON_EXTLOAD && "Expected a non-extending load"); assert(LD->isUnindexed() && "Expected a unindexed load"); // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We // need to make sure that 8/4 bits are actually loaded into the correct // place, which means loading the value and then shuffling the values into // the bottom bits of the predicate. // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect // for BE). SDLoc dl(Op); SDValue Load = DAG.getExtLoad( ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(), EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()), LD->getMemOperand()); SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Load); if (MemVT != MVT::v16i1) Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred, DAG.getConstant(0, dl, MVT::i32)); return DAG.getMergeValues({Pred, Load.getValue(1)}, dl); } void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { LoadSDNode *LD = cast(N); EVT MemVT = LD->getMemoryVT(); assert(LD->isUnindexed() && "Loads should be unindexed at this point."); if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() && !Subtarget->isThumb1Only() && LD->isVolatile()) { SDLoc dl(N); SDValue Result = DAG.getMemIntrinsicNode( ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}), {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand()); SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1); SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0); SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); Results.append({Pair, Result.getValue(2)}); } } static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) { StoreSDNode *ST = cast(Op.getNode()); EVT MemVT = ST->getMemoryVT(); assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) && "Expected a predicate type!"); assert(MemVT == ST->getValue().getValueType()); assert(!ST->isTruncatingStore() && "Expected a non-extending store"); assert(ST->isUnindexed() && "Expected a unindexed store"); // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits // unset and a scalar store. SDLoc dl(Op); SDValue Build = ST->getValue(); if (MemVT != MVT::v16i1) { SmallVector Ops; for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build, DAG.getConstant(I, dl, MVT::i32))); for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++) Ops.push_back(DAG.getUNDEF(MVT::i32)); Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops); } SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build); return DAG.getTruncStore( ST->getChain(), dl, GRP, ST->getBasePtr(), EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()), ST->getMemOperand()); } static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { StoreSDNode *ST = cast(Op.getNode()); EVT MemVT = ST->getMemoryVT(); assert(ST->isUnindexed() && "Stores should be unindexed at this point."); if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() && !Subtarget->isThumb1Only() && ST->isVolatile()) { SDNode *N = Op.getNode(); SDLoc dl(N); SDValue Lo = DAG.getNode( ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(), DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl, MVT::i32)); SDValue Hi = DAG.getNode( ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(), DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl, MVT::i32)); return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other), {ST->getChain(), Lo, Hi, ST->getBasePtr()}, MemVT, ST->getMemOperand()); } else if (Subtarget->hasMVEIntegerOps() && ((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1))) { return LowerPredicateStore(Op, DAG); } return SDValue(); } static bool isZeroVector(SDValue N) { return (ISD::isBuildVectorAllZeros(N.getNode()) || (N->getOpcode() == ARMISD::VMOVIMM && isNullConstant(N->getOperand(0)))); } static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) { MaskedLoadSDNode *N = cast(Op.getNode()); MVT VT = Op.getSimpleValueType(); SDValue Mask = N->getMask(); SDValue PassThru = N->getPassThru(); SDLoc dl(Op); if (isZeroVector(PassThru)) return Op; // MVE Masked loads use zero as the passthru value. Here we convert undef to // zero too, and other values are lowered to a select. SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT, DAG.getTargetConstant(0, dl, MVT::i32)); SDValue NewLoad = DAG.getMaskedLoad( VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec, N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(), N->getExtensionType(), N->isExpandingLoad()); SDValue Combo = NewLoad; bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST || PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) && isZeroVector(PassThru->getOperand(0)); if (!PassThru.isUndef() && !PassThruIsCastZero) Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru); return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl); } static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { if (!ST->hasMVEIntegerOps()) return SDValue(); SDLoc dl(Op); unsigned BaseOpcode = 0; switch (Op->getOpcode()) { default: llvm_unreachable("Expected VECREDUCE opcode"); case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break; case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break; } SDValue Op0 = Op->getOperand(0); EVT VT = Op0.getValueType(); EVT EltVT = VT.getVectorElementType(); unsigned NumElts = VT.getVectorNumElements(); unsigned NumActiveLanes = NumElts; assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 || NumActiveLanes == 2) && "Only expected a power 2 vector size"); // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements // allows us to easily extract vector elements from the lanes. while (NumActiveLanes > 4) { unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32; SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0); Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev); NumActiveLanes /= 2; } SDValue Res; if (NumActiveLanes == 4) { // The remaining 4 elements are summed sequentially SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getConstant(0 * NumElts / 4, dl, MVT::i32)); SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getConstant(1 * NumElts / 4, dl, MVT::i32)); SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getConstant(2 * NumElts / 4, dl, MVT::i32)); SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getConstant(3 * NumElts / 4, dl, MVT::i32)); SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags()); SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags()); Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags()); } else { SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getConstant(0, dl, MVT::i32)); SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getConstant(1, dl, MVT::i32)); Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags()); } // Result type may be wider than element type. if (EltVT != Op->getValueType(0)) Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res); return Res; } static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { if (!ST->hasMVEFloatOps()) return SDValue(); return LowerVecReduce(Op, DAG, ST); } static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { if (isStrongerThanMonotonic(cast(Op)->getOrdering())) // Acquire/Release load/store is not legal for targets without a dmb or // equivalent available. return SDValue(); // Monotonic load/store is legal for all targets. return Op; } static void ReplaceREADCYCLECOUNTER(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { SDLoc DL(N); // Under Power Management extensions, the cycle-count is: // mrc p15, #0, , c9, c13, #0 SDValue Ops[] = { N->getOperand(0), // Chain DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32), DAG.getTargetConstant(15, DL, MVT::i32), DAG.getTargetConstant(0, DL, MVT::i32), DAG.getTargetConstant(9, DL, MVT::i32), DAG.getTargetConstant(13, DL, MVT::i32), DAG.getTargetConstant(0, DL, MVT::i32) }; SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, DAG.getVTList(MVT::i32, MVT::Other), Ops); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32, DAG.getConstant(0, DL, MVT::i32))); Results.push_back(Cycles32.getValue(1)); } static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { SDLoc dl(V.getNode()); SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32); SDValue VHi = DAG.getAnyExtOrTrunc( DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)), dl, MVT::i32); bool isBigEndian = DAG.getDataLayout().isBigEndian(); if (isBigEndian) std::swap (VLo, VHi); SDValue RegClass = DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32); SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32); SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32); const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; return SDValue( DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); } static void ReplaceCMP_SWAP_64Results(SDNode *N, SmallVectorImpl & Results, SelectionDAG &DAG) { assert(N->getValueType(0) == MVT::i64 && "AtomicCmpSwap on types less than 64 should be legal"); SDValue Ops[] = {N->getOperand(1), createGPRPairNode(DAG, N->getOperand(2)), createGPRPairNode(DAG, N->getOperand(3)), N->getOperand(0)}; SDNode *CmpSwap = DAG.getMachineNode( ARM::CMP_SWAP_64, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops); MachineMemOperand *MemOp = cast(N)->getMemOperand(); DAG.setNodeMemRefs(cast(CmpSwap), {MemOp}); bool isBigEndian = DAG.getDataLayout().isBigEndian(); SDValue Lo = DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0, SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)); SDValue Hi = DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1, SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi)); Results.push_back(SDValue(CmpSwap, 2)); } SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); SDValue Chain = Op.getOperand(0); SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); ISD::CondCode CC = cast(Op.getOperand(3))->get(); bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS; // If we don't have instructions of this float type then soften to a libcall // and use SETCC instead. if (isUnsupportedFloatingType(LHS.getValueType())) { DAG.getTargetLoweringInfo().softenSetCCOperands( DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling); if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS, DAG.getCondCode(CC)); return DAG.getMergeValues({Result, Chain}, dl); } ARMCC::CondCodes CondCode, CondCode2; FPCCToARMCC(CC, CondCode, CondCode2); // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit // in CMPFP and CMPFPE, but instead it should be made explicit by these // instructions using a chain instead of glue. This would also fix the problem // here (and also in LowerSELECT_CC) where we generate two comparisons when // CondCode2 != AL. SDValue True = DAG.getConstant(1, dl, VT); SDValue False = DAG.getConstant(0, dl, VT); SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling); SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG); if (CondCode2 != ARMCC::AL) { ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32); Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling); Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG); } return DAG.getMergeValues({Result, Chain}, dl); } SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump()); switch (Op.getOpcode()) { default: llvm_unreachable("Don't know how to custom lower this!"); case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, Subtarget); case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget); case ISD::SHL: case ISD::SRL: case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); case ISD::SREM: return LowerREM(Op.getNode(), DAG); case ISD::UREM: return LowerREM(Op.getNode(), DAG); case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); case ISD::SRL_PARTS: case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget); case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget); case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG); case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); case ISD::SDIV: if (Subtarget->isTargetWindows() && !Op.getValueType().isVector()) return LowerDIV_Windows(Op, DAG, /* Signed */ true); return LowerSDIV(Op, DAG, Subtarget); case ISD::UDIV: if (Subtarget->isTargetWindows() && !Op.getValueType().isVector()) return LowerDIV_Windows(Op, DAG, /* Signed */ false); return LowerUDIV(Op, DAG, Subtarget); case ISD::ADDCARRY: case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG); case ISD::SADDO: case ISD::SSUBO: return LowerSignedALUO(Op, DAG); case ISD::UADDO: case ISD::USUBO: return LowerUnsignedALUO(Op, DAG); case ISD::SADDSAT: case ISD::SSUBSAT: return LowerSADDSUBSAT(Op, DAG, Subtarget); case ISD::LOAD: return LowerPredicateLoad(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG, Subtarget); case ISD::MLOAD: return LowerMLOAD(Op, DAG); case ISD::VECREDUCE_MUL: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: return LowerVecReduce(Op, DAG, Subtarget); case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAX: return LowerVecReduceF(Op, DAG, Subtarget); case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); case ISD::SDIVREM: case ISD::UDIVREM: return LowerDivRem(Op, DAG); case ISD::DYNAMIC_STACKALLOC: if (Subtarget->isTargetWindows()) return LowerDYNAMIC_STACKALLOC(Op, DAG); llvm_unreachable("Don't know how to custom lower this!"); case ISD::STRICT_FP_ROUND: case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); case ISD::STRICT_FP_EXTEND: case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG); case ARMISD::WIN__DBZCHK: return SDValue(); } } static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) { unsigned IntNo = cast(N->getOperand(0))->getZExtValue(); unsigned Opc = 0; if (IntNo == Intrinsic::arm_smlald) Opc = ARMISD::SMLALD; else if (IntNo == Intrinsic::arm_smlaldx) Opc = ARMISD::SMLALDX; else if (IntNo == Intrinsic::arm_smlsld) Opc = ARMISD::SMLSLD; else if (IntNo == Intrinsic::arm_smlsldx) Opc = ARMISD::SMLSLDX; else return; SDLoc dl(N); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), DAG.getConstant(0, dl, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), DAG.getConstant(1, dl, MVT::i32)); SDValue LongMul = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::i32), N->getOperand(1), N->getOperand(2), Lo, Hi); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LongMul.getValue(0), LongMul.getValue(1))); } /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. void ARMTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDValue Res; switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this!"); case ISD::READ_REGISTER: ExpandREAD_REGISTER(N, Results, DAG); break; case ISD::BITCAST: Res = ExpandBITCAST(N, DAG, Subtarget); break; case ISD::SRL: case ISD::SRA: case ISD::SHL: Res = Expand64BitShift(N, DAG, Subtarget); break; case ISD::SREM: case ISD::UREM: Res = LowerREM(N, DAG); break; case ISD::SDIVREM: case ISD::UDIVREM: Res = LowerDivRem(SDValue(N, 0), DAG); assert(Res.getNumOperands() == 2 && "DivRem needs two values"); Results.push_back(Res.getValue(0)); Results.push_back(Res.getValue(1)); return; case ISD::SADDSAT: case ISD::SSUBSAT: Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget); break; case ISD::READCYCLECOUNTER: ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); return; case ISD::UDIV: case ISD::SDIV: assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows"); return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV, Results); case ISD::ATOMIC_CMP_SWAP: ReplaceCMP_SWAP_64Results(N, Results, DAG); return; case ISD::INTRINSIC_WO_CHAIN: return ReplaceLongIntrinsic(N, Results, DAG); case ISD::ABS: lowerABS(N, Results, DAG); return ; case ISD::LOAD: LowerLOAD(N, Results, DAG); break; } if (Res.getNode()) Results.push_back(Res); } //===----------------------------------------------------------------------===// // ARM Scheduler Hooks //===----------------------------------------------------------------------===// /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and /// registers the function context. void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB, MachineBasicBlock *DispatchBB, int FI) const { assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && "ROPI/RWPI not currently supported with SjLj"); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); MachineConstantPool *MCP = MF->getConstantPool(); ARMFunctionInfo *AFI = MF->getInfo(); const Function &F = MF->getFunction(); bool isThumb = Subtarget->isThumb(); bool isThumb2 = Subtarget->isThumb2(); unsigned PCLabelId = AFI->createPICLabelUId(); unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj); unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4)); const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass; // Grab constant pool and fixed stack memory operands. MachineMemOperand *CPMMO = MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 4, Align(4)); MachineMemOperand *FIMMOSt = MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, 4, Align(4)); // Load the address of the dispatch MBB into the jump buffer. if (isThumb2) { // Incoming value: jbuf // ldr.n r5, LCPI1_1 // orr r5, r5, #1 // add r5, pc // str r5, [$jbuf, #+4] ; &jbuf[1] Register NewVReg1 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) .addConstantPoolIndex(CPI) .addMemOperand(CPMMO) .add(predOps(ARMCC::AL)); // Set the low bit because of thumb mode. Register NewVReg2 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(0x01) .add(predOps(ARMCC::AL)) .add(condCodeOp()); Register NewVReg3 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) .addReg(NewVReg2, RegState::Kill) .addImm(PCLabelId); BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) .addReg(NewVReg3, RegState::Kill) .addFrameIndex(FI) .addImm(36) // &jbuf[1] :: pc .addMemOperand(FIMMOSt) .add(predOps(ARMCC::AL)); } else if (isThumb) { // Incoming value: jbuf // ldr.n r1, LCPI1_4 // add r1, pc // mov r2, #1 // orrs r1, r2 // add r2, $jbuf, #+4 ; &jbuf[1] // str r1, [r2] Register NewVReg1 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) .addConstantPoolIndex(CPI) .addMemOperand(CPMMO) .add(predOps(ARMCC::AL)); Register NewVReg2 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(PCLabelId); // Set the low bit because of thumb mode. Register NewVReg3 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) .addReg(ARM::CPSR, RegState::Define) .addImm(1) .add(predOps(ARMCC::AL)); Register NewVReg4 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg2, RegState::Kill) .addReg(NewVReg3, RegState::Kill) .add(predOps(ARMCC::AL)); Register NewVReg5 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5) .addFrameIndex(FI) .addImm(36); // &jbuf[1] :: pc BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) .addReg(NewVReg4, RegState::Kill) .addReg(NewVReg5, RegState::Kill) .addImm(0) .addMemOperand(FIMMOSt) .add(predOps(ARMCC::AL)); } else { // Incoming value: jbuf // ldr r1, LCPI1_1 // add r1, pc, r1 // str r1, [$jbuf, #+4] ; &jbuf[1] Register NewVReg1 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) .addConstantPoolIndex(CPI) .addImm(0) .addMemOperand(CPMMO) .add(predOps(ARMCC::AL)); Register NewVReg2 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(PCLabelId) .add(predOps(ARMCC::AL)); BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) .addReg(NewVReg2, RegState::Kill) .addFrameIndex(FI) .addImm(36) // &jbuf[1] :: pc .addMemOperand(FIMMOSt) .add(predOps(ARMCC::AL)); } } void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); MachineFrameInfo &MFI = MF->getFrameInfo(); int FI = MFI.getFunctionContextIndex(); const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass : &ARM::GPRnopcRegClass; // Get a mapping of the call site numbers to all of the landing pads they're // associated with. DenseMap> CallSiteNumToLPad; unsigned MaxCSNum = 0; for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) { if (!BB->isEHPad()) continue; // FIXME: We should assert that the EH_LABEL is the first MI in the landing // pad. for (MachineBasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { if (!II->isEHLabel()) continue; MCSymbol *Sym = II->getOperand(0).getMCSymbol(); if (!MF->hasCallSiteLandingPad(Sym)) continue; SmallVectorImpl &CallSiteIdxs = MF->getCallSiteLandingPad(Sym); for (SmallVectorImpl::iterator CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); CSI != CSE; ++CSI) { CallSiteNumToLPad[*CSI].push_back(&*BB); MaxCSNum = std::max(MaxCSNum, *CSI); } break; } } // Get an ordered list of the machine basic blocks for the jump table. std::vector LPadList; SmallPtrSet InvokeBBs; LPadList.reserve(CallSiteNumToLPad.size()); for (unsigned I = 1; I <= MaxCSNum; ++I) { SmallVectorImpl &MBBList = CallSiteNumToLPad[I]; for (SmallVectorImpl::iterator II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { LPadList.push_back(*II); InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); } } assert(!LPadList.empty() && "No landing pad destinations for the dispatch jump table!"); // Create the jump table and associated information. MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); unsigned MJTI = JTI->createJumpTableIndex(LPadList); // Create the MBBs for the dispatch code. // Shove the dispatch's address into the return slot in the function context. MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); DispatchBB->setIsEHPad(); MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); unsigned trap_opcode; if (Subtarget->isThumb()) trap_opcode = ARM::tTRAP; else trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; BuildMI(TrapBB, dl, TII->get(trap_opcode)); DispatchBB->addSuccessor(TrapBB); MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); DispatchBB->addSuccessor(DispContBB); // Insert and MBBs. MF->insert(MF->end(), DispatchBB); MF->insert(MF->end(), DispContBB); MF->insert(MF->end(), TrapBB); // Insert code into the entry block that creates and registers the function // context. SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); MachineMemOperand *FIMMOLd = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4)); MachineInstrBuilder MIB; MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); const ARMBaseInstrInfo *AII = static_cast(TII); const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); // Add a register mask with no preserved registers. This results in all // registers being marked as clobbered. This can't work if the dispatch block // is in a Thumb1 function and is linked with ARM code which uses the FP // registers, as there is no way to preserve the FP registers in Thumb1 mode. MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF)); bool IsPositionIndependent = isPositionIndependent(); unsigned NumLPads = LPadList.size(); if (Subtarget->isThumb2()) { Register NewVReg1 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) .addFrameIndex(FI) .addImm(4) .addMemOperand(FIMMOLd) .add(predOps(ARMCC::AL)); if (NumLPads < 256) { BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) .addReg(NewVReg1) .addImm(LPadList.size()) .add(predOps(ARMCC::AL)); } else { Register VReg1 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) .addImm(NumLPads & 0xFFFF) .add(predOps(ARMCC::AL)); unsigned VReg2 = VReg1; if ((NumLPads & 0xFFFF0000) != 0) { VReg2 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) .addReg(VReg1) .addImm(NumLPads >> 16) .add(predOps(ARMCC::AL)); } BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) .addReg(NewVReg1) .addReg(VReg2) .add(predOps(ARMCC::AL)); } BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); Register NewVReg3 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3) .addJumpTableIndex(MJTI) .add(predOps(ARMCC::AL)); Register NewVReg4 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) .addReg(NewVReg3, RegState::Kill) .addReg(NewVReg1) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)) .add(predOps(ARMCC::AL)) .add(condCodeOp()); BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) .addReg(NewVReg4, RegState::Kill) .addReg(NewVReg1) .addJumpTableIndex(MJTI); } else if (Subtarget->isThumb()) { Register NewVReg1 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) .addFrameIndex(FI) .addImm(1) .addMemOperand(FIMMOLd) .add(predOps(ARMCC::AL)); if (NumLPads < 256) { BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) .addReg(NewVReg1) .addImm(NumLPads) .add(predOps(ARMCC::AL)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); const Constant *C = ConstantInt::get(Int32Ty, NumLPads); // MachineConstantPool wants an explicit alignment. Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment); Register VReg1 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) .addReg(VReg1, RegState::Define) .addConstantPoolIndex(Idx) .add(predOps(ARMCC::AL)); BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) .addReg(NewVReg1) .addReg(VReg1) .add(predOps(ARMCC::AL)); } BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); Register NewVReg2 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg1) .addImm(2) .add(predOps(ARMCC::AL)); Register NewVReg3 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) .addJumpTableIndex(MJTI) .add(predOps(ARMCC::AL)); Register NewVReg4 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg2, RegState::Kill) .addReg(NewVReg3) .add(predOps(ARMCC::AL)); MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, Align(4)); Register NewVReg5 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) .addReg(NewVReg4, RegState::Kill) .addImm(0) .addMemOperand(JTMMOLd) .add(predOps(ARMCC::AL)); unsigned NewVReg6 = NewVReg5; if (IsPositionIndependent) { NewVReg6 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg5, RegState::Kill) .addReg(NewVReg3) .add(predOps(ARMCC::AL)); } BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) .addReg(NewVReg6, RegState::Kill) .addJumpTableIndex(MJTI); } else { Register NewVReg1 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) .addFrameIndex(FI) .addImm(4) .addMemOperand(FIMMOLd) .add(predOps(ARMCC::AL)); if (NumLPads < 256) { BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) .addReg(NewVReg1) .addImm(NumLPads) .add(predOps(ARMCC::AL)); } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { Register VReg1 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) .addImm(NumLPads & 0xFFFF) .add(predOps(ARMCC::AL)); unsigned VReg2 = VReg1; if ((NumLPads & 0xFFFF0000) != 0) { VReg2 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) .addReg(VReg1) .addImm(NumLPads >> 16) .add(predOps(ARMCC::AL)); } BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) .addReg(NewVReg1) .addReg(VReg2) .add(predOps(ARMCC::AL)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); const Constant *C = ConstantInt::get(Int32Ty, NumLPads); // MachineConstantPool wants an explicit alignment. Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment); Register VReg1 = MRI->createVirtualRegister(TRC); BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) .addReg(VReg1, RegState::Define) .addConstantPoolIndex(Idx) .addImm(0) .add(predOps(ARMCC::AL)); BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) .addReg(NewVReg1) .addReg(VReg1, RegState::Kill) .add(predOps(ARMCC::AL)); } BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); Register NewVReg3 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) .addReg(NewVReg1) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)) .add(predOps(ARMCC::AL)) .add(condCodeOp()); Register NewVReg4 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) .addJumpTableIndex(MJTI) .add(predOps(ARMCC::AL)); MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, Align(4)); Register NewVReg5 = MRI->createVirtualRegister(TRC); BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) .addReg(NewVReg3, RegState::Kill) .addReg(NewVReg4) .addImm(0) .addMemOperand(JTMMOLd) .add(predOps(ARMCC::AL)); if (IsPositionIndependent) { BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) .addReg(NewVReg5, RegState::Kill) .addReg(NewVReg4) .addJumpTableIndex(MJTI); } else { BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) .addReg(NewVReg5, RegState::Kill) .addJumpTableIndex(MJTI); } } // Add the jump table entries as successors to the MBB. SmallPtrSet SeenMBBs; for (std::vector::iterator I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { MachineBasicBlock *CurMBB = *I; if (SeenMBBs.insert(CurMBB).second) DispContBB->addSuccessor(CurMBB); } // N.B. the order the invoke BBs are processed in doesn't matter here. const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF); SmallVector MBBLPads; for (MachineBasicBlock *BB : InvokeBBs) { // Remove the landing pad successor from the invoke block and replace it // with the new dispatch block. SmallVector Successors(BB->succ_begin(), BB->succ_end()); while (!Successors.empty()) { MachineBasicBlock *SMBB = Successors.pop_back_val(); if (SMBB->isEHPad()) { BB->removeSuccessor(SMBB); MBBLPads.push_back(SMBB); } } BB->addSuccessor(DispatchBB, BranchProbability::getZero()); BB->normalizeSuccProbs(); // Find the invoke call and mark all of the callee-saved registers as // 'implicit defined' so that they're spilled. This prevents code from // moving instructions to before the EH block, where they will never be // executed. for (MachineBasicBlock::reverse_iterator II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { if (!II->isCall()) continue; DenseMap DefRegs; for (MachineInstr::mop_iterator OI = II->operands_begin(), OE = II->operands_end(); OI != OE; ++OI) { if (!OI->isReg()) continue; DefRegs[OI->getReg()] = true; } MachineInstrBuilder MIB(*MF, &*II); for (unsigned i = 0; SavedRegs[i] != 0; ++i) { unsigned Reg = SavedRegs[i]; if (Subtarget->isThumb2() && !ARM::tGPRRegClass.contains(Reg) && !ARM::hGPRRegClass.contains(Reg)) continue; if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) continue; if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) continue; if (!DefRegs[Reg]) MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); } break; } } // Mark all former landing pads as non-landing pads. The dispatch is the only // landing pad now. for (SmallVectorImpl::iterator I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) (*I)->setIsEHPad(false); // The instruction is gone now. MI.eraseFromParent(); } static MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I != Succ) return *I; llvm_unreachable("Expecting a BB with two successors!"); } /// Return the load opcode for a given load size. If load size >= 8, /// neon opcode will be returned. static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) { if (LdSize >= 8) return LdSize == 16 ? ARM::VLD1q32wb_fixed : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0; if (IsThumb1) return LdSize == 4 ? ARM::tLDRi : LdSize == 2 ? ARM::tLDRHi : LdSize == 1 ? ARM::tLDRBi : 0; if (IsThumb2) return LdSize == 4 ? ARM::t2LDR_POST : LdSize == 2 ? ARM::t2LDRH_POST : LdSize == 1 ? ARM::t2LDRB_POST : 0; return LdSize == 4 ? ARM::LDR_POST_IMM : LdSize == 2 ? ARM::LDRH_POST : LdSize == 1 ? ARM::LDRB_POST_IMM : 0; } /// Return the store opcode for a given store size. If store size >= 8, /// neon opcode will be returned. static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) { if (StSize >= 8) return StSize == 16 ? ARM::VST1q32wb_fixed : StSize == 8 ? ARM::VST1d32wb_fixed : 0; if (IsThumb1) return StSize == 4 ? ARM::tSTRi : StSize == 2 ? ARM::tSTRHi : StSize == 1 ? ARM::tSTRBi : 0; if (IsThumb2) return StSize == 4 ? ARM::t2STR_POST : StSize == 2 ? ARM::t2STRH_POST : StSize == 1 ? ARM::t2STRB_POST : 0; return StSize == 4 ? ARM::STR_POST_IMM : StSize == 2 ? ARM::STRH_POST : StSize == 1 ? ARM::STRB_POST_IMM : 0; } /// Emit a post-increment load operation with given size. The instructions /// will be added to BB at Pos. static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, const TargetInstrInfo *TII, const DebugLoc &dl, unsigned LdSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2) { unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2); assert(LdOpc != 0 && "Should have a load opcode"); if (LdSize >= 8) { BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrOut, RegState::Define) .addReg(AddrIn) .addImm(0) .add(predOps(ARMCC::AL)); } else if (IsThumb1) { // load + update AddrIn BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrIn) .addImm(0) .add(predOps(ARMCC::AL)); BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut) .add(t1CondCodeOp()) .addReg(AddrIn) .addImm(LdSize) .add(predOps(ARMCC::AL)); } else if (IsThumb2) { BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrOut, RegState::Define) .addReg(AddrIn) .addImm(LdSize) .add(predOps(ARMCC::AL)); } else { // arm BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) .addReg(AddrOut, RegState::Define) .addReg(AddrIn) .addReg(0) .addImm(LdSize) .add(predOps(ARMCC::AL)); } } /// Emit a post-increment store operation with given size. The instructions /// will be added to BB at Pos. static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, const TargetInstrInfo *TII, const DebugLoc &dl, unsigned StSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2) { unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2); assert(StOpc != 0 && "Should have a store opcode"); if (StSize >= 8) { BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) .addReg(AddrIn) .addImm(0) .addReg(Data) .add(predOps(ARMCC::AL)); } else if (IsThumb1) { // store + update AddrIn BuildMI(*BB, Pos, dl, TII->get(StOpc)) .addReg(Data) .addReg(AddrIn) .addImm(0) .add(predOps(ARMCC::AL)); BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut) .add(t1CondCodeOp()) .addReg(AddrIn) .addImm(StSize) .add(predOps(ARMCC::AL)); } else if (IsThumb2) { BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) .addReg(Data) .addReg(AddrIn) .addImm(StSize) .add(predOps(ARMCC::AL)); } else { // arm BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) .addReg(Data) .addReg(AddrIn) .addReg(0) .addImm(StSize) .add(predOps(ARMCC::AL)); } } MachineBasicBlock * ARMTargetLowering::EmitStructByval(MachineInstr &MI, MachineBasicBlock *BB) const { // This pseudo instruction has 3 operands: dst, src, size // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). // Otherwise, we will generate unrolled scalar copies. const TargetInstrInfo *TII = Subtarget->getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); Register dest = MI.getOperand(0).getReg(); Register src = MI.getOperand(1).getReg(); unsigned SizeVal = MI.getOperand(2).getImm(); unsigned Alignment = MI.getOperand(3).getImm(); DebugLoc dl = MI.getDebugLoc(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned UnitSize = 0; const TargetRegisterClass *TRC = nullptr; const TargetRegisterClass *VecTRC = nullptr; bool IsThumb1 = Subtarget->isThumb1Only(); bool IsThumb2 = Subtarget->isThumb2(); bool IsThumb = Subtarget->isThumb(); if (Alignment & 1) { UnitSize = 1; } else if (Alignment & 2) { UnitSize = 2; } else { // Check whether we can use NEON instructions. if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) && Subtarget->hasNEON()) { if ((Alignment % 16 == 0) && SizeVal >= 16) UnitSize = 16; else if ((Alignment % 8 == 0) && SizeVal >= 8) UnitSize = 8; } // Can't use NEON instructions. if (UnitSize == 0) UnitSize = 4; } // Select the correct opcode and register class for unit size load/store bool IsNeon = UnitSize >= 8; TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass; if (IsNeon) VecTRC = UnitSize == 16 ? &ARM::DPairRegClass : UnitSize == 8 ? &ARM::DPRRegClass : nullptr; unsigned BytesLeft = SizeVal % UnitSize; unsigned LoopSize = SizeVal - BytesLeft; if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { // Use LDR and STR to copy. // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) // [destOut] = STR_POST(scratch, destIn, UnitSize) unsigned srcIn = src; unsigned destIn = dest; for (unsigned i = 0; i < LoopSize; i+=UnitSize) { Register srcOut = MRI.createVirtualRegister(TRC); Register destOut = MRI.createVirtualRegister(TRC); Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut, IsThumb1, IsThumb2); emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut, IsThumb1, IsThumb2); srcIn = srcOut; destIn = destOut; } // Handle the leftover bytes with LDRB and STRB. // [scratch, srcOut] = LDRB_POST(srcIn, 1) // [destOut] = STRB_POST(scratch, destIn, 1) for (unsigned i = 0; i < BytesLeft; i++) { Register srcOut = MRI.createVirtualRegister(TRC); Register destOut = MRI.createVirtualRegister(TRC); Register scratch = MRI.createVirtualRegister(TRC); emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut, IsThumb1, IsThumb2); emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut, IsThumb1, IsThumb2); srcIn = srcOut; destIn = destOut; } MI.eraseFromParent(); // The instruction is gone now. return BB; } // Expand the pseudo op to a loop. // thisMBB: // ... // movw varEnd, # --> with thumb2 // movt varEnd, # // ldrcp varEnd, idx --> without thumb2 // fallthrough --> loopMBB // loopMBB: // PHI varPhi, varEnd, varLoop // PHI srcPhi, src, srcLoop // PHI destPhi, dst, destLoop // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) // [destLoop] = STR_POST(scratch, destPhi, UnitSize) // subs varLoop, varPhi, #UnitSize // bne loopMBB // fallthrough --> exitMBB // exitMBB: // epilogue to handle left-over bytes // [scratch, srcOut] = LDRB_POST(srcLoop, 1) // [destOut] = STRB_POST(scratch, destLoop, 1) MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // Load an immediate to varEnd. Register varEnd = MRI.createVirtualRegister(TRC); if (Subtarget->useMovt()) { unsigned Vtmp = varEnd; if ((LoopSize & 0xFFFF0000) != 0) Vtmp = MRI.createVirtualRegister(TRC); BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp) .addImm(LoopSize & 0xFFFF) .add(predOps(ARMCC::AL)); if ((LoopSize & 0xFFFF0000) != 0) BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd) .addReg(Vtmp) .addImm(LoopSize >> 16) .add(predOps(ARMCC::AL)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); const Constant *C = ConstantInt::get(Int32Ty, LoopSize); // MachineConstantPool wants an explicit alignment. Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment); MachineMemOperand *CPMMO = MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 4, Align(4)); if (IsThumb) BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)) .addReg(varEnd, RegState::Define) .addConstantPoolIndex(Idx) .add(predOps(ARMCC::AL)) .addMemOperand(CPMMO); else BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)) .addReg(varEnd, RegState::Define) .addConstantPoolIndex(Idx) .addImm(0) .add(predOps(ARMCC::AL)) .addMemOperand(CPMMO); } BB->addSuccessor(loopMBB); // Generate the loop body: // varPhi = PHI(varLoop, varEnd) // srcPhi = PHI(srcLoop, src) // destPhi = PHI(destLoop, dst) MachineBasicBlock *entryBB = BB; BB = loopMBB; Register varLoop = MRI.createVirtualRegister(TRC); Register varPhi = MRI.createVirtualRegister(TRC); Register srcLoop = MRI.createVirtualRegister(TRC); Register srcPhi = MRI.createVirtualRegister(TRC); Register destLoop = MRI.createVirtualRegister(TRC); Register destPhi = MRI.createVirtualRegister(TRC); BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) .addReg(varLoop).addMBB(loopMBB) .addReg(varEnd).addMBB(entryBB); BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) .addReg(srcLoop).addMBB(loopMBB) .addReg(src).addMBB(entryBB); BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) .addReg(destLoop).addMBB(loopMBB) .addReg(dest).addMBB(entryBB); // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop, IsThumb1, IsThumb2); emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop, IsThumb1, IsThumb2); // Decrement loop variable by UnitSize. if (IsThumb1) { BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop) .add(t1CondCodeOp()) .addReg(varPhi) .addImm(UnitSize) .add(predOps(ARMCC::AL)); } else { MachineInstrBuilder MIB = BuildMI(*BB, BB->end(), dl, TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); MIB.addReg(varPhi) .addImm(UnitSize) .add(predOps(ARMCC::AL)) .add(condCodeOp()); MIB->getOperand(5).setReg(ARM::CPSR); MIB->getOperand(5).setIsDef(true); } BuildMI(*BB, BB->end(), dl, TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); // loopMBB can loop back to loopMBB or fall through to exitMBB. BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // Add epilogue to handle BytesLeft. BB = exitMBB; auto StartOfExit = exitMBB->begin(); // [scratch, srcOut] = LDRB_POST(srcLoop, 1) // [destOut] = STRB_POST(scratch, destLoop, 1) unsigned srcIn = srcLoop; unsigned destIn = destLoop; for (unsigned i = 0; i < BytesLeft; i++) { Register srcOut = MRI.createVirtualRegister(TRC); Register destOut = MRI.createVirtualRegister(TRC); Register scratch = MRI.createVirtualRegister(TRC); emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut, IsThumb1, IsThumb2); emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut, IsThumb1, IsThumb2); srcIn = srcOut; destIn = destOut; } MI.eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI, MachineBasicBlock *MBB) const { const TargetMachine &TM = getTargetMachine(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); assert(Subtarget->isTargetWindows() && "__chkstk is only supported on Windows"); assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode"); // __chkstk takes the number of words to allocate on the stack in R4, and // returns the stack adjustment in number of bytes in R4. This will not // clober any other registers (other than the obvious lr). // // Although, technically, IP should be considered a register which may be // clobbered, the call itself will not touch it. Windows on ARM is a pure // thumb-2 environment, so there is no interworking required. As a result, we // do not expect a veneer to be emitted by the linker, clobbering IP. // // Each module receives its own copy of __chkstk, so no import thunk is // required, again, ensuring that IP is not clobbered. // // Finally, although some linkers may theoretically provide a trampoline for // out of range calls (which is quite common due to a 32M range limitation of // branches for Thumb), we can generate the long-call version via // -mcmodel=large, alleviating the need for the trampoline which may clobber // IP. switch (TM.getCodeModel()) { case CodeModel::Tiny: llvm_unreachable("Tiny code model not available on ARM."); case CodeModel::Small: case CodeModel::Medium: case CodeModel::Kernel: BuildMI(*MBB, MI, DL, TII.get(ARM::tBL)) .add(predOps(ARMCC::AL)) .addExternalSymbol("__chkstk") .addReg(ARM::R4, RegState::Implicit | RegState::Kill) .addReg(ARM::R4, RegState::Implicit | RegState::Define) .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead) .addReg(ARM::CPSR, RegState::Implicit | RegState::Define | RegState::Dead); break; case CodeModel::Large: { MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass); BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg) .addExternalSymbol("__chkstk"); BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr)) .add(predOps(ARMCC::AL)) .addReg(Reg, RegState::Kill) .addReg(ARM::R4, RegState::Implicit | RegState::Kill) .addReg(ARM::R4, RegState::Implicit | RegState::Define) .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead) .addReg(ARM::CPSR, RegState::Implicit | RegState::Define | RegState::Dead); break; } } BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP) .addReg(ARM::SP, RegState::Kill) .addReg(ARM::R4, RegState::Kill) .setMIFlags(MachineInstr::FrameSetup) .add(predOps(ARMCC::AL)) .add(condCodeOp()); MI.eraseFromParent(); return MBB; } MachineBasicBlock * ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI.getDebugLoc(); MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock(); MF->insert(++MBB->getIterator(), ContBB); ContBB->splice(ContBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); ContBB->transferSuccessorsAndUpdatePHIs(MBB); MBB->addSuccessor(ContBB); MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0)); MF->push_back(TrapBB); MBB->addSuccessor(TrapBB); BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8)) .addReg(MI.getOperand(0).getReg()) .addImm(0) .add(predOps(ARMCC::AL)); BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc)) .addMBB(TrapBB) .addImm(ARMCC::EQ) .addReg(ARM::CPSR); MI.eraseFromParent(); return ContBB; } // The CPSR operand of SelectItr might be missing a kill marker // because there were multiple uses of CPSR, and ISel didn't know // which to mark. Figure out whether SelectItr should have had a // kill marker, and set it if it should. Returns the correct kill // marker value. static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr, MachineBasicBlock* BB, const TargetRegisterInfo* TRI) { // Scan forward through BB for a use/def of CPSR. MachineBasicBlock::iterator miI(std::next(SelectItr)); for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { const MachineInstr& mi = *miI; if (mi.readsRegister(ARM::CPSR)) return false; if (mi.definesRegister(ARM::CPSR)) break; // Should have kill-flag - update below. } // If we hit the end of the block, check whether CPSR is live into a // successor. if (miI == BB->end()) { for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), sEnd = BB->succ_end(); sItr != sEnd; ++sItr) { MachineBasicBlock* succ = *sItr; if (succ->isLiveIn(ARM::CPSR)) return false; } } // We found a def, or hit the end of the basic block and CPSR wasn't live // out. SelectMI should have a kill flag on CPSR. SelectItr->addRegisterKilled(ARM::CPSR, TRI); return true; } MachineBasicBlock * ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); switch (MI.getOpcode()) { default: { MI.print(errs()); llvm_unreachable("Unexpected instr type to insert"); } // Thumb1 post-indexed loads are really just single-register LDMs. case ARM::tLDR_postidx: { MachineOperand Def(MI.getOperand(1)); BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD)) .add(Def) // Rn_wb .add(MI.getOperand(2)) // Rn .add(MI.getOperand(3)) // PredImm .add(MI.getOperand(4)) // PredReg .add(MI.getOperand(0)) // Rt .cloneMemRefs(MI); MI.eraseFromParent(); return BB; } // The Thumb2 pre-indexed stores have the same MI operands, they just // define them differently in the .td files from the isel patterns, so // they need pseudos. case ARM::t2STR_preidx: MI.setDesc(TII->get(ARM::t2STR_PRE)); return BB; case ARM::t2STRB_preidx: MI.setDesc(TII->get(ARM::t2STRB_PRE)); return BB; case ARM::t2STRH_preidx: MI.setDesc(TII->get(ARM::t2STRH_PRE)); return BB; case ARM::STRi_preidx: case ARM::STRBi_preidx: { unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM; // Decode the offset. unsigned Offset = MI.getOperand(4).getImm(); bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; Offset = ARM_AM::getAM2Offset(Offset); if (isSub) Offset = -Offset; MachineMemOperand *MMO = *MI.memoperands_begin(); BuildMI(*BB, MI, dl, TII->get(NewOpc)) .add(MI.getOperand(0)) // Rn_wb .add(MI.getOperand(1)) // Rt .add(MI.getOperand(2)) // Rn .addImm(Offset) // offset (skip GPR==zero_reg) .add(MI.getOperand(5)) // pred .add(MI.getOperand(6)) .addMemOperand(MMO); MI.eraseFromParent(); return BB; } case ARM::STRr_preidx: case ARM::STRBr_preidx: case ARM::STRH_preidx: { unsigned NewOpc; switch (MI.getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; } MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); for (unsigned i = 0; i < MI.getNumOperands(); ++i) MIB.add(MI.getOperand(i)); MI.eraseFromParent(); return BB; } case ARM::tMOVCCr_pseudo: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Check whether CPSR is live past the tMOVCCr_pseudo. const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); if (!MI.killsRegister(ARM::CPSR) && !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) { copy0MBB->addLiveIn(ARM::CPSR); sinkMBB->addLiveIn(ARM::CPSR); } // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII->get(ARM::tBcc)) .addMBB(sinkMBB) .addImm(MI.getOperand(3).getImm()) .addReg(MI.getOperand(4).getReg()); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg()) .addReg(MI.getOperand(1).getReg()) .addMBB(copy0MBB) .addReg(MI.getOperand(2).getReg()) .addMBB(thisMBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } case ARM::BCCi64: case ARM::BCCZi64: { // If there is an unconditional branch to the other successor, remove it. BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end()); // Compare both parts that make up the double comparison separately for // equality. bool RHSisZero = MI.getOpcode() == ARM::BCCZi64; Register LHS1 = MI.getOperand(1).getReg(); Register LHS2 = MI.getOperand(2).getReg(); if (RHSisZero) { BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(LHS1) .addImm(0) .add(predOps(ARMCC::AL)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(LHS2).addImm(0) .addImm(ARMCC::EQ).addReg(ARM::CPSR); } else { Register RHS1 = MI.getOperand(3).getReg(); Register RHS2 = MI.getOperand(4).getReg(); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(LHS1) .addReg(RHS1) .add(predOps(ARMCC::AL)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(LHS2).addReg(RHS2) .addImm(ARMCC::EQ).addReg(ARM::CPSR); } MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB(); MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); if (MI.getOperand(0).getImm() == ARMCC::NE) std::swap(destMBB, exitMBB); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); if (isThumb2) BuildMI(BB, dl, TII->get(ARM::t2B)) .addMBB(exitMBB) .add(predOps(ARMCC::AL)); else BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } case ARM::Int_eh_sjlj_setjmp: case ARM::Int_eh_sjlj_setjmp_nofp: case ARM::tInt_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: return BB; case ARM::Int_eh_sjlj_setup_dispatch: EmitSjLjDispatchBlock(MI, BB); return BB; case ARM::ABS: case ARM::t2ABS: { // To insert an ABS instruction, we have to insert the // diamond control-flow pattern. The incoming instruction knows the // source vreg to test against 0, the destination vreg to set, // the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. // It transforms // V1 = ABS V0 // into // V2 = MOVS V0 // BCC (branch to SinkBB if V0 >= 0) // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) // SinkBB: V1 = PHI(V2, V3) const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator BBI = ++BB->getIterator(); MachineFunction *Fn = BB->getParent(); MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); Fn->insert(BBI, RSBBB); Fn->insert(BBI, SinkBB); Register ABSSrcReg = MI.getOperand(1).getReg(); Register ABSDstReg = MI.getOperand(0).getReg(); bool ABSSrcKIll = MI.getOperand(1).isKill(); bool isThumb2 = Subtarget->isThumb2(); MachineRegisterInfo &MRI = Fn->getRegInfo(); // In Thumb mode S must not be specified if source register is the SP or // PC and if destination register is the SP, so restrict register class Register NewRsbDstReg = MRI.createVirtualRegister( isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass); // Transfer the remainder of BB and its successor edges to sinkMBB. SinkBB->splice(SinkBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); SinkBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(RSBBB); BB->addSuccessor(SinkBB); // fall through to SinkMBB RSBBB->addSuccessor(SinkBB); // insert a cmp at the end of BB BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(ABSSrcReg) .addImm(0) .add(predOps(ARMCC::AL)); // insert a bcc with opposite CC to ARMCC::MI at the end of BB BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); // insert rsbri in RSBBB // Note: BCC and rsbri will be converted into predicated rsbmi // by if-conversion pass BuildMI(*RSBBB, RSBBB->begin(), dl, TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0) .addImm(0) .add(predOps(ARMCC::AL)) .add(condCodeOp()); // insert PHI in SinkBB, // reuse ABSDstReg to not change uses of ABS instruction BuildMI(*SinkBB, SinkBB->begin(), dl, TII->get(ARM::PHI), ABSDstReg) .addReg(NewRsbDstReg).addMBB(RSBBB) .addReg(ABSSrcReg).addMBB(BB); // remove ABS instruction MI.eraseFromParent(); // return last added BB return SinkBB; } case ARM::COPY_STRUCT_BYVAL_I32: ++NumLoopByVals; return EmitStructByval(MI, BB); case ARM::WIN__CHKSTK: return EmitLowered__chkstk(MI, BB); case ARM::WIN__DBZCHK: return EmitLowered__dbzchk(MI, BB); case ARM::t2DoLoopStart: // We are just here to set a register allocation hint, prefering lr for the // input register to make it more likely to be movable and removable, later // in the pipeline. Register R = MI.getOperand(1).getReg(); MachineFunction *MF = MI.getParent()->getParent(); MF->getRegInfo().setRegAllocationHint(R, ARMRI::RegLR, 0); return BB; } } /// Attaches vregs to MEMCPY that it will use as scratch registers /// when it is expanded into LDM/STM. This is done as a post-isel lowering /// instead of as a custom inserter because we need the use list from the SDNode. static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget, MachineInstr &MI, const SDNode *Node) { bool isThumb1 = Subtarget->isThumb1Only(); DebugLoc DL = MI.getDebugLoc(); MachineFunction *MF = MI.getParent()->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); MachineInstrBuilder MIB(*MF, MI); // If the new dst/src is unused mark it as dead. if (!Node->hasAnyUseOfValue(0)) { MI.getOperand(0).setIsDead(true); } if (!Node->hasAnyUseOfValue(1)) { MI.getOperand(1).setIsDead(true); } // The MEMCPY both defines and kills the scratch registers. for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) { Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass : &ARM::GPRRegClass); MIB.addReg(TmpReg, RegState::Define|RegState::Dead); } } void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { if (MI.getOpcode() == ARM::MEMCPY) { attachMEMCPYScratchRegs(Subtarget, MI, Node); return; } const MCInstrDesc *MCID = &MI.getDesc(); // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, // RSC. Coming out of isel, they have an implicit CPSR def, but the optional // operand is still set to noreg. If needed, set the optional operand's // register to CPSR, and remove the redundant implicit def. // // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR). // Rename pseudo opcodes. unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode()); unsigned ccOutIdx; if (NewOpc) { const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo(); MCID = &TII->get(NewOpc); assert(MCID->getNumOperands() == MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize() && "converted opcode should be the same except for cc_out" " (and, on Thumb1, pred)"); MI.setDesc(*MCID); // Add the optional cc_out operand MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); // On Thumb1, move all input operands to the end, then add the predicate if (Subtarget->isThumb1Only()) { for (unsigned c = MCID->getNumOperands() - 4; c--;) { MI.addOperand(MI.getOperand(1)); MI.RemoveOperand(1); } // Restore the ties for (unsigned i = MI.getNumOperands(); i--;) { const MachineOperand& op = MI.getOperand(i); if (op.isReg() && op.isUse()) { int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO); if (DefIdx != -1) MI.tieOperands(DefIdx, i); } } MI.addOperand(MachineOperand::CreateImm(ARMCC::AL)); MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false)); ccOutIdx = 1; } else ccOutIdx = MCID->getNumOperands() - 1; } else ccOutIdx = MCID->getNumOperands() - 1; // Any ARM instruction that sets the 's' bit should specify an optional // "cc_out" operand in the last operand position. if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { assert(!NewOpc && "Optional cc_out operand required"); return; } // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it // since we already have an optional CPSR def. bool definesCPSR = false; bool deadCPSR = false; for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { definesCPSR = true; if (MO.isDead()) deadCPSR = true; MI.RemoveOperand(i); break; } } if (!definesCPSR) { assert(!NewOpc && "Optional cc_out operand required"); return; } assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); if (deadCPSR) { assert(!MI.getOperand(ccOutIdx).getReg() && "expect uninitialized optional cc_out operand"); // Thumb1 instructions must have the S bit even if the CPSR is dead. if (!Subtarget->isThumb1Only()) return; } // If this instruction was defined with an optional CPSR def and its dag node // had a live implicit CPSR def, then activate the optional CPSR def. MachineOperand &MO = MI.getOperand(ccOutIdx); MO.setReg(ARM::CPSR); MO.setIsDef(true); } //===----------------------------------------------------------------------===// // ARM Optimization Hooks //===----------------------------------------------------------------------===// // Helper function that checks if N is a null or all ones constant. static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); } // Return true if N is conditionally 0 or all ones. // Detects these expressions where cc is an i1 value: // // (select cc 0, y) [AllOnes=0] // (select cc y, 0) [AllOnes=0] // (zext cc) [AllOnes=0] // (sext cc) [AllOnes=0/1] // (select cc -1, y) [AllOnes=1] // (select cc y, -1) [AllOnes=1] // // Invert is set when N is the null/all ones constant when CC is false. // OtherOp is set to the alternative value of N. static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, bool &Invert, SDValue &OtherOp, SelectionDAG &DAG) { switch (N->getOpcode()) { default: return false; case ISD::SELECT: { CC = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); if (isZeroOrAllOnes(N1, AllOnes)) { Invert = false; OtherOp = N2; return true; } if (isZeroOrAllOnes(N2, AllOnes)) { Invert = true; OtherOp = N1; return true; } return false; } case ISD::ZERO_EXTEND: // (zext cc) can never be the all ones value. if (AllOnes) return false; LLVM_FALLTHROUGH; case ISD::SIGN_EXTEND: { SDLoc dl(N); EVT VT = N->getValueType(0); CC = N->getOperand(0); if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC) return false; Invert = !AllOnes; if (AllOnes) // When looking for an AllOnes constant, N is an sext, and the 'other' // value is 0. OtherOp = DAG.getConstant(0, dl, VT); else if (N->getOpcode() == ISD::ZERO_EXTEND) // When looking for a 0 constant, N can be zext or sext. OtherOp = DAG.getConstant(1, dl, VT); else OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT); return true; } } } // Combine a constant select operand into its use: // // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) // // The transform is rejected if the select doesn't have a constant operand that // is null, or all ones when AllOnes is set. // // Also recognize sext/zext from i1: // // (add (zext cc), x) -> (select cc (add x, 1), x) // (add (sext cc), x) -> (select cc (add x, -1), x) // // These transformations eventually create predicated instructions. // // @param N The node to transform. // @param Slct The N operand that is a select. // @param OtherOp The other N operand (x above). // @param DCI Context. // @param AllOnes Require the select constant to be all ones instead of null. // @returns The new node, or SDValue() on failure. static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, TargetLowering::DAGCombinerInfo &DCI, bool AllOnes = false) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue NonConstantVal; SDValue CCOp; bool SwapSelectOps; if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, NonConstantVal, DAG)) return SDValue(); // Slct is now know to be the desired identity constant when CC is true. SDValue TrueVal = OtherOp; SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); // Unless SwapSelectOps says CC should be false. if (SwapSelectOps) std::swap(TrueVal, FalseVal); return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); } // Attempt combineSelectAndUse on each operand of a commutative operator N. static SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, TargetLowering::DAGCombinerInfo &DCI) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0.getNode()->hasOneUse()) if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) return Result; if (N1.getNode()->hasOneUse()) if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) return Result; return SDValue(); } static bool IsVUZPShuffleNode(SDNode *N) { // VUZP shuffle node. if (N->getOpcode() == ARMISD::VUZP) return true; // "VUZP" on i32 is an alias for VTRN. if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32) return true; return false; } static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Look for ADD(VUZP.0, VUZP.1). if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() || N0 == N1) return SDValue(); // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD. if (!N->getValueType(0).is64BitVector()) return SDValue(); // Generate vpadd. SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc dl(N); SDNode *Unzip = N0.getNode(); EVT VT = N->getValueType(0); SmallVector Ops; Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl, TLI.getPointerTy(DAG.getDataLayout()))); Ops.push_back(Unzip->getOperand(0)); Ops.push_back(Unzip->getOperand(1)); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops); } static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Check for two extended operands. if (!(N0.getOpcode() == ISD::SIGN_EXTEND && N1.getOpcode() == ISD::SIGN_EXTEND) && !(N0.getOpcode() == ISD::ZERO_EXTEND && N1.getOpcode() == ISD::ZERO_EXTEND)) return SDValue(); SDValue N00 = N0.getOperand(0); SDValue N10 = N1.getOperand(0); // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1)) if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() || N00 == N10) return SDValue(); // We only recognize Q register paddl here; this can't be reached until // after type legalization. if (!N00.getValueType().is64BitVector() || !N0.getValueType().is128BitVector()) return SDValue(); // Generate vpaddl. SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc dl(N); EVT VT = N->getValueType(0); SmallVector Ops; // Form vpaddl.sN or vpaddl.uN depending on the kind of extension. unsigned Opcode; if (N0.getOpcode() == ISD::SIGN_EXTEND) Opcode = Intrinsic::arm_neon_vpaddls; else Opcode = Intrinsic::arm_neon_vpaddlu; Ops.push_back(DAG.getConstant(Opcode, dl, TLI.getPointerTy(DAG.getDataLayout()))); EVT ElemTy = N00.getValueType().getVectorElementType(); unsigned NumElts = VT.getVectorNumElements(); EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2); SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT, N00.getOperand(0), N00.getOperand(1)); Ops.push_back(Concat); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops); } // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is // much easier to match. static SDValue AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Only perform optimization if after legalize, and if NEON is available. We // also expected both operands to be BUILD_VECTORs. if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() || N0.getOpcode() != ISD::BUILD_VECTOR || N1.getOpcode() != ISD::BUILD_VECTOR) return SDValue(); // Check output type since VPADDL operand elements can only be 8, 16, or 32. EVT VT = N->getValueType(0); if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) return SDValue(); // Check that the vector operands are of the right form. // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR // operands, where N is the size of the formed vector. // Each EXTRACT_VECTOR should have the same input vector and odd or even // index such that we have a pair wise add pattern. // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec = N0->getOperand(0)->getOperand(0); SDNode *V = Vec.getNode(); unsigned nextIndex = 0; // For each operands to the ADD which are BUILD_VECTORs, // check to see if each of their operands are an EXTRACT_VECTOR with // the same vector and appropriate index. for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue ExtVec0 = N0->getOperand(i); SDValue ExtVec1 = N1->getOperand(i); // First operand is the vector, verify its the same. if (V != ExtVec0->getOperand(0).getNode() || V != ExtVec1->getOperand(0).getNode()) return SDValue(); // Second is the constant, verify its correct. ConstantSDNode *C0 = dyn_cast(ExtVec0->getOperand(1)); ConstantSDNode *C1 = dyn_cast(ExtVec1->getOperand(1)); // For the constant, we want to see all the even or all the odd. if (!C0 || !C1 || C0->getZExtValue() != nextIndex || C1->getZExtValue() != nextIndex+1) return SDValue(); // Increment index. nextIndex+=2; } else return SDValue(); } // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure // we're using the entire input vector, otherwise there's a size/legality // mismatch somewhere. if (nextIndex != Vec.getValueType().getVectorNumElements() || Vec.getValueType().getVectorElementType() == VT.getVectorElementType()) return SDValue(); // Create VPADDL node. SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc dl(N); // Build operand list. SmallVector Ops; Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl, TLI.getPointerTy(DAG.getDataLayout()))); // Input is the vector. Ops.push_back(Vec); // Get widened type and narrowed type. MVT widenType; unsigned numElem = VT.getVectorNumElements(); EVT inputLaneType = Vec.getValueType().getVectorElementType(); switch (inputLaneType.getSimpleVT().SimpleTy) { case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; default: llvm_unreachable("Invalid vector element type for padd optimization."); } SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops); unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE; return DAG.getNode(ExtOp, dl, VT, tmp); } static SDValue findMUL_LOHI(SDValue V) { if (V->getOpcode() == ISD::UMUL_LOHI || V->getOpcode() == ISD::SMUL_LOHI) return V; return SDValue(); } static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasBaseDSP()) return SDValue(); // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and // accumulates the product into a 64-bit value. The 16-bit values will // be sign extended somehow or SRA'd into 32-bit values // (addc (adde (mul 16bit, 16bit), lo), hi) SDValue Mul = AddcNode->getOperand(0); SDValue Lo = AddcNode->getOperand(1); if (Mul.getOpcode() != ISD::MUL) { Lo = AddcNode->getOperand(0); Mul = AddcNode->getOperand(1); if (Mul.getOpcode() != ISD::MUL) return SDValue(); } SDValue SRA = AddeNode->getOperand(0); SDValue Hi = AddeNode->getOperand(1); if (SRA.getOpcode() != ISD::SRA) { SRA = AddeNode->getOperand(1); Hi = AddeNode->getOperand(0); if (SRA.getOpcode() != ISD::SRA) return SDValue(); } if (auto Const = dyn_cast(SRA.getOperand(1))) { if (Const->getZExtValue() != 31) return SDValue(); } else return SDValue(); if (SRA.getOperand(0) != Mul) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(AddcNode); unsigned Opcode = 0; SDValue Op0; SDValue Op1; if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) { Opcode = ARMISD::SMLALBB; Op0 = Mul.getOperand(0); Op1 = Mul.getOperand(1); } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) { Opcode = ARMISD::SMLALBT; Op0 = Mul.getOperand(0); Op1 = Mul.getOperand(1).getOperand(0); } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) { Opcode = ARMISD::SMLALTB; Op0 = Mul.getOperand(0).getOperand(0); Op1 = Mul.getOperand(1); } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) { Opcode = ARMISD::SMLALTT; Op0 = Mul->getOperand(0).getOperand(0); Op1 = Mul->getOperand(1).getOperand(0); } if (!Op0 || !Op1) return SDValue(); SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), Op0, Op1, Lo, Hi); // Replace the ADDs' nodes uses by the MLA node's values. SDValue HiMLALResult(SMLAL.getNode(), 1); SDValue LoMLALResult(SMLAL.getNode(), 0); DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); // Return original node to notify the driver to stop replacing. SDValue resNode(AddcNode, 0); return resNode; } static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Look for multiply add opportunities. // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where // each add nodes consumes a value from ISD::UMUL_LOHI and there is // a glue link from the first add to the second add. // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by // a S/UMLAL instruction. // UMUL_LOHI // / :lo \ :hi // V \ [no multiline comment] // loAdd -> ADDC | // \ :carry / // V V // ADDE <- hiAdd // // In the special case where only the higher part of a signed result is used // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts // a constant with the exact value of 0x80000000, we recognize we are dealing // with a "rounded multiply and add" (or subtract) and transform it into // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively. assert((AddeSubeNode->getOpcode() == ARMISD::ADDE || AddeSubeNode->getOpcode() == ARMISD::SUBE) && "Expect an ADDE or SUBE"); assert(AddeSubeNode->getNumOperands() == 3 && AddeSubeNode->getOperand(2).getValueType() == MVT::i32 && "ADDE node has the wrong inputs"); // Check that we are chained to the right ADDC or SUBC node. SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode(); if ((AddeSubeNode->getOpcode() == ARMISD::ADDE && AddcSubcNode->getOpcode() != ARMISD::ADDC) || (AddeSubeNode->getOpcode() == ARMISD::SUBE && AddcSubcNode->getOpcode() != ARMISD::SUBC)) return SDValue(); SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0); SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1); // Check if the two operands are from the same mul_lohi node. if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode()) return SDValue(); assert(AddcSubcNode->getNumValues() == 2 && AddcSubcNode->getValueType(0) == MVT::i32 && "Expect ADDC with two result values. First: i32"); // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it // maybe a SMLAL which multiplies two 16-bit values. if (AddeSubeNode->getOpcode() == ARMISD::ADDE && AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI && AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI && AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI && AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI) return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget); // Check for the triangle shape. SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0); SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1); // Make sure that the ADDE/SUBE operands are not coming from the same node. if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode()) return SDValue(); // Find the MUL_LOHI node walking up ADDE/SUBE's operands. bool IsLeftOperandMUL = false; SDValue MULOp = findMUL_LOHI(AddeSubeOp0); if (MULOp == SDValue()) MULOp = findMUL_LOHI(AddeSubeOp1); else IsLeftOperandMUL = true; if (MULOp == SDValue()) return SDValue(); // Figure out the right opcode. unsigned Opc = MULOp->getOpcode(); unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; // Figure out the high and low input values to the MLAL node. SDValue *HiAddSub = nullptr; SDValue *LoMul = nullptr; SDValue *LowAddSub = nullptr; // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI. if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1))) return SDValue(); if (IsLeftOperandMUL) HiAddSub = &AddeSubeOp1; else HiAddSub = &AddeSubeOp0; // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node // whose low result is fed to the ADDC/SUBC we are checking. if (AddcSubcOp0 == MULOp.getValue(0)) { LoMul = &AddcSubcOp0; LowAddSub = &AddcSubcOp1; } if (AddcSubcOp1 == MULOp.getValue(0)) { LoMul = &AddcSubcOp1; LowAddSub = &AddcSubcOp0; } if (!LoMul) return SDValue(); // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC // the replacement below will create a cycle. if (AddcSubcNode == HiAddSub->getNode() || AddcSubcNode->isPredecessorOf(HiAddSub->getNode())) return SDValue(); // Create the merged node. SelectionDAG &DAG = DCI.DAG; // Start building operand list. SmallVector Ops; Ops.push_back(LoMul->getOperand(0)); Ops.push_back(LoMul->getOperand(1)); // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be // the case, we must be doing signed multiplication and only use the higher // part of the result of the MLAL, furthermore the LowAddSub must be a constant // addition or subtraction with the value of 0x800000. if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() && FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) && LowAddSub->getNode()->getOpcode() == ISD::Constant && static_cast(LowAddSub->getNode())->getZExtValue() == 0x80000000) { Ops.push_back(*HiAddSub); if (AddcSubcNode->getOpcode() == ARMISD::SUBC) { FinalOpc = ARMISD::SMMLSR; } else { FinalOpc = ARMISD::SMMLAR; } SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops); DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode); return SDValue(AddeSubeNode, 0); } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC) // SMMLS is generated during instruction selection and the rest of this // function can not handle the case where AddcSubcNode is a SUBC. return SDValue(); // Finish building the operand list for {U/S}MLAL Ops.push_back(*LowAddSub); Ops.push_back(*HiAddSub); SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), DAG.getVTList(MVT::i32, MVT::i32), Ops); // Replace the ADDs' nodes uses by the MLA node's values. SDValue HiMLALResult(MLALNode.getNode(), 1); DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult); SDValue LoMLALResult(MLALNode.getNode(), 0); DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult); // Return original node to notify the driver to stop replacing. return SDValue(AddeSubeNode, 0); } static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // UMAAL is similar to UMLAL except that it adds two unsigned values. // While trying to combine for the other MLAL nodes, first search for the // chance to use UMAAL. Check if Addc uses a node which has already // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde // as the addend, and it's handled in PerformUMLALCombine. if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget); // Check that we have a glued ADDC node. SDNode* AddcNode = AddeNode->getOperand(2).getNode(); if (AddcNode->getOpcode() != ARMISD::ADDC) return SDValue(); // Find the converted UMAAL or quit if it doesn't exist. SDNode *UmlalNode = nullptr; SDValue AddHi; if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) { UmlalNode = AddcNode->getOperand(0).getNode(); AddHi = AddcNode->getOperand(1); } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) { UmlalNode = AddcNode->getOperand(1).getNode(); AddHi = AddcNode->getOperand(0); } else { return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget); } // The ADDC should be glued to an ADDE node, which uses the same UMLAL as // the ADDC as well as Zero. if (!isNullConstant(UmlalNode->getOperand(3))) return SDValue(); if ((isNullConstant(AddeNode->getOperand(0)) && AddeNode->getOperand(1).getNode() == UmlalNode) || (AddeNode->getOperand(0).getNode() == UmlalNode && isNullConstant(AddeNode->getOperand(1)))) { SelectionDAG &DAG = DCI.DAG; SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1), UmlalNode->getOperand(2), AddHi }; SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode), DAG.getVTList(MVT::i32, MVT::i32), Ops); // Replace the ADDs' nodes uses by the UMAAL node's values. DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0)); // Return original node to notify the driver to stop replacing. return SDValue(AddeNode, 0); } return SDValue(); } static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) return SDValue(); // Check that we have a pair of ADDC and ADDE as operands. // Both addends of the ADDE must be zero. SDNode* AddcNode = N->getOperand(2).getNode(); SDNode* AddeNode = N->getOperand(3).getNode(); if ((AddcNode->getOpcode() == ARMISD::ADDC) && (AddeNode->getOpcode() == ARMISD::ADDE) && isNullConstant(AddeNode->getOperand(0)) && isNullConstant(AddeNode->getOperand(1)) && (AddeNode->getOperand(2).getNode() == AddcNode)) return DAG.getNode(ARMISD::UMAAL, SDLoc(N), DAG.getVTList(MVT::i32, MVT::i32), {N->getOperand(0), N->getOperand(1), AddcNode->getOperand(0), AddcNode->getOperand(1)}); else return SDValue(); } static SDValue PerformAddcSubcCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SelectionDAG &DAG(DCI.DAG); if (N->getOpcode() == ARMISD::SUBC) { // (SUBC (ADDE 0, 0, C), 1) -> C SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS->getOpcode() == ARMISD::ADDE && isNullConstant(LHS->getOperand(0)) && isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) { return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2)); } } if (Subtarget->isThumb1Only()) { SDValue RHS = N->getOperand(1); if (ConstantSDNode *C = dyn_cast(RHS)) { int32_t imm = C->getSExtValue(); if (imm < 0 && imm > std::numeric_limits::min()) { SDLoc DL(N); RHS = DAG.getConstant(-imm, DL, MVT::i32); unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC : ARMISD::ADDC; return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS); } } } return SDValue(); } static SDValue PerformAddeSubeCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (Subtarget->isThumb1Only()) { SelectionDAG &DAG = DCI.DAG; SDValue RHS = N->getOperand(1); if (ConstantSDNode *C = dyn_cast(RHS)) { int64_t imm = C->getSExtValue(); if (imm < 0) { SDLoc DL(N); // The with-carry-in form matches bitwise not instead of the negation. // Effectively, the inverse interpretation of the carry flag already // accounts for part of the negation. RHS = DAG.getConstant(~imm, DL, MVT::i32); unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE : ARMISD::ADDE; return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS, N->getOperand(2)); } } } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) { return AddCombineTo64bitMLAL(N, DCI, Subtarget); } return SDValue(); } static SDValue PerformSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasMVEIntegerOps()) return SDValue(); SDLoc dl(N); SDValue SetCC; SDValue LHS; SDValue RHS; ISD::CondCode CC; SDValue TrueVal; SDValue FalseVal; if (N->getOpcode() == ISD::SELECT && N->getOperand(0)->getOpcode() == ISD::SETCC) { SetCC = N->getOperand(0); LHS = SetCC->getOperand(0); RHS = SetCC->getOperand(1); CC = cast(SetCC->getOperand(2))->get(); TrueVal = N->getOperand(1); FalseVal = N->getOperand(2); } else if (N->getOpcode() == ISD::SELECT_CC) { LHS = N->getOperand(0); RHS = N->getOperand(1); CC = cast(N->getOperand(4))->get(); TrueVal = N->getOperand(2); FalseVal = N->getOperand(3); } else { return SDValue(); } unsigned int Opcode = 0; if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN || FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) && (CC == ISD::SETULT || CC == ISD::SETUGT)) { Opcode = ARMISD::VMINVu; if (CC == ISD::SETUGT) std::swap(TrueVal, FalseVal); } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN || FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) && (CC == ISD::SETLT || CC == ISD::SETGT)) { Opcode = ARMISD::VMINVs; if (CC == ISD::SETGT) std::swap(TrueVal, FalseVal); } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX || FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) && (CC == ISD::SETUGT || CC == ISD::SETULT)) { Opcode = ARMISD::VMAXVu; if (CC == ISD::SETULT) std::swap(TrueVal, FalseVal); } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX || FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) && (CC == ISD::SETGT || CC == ISD::SETLT)) { Opcode = ARMISD::VMAXVs; if (CC == ISD::SETLT) std::swap(TrueVal, FalseVal); } else return SDValue(); // Normalise to the right hand side being the vector reduction switch (TrueVal->getOpcode()) { case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_SMAX: std::swap(LHS, RHS); std::swap(TrueVal, FalseVal); break; } EVT VectorType = FalseVal->getOperand(0).getValueType(); if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 && VectorType != MVT::v4i32) return SDValue(); EVT VectorScalarType = VectorType.getVectorElementType(); // The values being selected must also be the ones being compared if (TrueVal != LHS || FalseVal != RHS) return SDValue(); EVT LeftType = LHS->getValueType(0); EVT RightType = RHS->getValueType(0); // The types must match the reduced type too if (LeftType != VectorScalarType || RightType != VectorScalarType) return SDValue(); // Legalise the scalar to an i32 if (VectorScalarType != MVT::i32) LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); // Generate the reduction as an i32 for legalisation purposes auto Reduction = DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0)); // The result isn't actually an i32 so truncate it back to its original type if (VectorScalarType != MVT::i32) Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction); return Reduction; } // A special combine for the vqdmulh family of instructions. This is one of the // potential set of patterns that could patch this instruction. The base pattern // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))). // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))), // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as // the max is unnecessary. static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDValue Shft; ConstantSDNode *Clamp; if (N->getOpcode() == ISD::SMIN) { Shft = N->getOperand(0); Clamp = isConstOrConstSplat(N->getOperand(1)); } else if (N->getOpcode() == ISD::VSELECT) { // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin. SDValue Cmp = N->getOperand(0); if (Cmp.getOpcode() != ISD::SETCC || cast(Cmp.getOperand(2))->get() != ISD::SETLT || Cmp.getOperand(0) != N->getOperand(1) || Cmp.getOperand(1) != N->getOperand(2)) return SDValue(); Shft = N->getOperand(1); Clamp = isConstOrConstSplat(N->getOperand(2)); } else return SDValue(); if (!Clamp) return SDValue(); MVT ScalarType; int ShftAmt = 0; switch (Clamp->getSExtValue()) { case (1 << 7) - 1: ScalarType = MVT::i8; ShftAmt = 7; break; case (1 << 15) - 1: ScalarType = MVT::i16; ShftAmt = 15; break; case (1ULL << 31) - 1: ScalarType = MVT::i32; ShftAmt = 31; break; default: return SDValue(); } if (Shft.getOpcode() != ISD::SRA) return SDValue(); ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1)); if (!N1 || N1->getSExtValue() != ShftAmt) return SDValue(); SDValue Mul = Shft.getOperand(0); if (Mul.getOpcode() != ISD::MUL) return SDValue(); SDValue Ext0 = Mul.getOperand(0); SDValue Ext1 = Mul.getOperand(1); if (Ext0.getOpcode() != ISD::SIGN_EXTEND || Ext1.getOpcode() != ISD::SIGN_EXTEND) return SDValue(); EVT VecVT = Ext0.getOperand(0).getValueType(); if (VecVT != MVT::v4i32 && VecVT != MVT::v8i16 && VecVT != MVT::v16i8) return SDValue(); if (Ext1.getOperand(0).getValueType() != VecVT || VecVT.getScalarType() != ScalarType || VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2) return SDValue(); SDLoc DL(Mul); SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, VecVT, Ext0.getOperand(0), Ext1.getOperand(0)); return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, VQDMULH); } static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasMVEIntegerOps()) return SDValue(); if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG)) return V; // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs). // // We need to re-implement this optimization here as the implementation in the // Target-Independent DAGCombiner does not handle the kind of constant we make // (it calls isConstOrConstSplat with AllowTruncation set to false - and for // good reason, allowing truncation there would break other targets). // // Currently, this is only done for MVE, as it's the only target that benefits // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL). if (N->getOperand(0).getOpcode() != ISD::XOR) return SDValue(); SDValue XOR = N->getOperand(0); // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s. // It is important to check with truncation allowed as the BUILD_VECTORs we // generate in those situations will truncate their operands. ConstantSDNode *Const = isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false, /*AllowTruncation*/ true); if (!Const || !Const->isOne()) return SDValue(); // Rewrite into vselect(cond, rhs, lhs). SDValue Cond = XOR->getOperand(0); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); EVT Type = N->getValueType(0); return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS); } static SDValue PerformABSCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SDValue res; SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0))) return SDValue(); if (!TLI.expandABS(N, res, DAG)) return SDValue(); return res; } /// PerformADDECombine - Target-specific dag combine transform from /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL static SDValue PerformADDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Only ARM and Thumb2 support UMLAL/SMLAL. if (Subtarget->isThumb1Only()) return PerformAddeSubeCombine(N, DCI, Subtarget); // Only perform the checks after legalize when the pattern is available. if (DCI.isBeforeLegalize()) return SDValue(); return AddCombineTo64bitUMAAL(N, DCI, Subtarget); } /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with /// operands N0 and N1. This is a helper for PerformADDCombine that is /// called with the default operands, and if that fails, with commuted /// operands. static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget){ // Attempt to create vpadd for this add. if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget)) return Result; // Attempt to create vpaddl for this add. if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget)) return Result; if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI, Subtarget)) return Result; // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) if (N0.getNode()->hasOneUse()) if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI)) return Result; return SDValue(); } static SDValue PerformADDVecReduce(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasMVEIntegerOps() || N->getValueType(0) != MVT::i64) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this // will look like: // t1: i32,i32 = ARMISD::VADDLVs x // t2: i64 = build_pair t1, t1:1 // t3: i64 = add t2, y // We also need to check for sext / zext and commutitive adds. auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA, SDValue NB) { if (NB->getOpcode() != ISD::BUILD_PAIR) return SDValue(); SDValue VecRed = NB->getOperand(0); if (VecRed->getOpcode() != Opcode || VecRed.getResNo() != 0 || NB->getOperand(1) != SDValue(VecRed.getNode(), 1)) return SDValue(); SDLoc dl(N); SmallVector Ops; Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA, DCI.DAG.getConstant(0, dl, MVT::i32))); Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA, DCI.DAG.getConstant(1, dl, MVT::i32))); for (unsigned i = 0, e = VecRed.getNumOperands(); i < e; i++) Ops.push_back(VecRed->getOperand(i)); SDValue Red = DCI.DAG.getNode(OpcodeA, dl, DCI.DAG.getVTList({MVT::i32, MVT::i32}), Ops); return DCI.DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red, SDValue(Red.getNode(), 1)); }; if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0)) return M; if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0)) return M; if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0)) return M; if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0)) return M; if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0)) return M; return SDValue(); } bool ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const { if (Level == BeforeLegalizeTypes) return true; if (N->getOpcode() != ISD::SHL) return true; if (Subtarget->isThumb1Only()) { // Avoid making expensive immediates by commuting shifts. (This logic // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted // for free.) if (N->getOpcode() != ISD::SHL) return true; SDValue N1 = N->getOperand(0); if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND && N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR) return true; if (auto *Const = dyn_cast(N1->getOperand(1))) { if (Const->getAPIntValue().ult(256)) return false; if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) && Const->getAPIntValue().sgt(-256)) return false; } return true; } // Turn off commute-with-shift transform after legalization, so it doesn't // conflict with PerformSHLSimplify. (We could try to detect when // PerformSHLSimplify would trigger more precisely, but it isn't // really necessary.) return false; } bool ARMTargetLowering::shouldFoldConstantShiftPairToMask( const SDNode *N, CombineLevel Level) const { if (!Subtarget->isThumb1Only()) return true; if (Level == BeforeLegalizeTypes) return true; return false; } bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { if (!Subtarget->hasNEON()) { if (Subtarget->isThumb1Only()) return VT.getScalarSizeInBits() <= 32; return true; } return VT.isScalarInteger(); } static SDValue PerformSHLSimplify(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST) { // Allow the generic combiner to identify potential bswaps. if (DCI.isBeforeLegalize()) return SDValue(); // DAG combiner will fold: // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2 // Other code patterns that can be also be modified have the following form: // b + ((a << 1) | 510) // b + ((a << 1) & 510) // b + ((a << 1) ^ 510) // b + ((a << 1) + 510) // Many instructions can perform the shift for free, but it requires both // the operands to be registers. If c1 << c2 is too large, a mov immediate // instruction will needed. So, unfold back to the original pattern if: // - if c1 and c2 are small enough that they don't require mov imms. // - the user(s) of the node can perform an shl // No shifted operands for 16-bit instructions. if (ST->isThumb() && ST->isThumb1Only()) return SDValue(); // Check that all the users could perform the shl themselves. for (auto U : N->uses()) { switch(U->getOpcode()) { default: return SDValue(); case ISD::SUB: case ISD::ADD: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SETCC: case ARMISD::CMP: // Check that the user isn't already using a constant because there // aren't any instructions that support an immediate operand and a // shifted operand. if (isa(U->getOperand(0)) || isa(U->getOperand(1))) return SDValue(); // Check that it's not already using a shift. if (U->getOperand(0).getOpcode() == ISD::SHL || U->getOperand(1).getOpcode() == ISD::SHL) return SDValue(); break; } } if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR && N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND) return SDValue(); if (N->getOperand(0).getOpcode() != ISD::SHL) return SDValue(); SDValue SHL = N->getOperand(0); auto *C1ShlC2 = dyn_cast(N->getOperand(1)); auto *C2 = dyn_cast(SHL.getOperand(1)); if (!C1ShlC2 || !C2) return SDValue(); APInt C2Int = C2->getAPIntValue(); APInt C1Int = C1ShlC2->getAPIntValue(); // Check that performing a lshr will not lose any information. APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(), C2Int.getBitWidth() - C2->getZExtValue()); if ((C1Int & Mask) != C1Int) return SDValue(); // Shift the first constant. C1Int.lshrInPlace(C2Int); // The immediates are encoded as an 8-bit value that can be rotated. auto LargeImm = [](const APInt &Imm) { unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros(); return Imm.getBitWidth() - Zeros > 8; }; if (LargeImm(C1Int) || LargeImm(C2Int)) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); SDValue X = SHL.getOperand(0); SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X, DAG.getConstant(C1Int, dl, MVT::i32)); // Shift left to compensate for the lshr of C1Int. SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1)); LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump(); SHL.dump(); N->dump()); LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump()); return Res; } /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. /// static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // Only works one way, because it needs an immediate operand. if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) return Result; if (SDValue Result = PerformADDVecReduce(N, DCI, Subtarget)) return Result; // First try with the default operand order. if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget)) return Result; // If that didn't work, try again with the operands commuted. return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); } /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. /// static SDValue PerformSUBCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) if (N1.getNode()->hasOneUse()) if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI)) return Result; if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector()) return SDValue(); // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x)) // so that we can readily pattern match more mve instructions which can use // a scalar operand. SDValue VDup = N->getOperand(1); if (VDup->getOpcode() != ARMISD::VDUP) return SDValue(); SDValue VMov = N->getOperand(0); if (VMov->getOpcode() == ISD::BITCAST) VMov = VMov->getOperand(0); if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov)) return SDValue(); SDLoc dl(N); SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32, DCI.DAG.getConstant(0, dl, MVT::i32), VDup->getOperand(0)); return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate); } /// PerformVMULCombine /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the /// special multiplier accumulator forwarding. /// vmul d3, d0, d2 /// vmla d3, d1, d2 /// is faster than /// vadd d3, d0, d1 /// vmul d3, d3, d2 // However, for (A + B) * (A + B), // vadd d2, d0, d1 // vmul d3, d0, d2 // vmla d3, d1, d2 // is slower than // vadd d2, d0, d1 // vmul d3, d2, d2 static SDValue PerformVMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasVMLxForwarding()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); unsigned Opcode = N0.getOpcode(); if (Opcode != ISD::ADD && Opcode != ISD::SUB && Opcode != ISD::FADD && Opcode != ISD::FSUB) { Opcode = N1.getOpcode(); if (Opcode != ISD::ADD && Opcode != ISD::SUB && Opcode != ISD::FADD && Opcode != ISD::FSUB) return SDValue(); std::swap(N0, N1); } if (N0 == N1) return SDValue(); EVT VT = N->getValueType(0); SDLoc DL(N); SDValue N00 = N0->getOperand(0); SDValue N01 = N0->getOperand(1); return DAG.getNode(Opcode, DL, VT, DAG.getNode(ISD::MUL, DL, VT, N00, N1), DAG.getNode(ISD::MUL, DL, VT, N01, N1)); } static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { EVT VT = N->getValueType(0); if (VT != MVT::v2i64) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); auto IsSignExt = [&](SDValue Op) { if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG) return SDValue(); EVT VT = cast(Op->getOperand(1))->getVT(); if (VT.getScalarSizeInBits() == 32) return Op->getOperand(0); return SDValue(); }; auto IsZeroExt = [&](SDValue Op) { // Zero extends are a little more awkward. At the point we are matching // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask. // That might be before of after a bitcast depending on how the and is // placed. Because this has to look through bitcasts, it is currently only // supported on LE. if (!Subtarget->isLittle()) return SDValue(); SDValue And = Op; if (And->getOpcode() == ISD::BITCAST) And = And->getOperand(0); if (And->getOpcode() != ISD::AND) return SDValue(); SDValue Mask = And->getOperand(1); if (Mask->getOpcode() == ISD::BITCAST) Mask = Mask->getOperand(0); if (Mask->getOpcode() != ISD::BUILD_VECTOR || Mask.getValueType() != MVT::v4i32) return SDValue(); if (isAllOnesConstant(Mask->getOperand(0)) && isNullConstant(Mask->getOperand(1)) && isAllOnesConstant(Mask->getOperand(2)) && isNullConstant(Mask->getOperand(3))) return And->getOperand(0); return SDValue(); }; SDLoc dl(N); if (SDValue Op0 = IsSignExt(N0)) { if (SDValue Op1 = IsSignExt(N1)) { SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0); SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1); return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a); } } if (SDValue Op0 = IsZeroExt(N0)) { if (SDValue Op1 = IsZeroExt(N1)) { SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0); SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1); return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a); } } return SDValue(); } static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64) return PerformMVEVMULLCombine(N, DAG, Subtarget); if (Subtarget->isThumb1Only()) return SDValue(); if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); if (VT.is64BitVector() || VT.is128BitVector()) return PerformVMULCombine(N, DCI, Subtarget); if (VT != MVT::i32) return SDValue(); ConstantSDNode *C = dyn_cast(N->getOperand(1)); if (!C) return SDValue(); int64_t MulAmt = C->getSExtValue(); unsigned ShiftAmt = countTrailingZeros(MulAmt); ShiftAmt = ShiftAmt & (32 - 1); SDValue V = N->getOperand(0); SDLoc DL(N); SDValue Res; MulAmt >>= ShiftAmt; if (MulAmt >= 0) { if (isPowerOf2_32(MulAmt - 1)) { // (mul x, 2^N + 1) => (add (shl x, N), x) Res = DAG.getNode(ISD::ADD, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmt - 1), DL, MVT::i32))); } else if (isPowerOf2_32(MulAmt + 1)) { // (mul x, 2^N - 1) => (sub (shl x, N), x) Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmt + 1), DL, MVT::i32)), V); } else return SDValue(); } else { uint64_t MulAmtAbs = -MulAmt; if (isPowerOf2_32(MulAmtAbs + 1)) { // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) Res = DAG.getNode(ISD::SUB, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmtAbs + 1), DL, MVT::i32))); } else if (isPowerOf2_32(MulAmtAbs - 1)) { // (mul x, -(2^N + 1)) => - (add (shl x, N), x) Res = DAG.getNode(ISD::ADD, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmtAbs - 1), DL, MVT::i32))); Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i32), Res); } else return SDValue(); } if (ShiftAmt != 0) Res = DAG.getNode(ISD::SHL, DL, VT, Res, DAG.getConstant(ShiftAmt, DL, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } static SDValue CombineANDShift(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Allow DAGCombine to pattern-match before we touch the canonical form. if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); if (N->getValueType(0) != MVT::i32) return SDValue(); ConstantSDNode *N1C = dyn_cast(N->getOperand(1)); if (!N1C) return SDValue(); uint32_t C1 = (uint32_t)N1C->getZExtValue(); // Don't transform uxtb/uxth. if (C1 == 255 || C1 == 65535) return SDValue(); SDNode *N0 = N->getOperand(0).getNode(); if (!N0->hasOneUse()) return SDValue(); if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL) return SDValue(); bool LeftShift = N0->getOpcode() == ISD::SHL; ConstantSDNode *N01C = dyn_cast(N0->getOperand(1)); if (!N01C) return SDValue(); uint32_t C2 = (uint32_t)N01C->getZExtValue(); if (!C2 || C2 >= 32) return SDValue(); // Clear irrelevant bits in the mask. if (LeftShift) C1 &= (-1U << C2); else C1 &= (-1U >> C2); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); // We have a pattern of the form "(and (shl x, c2) c1)" or // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to // transform to a pair of shifts, to save materializing c1. // First pattern: right shift, then mask off leading bits. // FIXME: Use demanded bits? if (!LeftShift && isMask_32(C1)) { uint32_t C3 = countLeadingZeros(C1); if (C2 < C3) { SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), DAG.getConstant(C3 - C2, DL, MVT::i32)); return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL, DAG.getConstant(C3, DL, MVT::i32)); } } // First pattern, reversed: left shift, then mask off trailing bits. if (LeftShift && isMask_32(~C1)) { uint32_t C3 = countTrailingZeros(C1); if (C2 < C3) { SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0), DAG.getConstant(C3 - C2, DL, MVT::i32)); return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL, DAG.getConstant(C3, DL, MVT::i32)); } } // Second pattern: left shift, then mask off leading bits. // FIXME: Use demanded bits? if (LeftShift && isShiftedMask_32(C1)) { uint32_t Trailing = countTrailingZeros(C1); uint32_t C3 = countLeadingZeros(C1); if (Trailing == C2 && C2 + C3 < 32) { SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), DAG.getConstant(C2 + C3, DL, MVT::i32)); return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL, DAG.getConstant(C3, DL, MVT::i32)); } } // Second pattern, reversed: right shift, then mask off trailing bits. // FIXME: Handle other patterns of known/demanded bits. if (!LeftShift && isShiftedMask_32(C1)) { uint32_t Leading = countLeadingZeros(C1); uint32_t C3 = countTrailingZeros(C1); if (Leading == C2 && C2 + C3 < 32) { SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0), DAG.getConstant(C2 + C3, DL, MVT::i32)); return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL, DAG.getConstant(C3, DL, MVT::i32)); } } // FIXME: Transform "(and (shl x, c2) c1)" -> // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than // c1. return SDValue(); } static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Attempt to use immediate-form VBIC BuildVectorSDNode *BVN = dyn_cast(N->getOperand(1)); SDLoc dl(N); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1) return SDValue(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) && BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 || SplatBitSize == 64) { EVT VbicVT; SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VbicVT, VT, OtherModImm); if (Val.getNode()) { SDValue Input = DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); } } } if (!Subtarget->isThumb1Only()) { // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI)) return Result; if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) return Result; } if (Subtarget->isThumb1Only()) if (SDValue Result = CombineANDShift(N, DCI, Subtarget)) return Result; return SDValue(); } // Try combining OR nodes to SMULWB, SMULWT. static SDValue PerformORCombineToSMULWBT(SDNode *OR, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasV6Ops() || (Subtarget->isThumb() && (!Subtarget->hasThumb2() || !Subtarget->hasDSP()))) return SDValue(); SDValue SRL = OR->getOperand(0); SDValue SHL = OR->getOperand(1); if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) { SRL = OR->getOperand(1); SHL = OR->getOperand(0); } if (!isSRL16(SRL) || !isSHL16(SHL)) return SDValue(); // The first operands to the shifts need to be the two results from the // same smul_lohi node. if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) || SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI) return SDValue(); SDNode *SMULLOHI = SRL.getOperand(0).getNode(); if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) || SHL.getOperand(0) != SDValue(SMULLOHI, 1)) return SDValue(); // Now we have: // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16))) // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments. // For SMUWB the 16-bit value will signed extended somehow. // For SMULWT only the SRA is required. // Check both sides of SMUL_LOHI SDValue OpS16 = SMULLOHI->getOperand(0); SDValue OpS32 = SMULLOHI->getOperand(1); SelectionDAG &DAG = DCI.DAG; if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) { OpS16 = OpS32; OpS32 = SMULLOHI->getOperand(0); } SDLoc dl(OR); unsigned Opcode = 0; if (isS16(OpS16, DAG)) Opcode = ARMISD::SMULWB; else if (isSRA16(OpS16)) { Opcode = ARMISD::SMULWT; OpS16 = OpS16->getOperand(0); } else return SDValue(); SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16); DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res); return SDValue(OR, 0); } static SDValue PerformORCombineToBFI(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // BFI is only available on V6T2+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) return SDValue(); EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); // 1) or (and A, mask), val => ARMbfi A, val, mask // iff (val & mask) == val // // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) // && mask == ~mask2 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) // && ~mask == mask2 // (i.e., copy a bitfield value into another bitfield of the same width) if (VT != MVT::i32) return SDValue(); SDValue N00 = N0.getOperand(0); // The value and the mask need to be constants so we can verify this is // actually a bitfield set. If the mask is 0xffff, we can do better // via a movt instruction, so don't use BFI in that case. SDValue MaskOp = N0.getOperand(1); ConstantSDNode *MaskC = dyn_cast(MaskOp); if (!MaskC) return SDValue(); unsigned Mask = MaskC->getZExtValue(); if (Mask == 0xffff) return SDValue(); SDValue Res; // Case (1): or (and A, mask), val => ARMbfi A, val, mask ConstantSDNode *N1C = dyn_cast(N1); if (N1C) { unsigned Val = N1C->getZExtValue(); if ((Val & ~Mask) != Val) return SDValue(); if (ARM::isBitFieldInvertedMask(Mask)) { Val >>= countTrailingZeros(~Mask); Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, DAG.getConstant(Val, DL, MVT::i32), DAG.getConstant(Mask, DL, MVT::i32)); DCI.CombineTo(N, Res, false); // Return value from the original node to inform the combiner than N is // now dead. return SDValue(N, 0); } } else if (N1.getOpcode() == ISD::AND) { // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask ConstantSDNode *N11C = dyn_cast(N1.getOperand(1)); if (!N11C) return SDValue(); unsigned Mask2 = N11C->getZExtValue(); // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern // as is to match. if (ARM::isBitFieldInvertedMask(Mask) && (Mask == ~Mask2)) { // The pack halfword instruction works better for masks that fit it, // so use that when it's available. if (Subtarget->hasDSP() && (Mask == 0xffff || Mask == 0xffff0000)) return SDValue(); // 2a unsigned amt = countTrailingZeros(Mask2); Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), DAG.getConstant(amt, DL, MVT::i32)); Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, DAG.getConstant(Mask, DL, MVT::i32)); DCI.CombineTo(N, Res, false); // Return value from the original node to inform the combiner than N is // now dead. return SDValue(N, 0); } else if (ARM::isBitFieldInvertedMask(~Mask) && (~Mask == Mask2)) { // The pack halfword instruction works better for masks that fit it, // so use that when it's available. if (Subtarget->hasDSP() && (Mask2 == 0xffff || Mask2 == 0xffff0000)) return SDValue(); // 2b unsigned lsb = countTrailingZeros(Mask); Res = DAG.getNode(ISD::SRL, DL, VT, N00, DAG.getConstant(lsb, DL, MVT::i32)); Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, DAG.getConstant(Mask2, DL, MVT::i32)); DCI.CombineTo(N, Res, false); // Return value from the original node to inform the combiner than N is // now dead. return SDValue(N, 0); } } if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && N00.getOpcode() == ISD::SHL && isa(N00.getOperand(1)) && ARM::isBitFieldInvertedMask(~Mask)) { // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask // where lsb(mask) == #shamt and masked bits of B are known zero. SDValue ShAmt = N00.getOperand(1); unsigned ShAmtC = cast(ShAmt)->getZExtValue(); unsigned LSB = countTrailingZeros(Mask); if (ShAmtC != LSB) return SDValue(); Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), DAG.getConstant(~Mask, DL, MVT::i32)); DCI.CombineTo(N, Res, false); // Return value from the original node to inform the combiner than N is // now dead. return SDValue(N, 0); } return SDValue(); } static bool isValidMVECond(unsigned CC, bool IsFloat) { switch (CC) { case ARMCC::EQ: case ARMCC::NE: case ARMCC::LE: case ARMCC::GT: case ARMCC::GE: case ARMCC::LT: return true; case ARMCC::HS: case ARMCC::HI: return !IsFloat; default: return false; }; } static ARMCC::CondCodes getVCMPCondCode(SDValue N) { if (N->getOpcode() == ARMISD::VCMP) return (ARMCC::CondCodes)N->getConstantOperandVal(2); else if (N->getOpcode() == ARMISD::VCMPZ) return (ARMCC::CondCodes)N->getConstantOperandVal(1); else llvm_unreachable("Not a VCMP/VCMPZ!"); } static bool CanInvertMVEVCMP(SDValue N) { ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N)); return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint()); } static SDValue PerformORCombine_i1(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain // together with predicates EVT VT = N->getValueType(0); SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); auto IsFreelyInvertable = [&](SDValue V) { if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ) return CanInvertMVEVCMP(V); return false; }; // At least one operand must be freely invertable. if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1))) return SDValue(); SDValue NewN0 = DCI.DAG.getLogicalNOT(DL, N0, VT); SDValue NewN1 = DCI.DAG.getLogicalNOT(DL, N1, VT); SDValue And = DCI.DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1); return DCI.DAG.getLogicalNOT(DL, And, VT); } /// PerformORCombine - Target-specific dag combine xforms for ISD::OR static SDValue PerformORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Attempt to use immediate-form VORR BuildVectorSDNode *BVN = dyn_cast(N->getOperand(1)); SDLoc dl(N); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1)) return PerformORCombine_i1(N, DCI, Subtarget); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) && BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 || SplatBitSize == 64) { EVT VorrVT; SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm); if (Val.getNode()) { SDValue Input = DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); } } } if (!Subtarget->isThumb1Only()) { // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI)) return Result; if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget)) return Result; } SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) { // The code below optimizes (or (and X, Y), Z). // The AND operand needs to have a single user to make these optimizations // profitable. if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) return SDValue(); APInt SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; APInt SplatBits0, SplatBits1; BuildVectorSDNode *BVN0 = dyn_cast(N0->getOperand(1)); BuildVectorSDNode *BVN1 = dyn_cast(N1->getOperand(1)); // Ensure that the second operand of both ands are constants if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs) { if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs) { // Ensure that the bit width of the constants are the same and that // the splat arguments are logical inverses as per the pattern we // are trying to simplify. if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && SplatBits0 == ~SplatBits1) { // Canonicalize the vector type to make instruction selection // simpler. EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT, N0->getOperand(1), N0->getOperand(0), N1->getOperand(0)); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } } } } // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when // reasonable. if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) { if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget)) return Res; } if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) return Result; return SDValue(); } static SDValue PerformXORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (!Subtarget->isThumb1Only()) { // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI)) return Result; if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) return Result; } if (Subtarget->hasMVEIntegerOps()) { // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition. SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); const TargetLowering *TLI = Subtarget->getTargetLowering(); if (TLI->isConstTrueVal(N1.getNode()) && (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) { if (CanInvertMVEVCMP(N0)) { SDLoc DL(N0); ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0)); SmallVector Ops; Ops.push_back(N0->getOperand(0)); if (N0->getOpcode() == ARMISD::VCMP) Ops.push_back(N0->getOperand(1)); Ops.push_back(DCI.DAG.getConstant(CC, DL, MVT::i32)); return DCI.DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops); } } } return SDValue(); } // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it, // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and // their position in "to" (Rd). static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) { assert(N->getOpcode() == ARMISD::BFI); SDValue From = N->getOperand(1); ToMask = ~cast(N->getOperand(2))->getAPIntValue(); FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation()); // If the Base came from a SHR #C, we can deduce that it is really testing bit // #C in the base of the SHR. if (From->getOpcode() == ISD::SRL && isa(From->getOperand(1))) { APInt Shift = cast(From->getOperand(1))->getAPIntValue(); assert(Shift.getLimitedValue() < 32 && "Shift too large!"); FromMask <<= Shift.getLimitedValue(31); From = From->getOperand(0); } return From; } // If A and B contain one contiguous set of bits, does A | B == A . B? // // Neither A nor B must be zero. static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) { unsigned LastActiveBitInA = A.countTrailingZeros(); unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1; return LastActiveBitInA - 1 == FirstActiveBitInB; } static SDValue FindBFIToCombineWith(SDNode *N) { // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with, // if one exists. APInt ToMask, FromMask; SDValue From = ParseBFI(N, ToMask, FromMask); SDValue To = N->getOperand(0); // Now check for a compatible BFI to merge with. We can pass through BFIs that // aren't compatible, but not if they set the same bit in their destination as // we do (or that of any BFI we're going to combine with). SDValue V = To; APInt CombinedToMask = ToMask; while (V.getOpcode() == ARMISD::BFI) { APInt NewToMask, NewFromMask; SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask); if (NewFrom != From) { // This BFI has a different base. Keep going. CombinedToMask |= NewToMask; V = V.getOperand(0); continue; } // Do the written bits conflict with any we've seen so far? if ((NewToMask & CombinedToMask).getBoolValue()) // Conflicting bits - bail out because going further is unsafe. return SDValue(); // Are the new bits contiguous when combined with the old bits? if (BitsProperlyConcatenate(ToMask, NewToMask) && BitsProperlyConcatenate(FromMask, NewFromMask)) return V; if (BitsProperlyConcatenate(NewToMask, ToMask) && BitsProperlyConcatenate(NewFromMask, FromMask)) return V; // We've seen a write to some bits, so track it. CombinedToMask |= NewToMask; // Keep going... V = V.getOperand(0); } return SDValue(); } static SDValue PerformBFICombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue N1 = N->getOperand(1); if (N1.getOpcode() == ISD::AND) { // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff // the bits being cleared by the AND are not demanded by the BFI. ConstantSDNode *N11C = dyn_cast(N1.getOperand(1)); if (!N11C) return SDValue(); unsigned InvMask = cast(N->getOperand(2))->getZExtValue(); unsigned LSB = countTrailingZeros(~InvMask); unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB; assert(Width < static_cast(std::numeric_limits::digits) && "undefined behavior"); unsigned Mask = (1u << Width) - 1; unsigned Mask2 = N11C->getZExtValue(); if ((Mask & (~Mask2)) == 0) return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), N->getOperand(0), N1.getOperand(0), N->getOperand(2)); } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) { // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes. // Keep track of any consecutive bits set that all come from the same base // value. We can combine these together into a single BFI. SDValue CombineBFI = FindBFIToCombineWith(N); if (CombineBFI == SDValue()) return SDValue(); // We've found a BFI. APInt ToMask1, FromMask1; SDValue From1 = ParseBFI(N, ToMask1, FromMask1); APInt ToMask2, FromMask2; SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2); assert(From1 == From2); (void)From2; // First, unlink CombineBFI. DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0)); // Then create a new BFI, combining the two together. APInt NewFromMask = FromMask1 | FromMask2; APInt NewToMask = ToMask1 | ToMask2; EVT VT = N->getValueType(0); SDLoc dl(N); if (NewFromMask[0] == 0) From1 = DCI.DAG.getNode( ISD::SRL, dl, VT, From1, DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT)); return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1, DCI.DAG.getConstant(~NewToMask, dl, VT)); } return SDValue(); } /// PerformVMOVRRDCombine - Target-specific dag combine xforms for /// ARMISD::VMOVRRD. static SDValue PerformVMOVRRDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // vmovrrd(vmovdrr x, y) -> x,y SDValue InDouble = N->getOperand(0); if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64()) return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); // vmovrrd(load f64) -> (load i32), (load i32) SDNode *InNode = InDouble.getNode(); if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && InNode->getValueType(0) == MVT::f64 && InNode->getOperand(1).getOpcode() == ISD::FrameIndex && !cast(InNode)->isVolatile()) { // TODO: Should this be done for non-FrameIndex operands? LoadSDNode *LD = cast(InNode); SelectionDAG &DAG = DCI.DAG; SDLoc DL(LD); SDValue BasePtr = LD->getBasePtr(); SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(), LD->getAlignment(), LD->getMemOperand()->getFlags()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, DAG.getConstant(4, DL, MVT::i32)); SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr, LD->getPointerInfo().getWithOffset(4), std::min(4U, LD->getAlignment()), LD->getMemOperand()->getFlags()); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); if (DCI.DAG.getDataLayout().isBigEndian()) std::swap (NewLD1, NewLD2); SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); return Result; } return SDValue(); } /// PerformVMOVDRRCombine - Target-specific dag combine xforms for /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0.getOpcode() == ISD::BITCAST) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::BITCAST) Op1 = Op1.getOperand(0); if (Op0.getOpcode() == ARMISD::VMOVRRD && Op0.getNode() == Op1.getNode() && Op0.getResNo() == 0 && Op1.getResNo() == 1) return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op0.getOperand(0)); return SDValue(); } static SDValue PerformVMOVhrCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue Op0 = N->getOperand(0); // VMOVhr (VMOVrh (X)) -> X if (Op0->getOpcode() == ARMISD::VMOVrh) return Op0->getOperand(0); // FullFP16: half values are passed in S-registers, and we don't // need any of the bitcast and moves: // // t2: f32,ch = CopyFromReg t0, Register:f32 %0 // t5: i32 = bitcast t2 // t18: f16 = ARMISD::VMOVhr t5 if (Op0->getOpcode() == ISD::BITCAST) { SDValue Copy = Op0->getOperand(0); if (Copy.getValueType() == MVT::f32 && Copy->getOpcode() == ISD::CopyFromReg) { SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1)}; SDValue NewCopy = DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N), N->getValueType(0), Ops); return NewCopy; } } // fold (VMOVhr (load x)) -> (load (f16*)x) if (LoadSDNode *LN0 = dyn_cast(Op0)) { if (LN0->hasOneUse() && LN0->isUnindexed() && LN0->getMemoryVT() == MVT::i16) { SDValue Load = DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(), LN0->getBasePtr(), LN0->getMemOperand()); DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0)); DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1)); return Load; } } // Only the bottom 16 bits of the source register are used. APInt DemandedMask = APInt::getLowBitsSet(32, 16); const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI)) return SDValue(N, 0); return SDValue(); } static SDValue PerformVMOVrhCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fold (VMOVrh (fpconst x)) -> const x if (ConstantFPSDNode *C = dyn_cast(N0)) { APFloat V = C->getValueAPF(); return DCI.DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT); } // fold (VMOVrh (load x)) -> (zextload (i16*)x) if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) { LoadSDNode *LN0 = cast(N0); SDValue Load = DCI.DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), MVT::i16, LN0->getMemOperand()); DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0)); DCI.DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); return Load; } // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n) if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT && isa(N0->getOperand(1))) return DCI.DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0), N0->getOperand(1)); return SDValue(); } /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node /// are normal, non-volatile loads. If so, it is profitable to bitcast an /// i64 vector to have f64 elements, since the value can then be loaded /// directly into a VFP register. static bool hasNormalLoadOperand(SDNode *N) { unsigned NumElts = N->getValueType(0).getVectorNumElements(); for (unsigned i = 0; i < NumElts; ++i) { SDNode *Elt = N->getOperand(i).getNode(); if (ISD::isNormalLoad(Elt) && !cast(Elt)->isVolatile()) return true; } return false; } /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for /// ISD::BUILD_VECTOR. static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value // into a pair of GPRs, which is fine when the value is used as a scalar, // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. SelectionDAG &DAG = DCI.DAG; if (N->getNumOperands() == 2) if (SDValue RV = PerformVMOVDRRCombine(N, DAG)) return RV; // Load i64 elements as f64 values so that type legalization does not split // them up into i32 values. EVT VT = N->getValueType(0); if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) return SDValue(); SDLoc dl(N); SmallVector Ops; unsigned NumElts = VT.getVectorNumElements(); for (unsigned i = 0; i < NumElts; ++i) { SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); Ops.push_back(V); // Make the DAGCombiner fold the bitcast. DCI.AddToWorklist(V.getNode()); } EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, BV); } /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. static SDValue PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. // At that time, we may have inserted bitcasts from integer to float. // If these bitcasts have survived DAGCombine, change the lowering of this // BUILD_VECTOR in something more vector friendly, i.e., that does not // force to use floating point types. // Make sure we can change the type of the vector. // This is possible iff: // 1. The vector is only used in a bitcast to a integer type. I.e., // 1.1. Vector is used only once. // 1.2. Use is a bit convert to an integer type. // 2. The size of its operands are 32-bits (64-bits are not legal). EVT VT = N->getValueType(0); EVT EltVT = VT.getVectorElementType(); // Check 1.1. and 2. if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) return SDValue(); // By construction, the input type must be float. assert(EltVT == MVT::f32 && "Unexpected type!"); // Check 1.2. SDNode *Use = *N->use_begin(); if (Use->getOpcode() != ISD::BITCAST || Use->getValueType(0).isFloatingPoint()) return SDValue(); // Check profitability. // Model is, if more than half of the relevant operands are bitcast from // i32, turn the build_vector into a sequence of insert_vector_elt. // Relevant operands are everything that is not statically // (i.e., at compile time) bitcasted. unsigned NumOfBitCastedElts = 0; unsigned NumElts = VT.getVectorNumElements(); unsigned NumOfRelevantElts = NumElts; for (unsigned Idx = 0; Idx < NumElts; ++Idx) { SDValue Elt = N->getOperand(Idx); if (Elt->getOpcode() == ISD::BITCAST) { // Assume only bit cast to i32 will go away. if (Elt->getOperand(0).getValueType() == MVT::i32) ++NumOfBitCastedElts; } else if (Elt.isUndef() || isa(Elt)) // Constants are statically casted, thus do not count them as // relevant operands. --NumOfRelevantElts; } // Check if more than half of the elements require a non-free bitcast. if (NumOfBitCastedElts <= NumOfRelevantElts / 2) return SDValue(); SelectionDAG &DAG = DCI.DAG; // Create the new vector type. EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); // Check if the type is legal. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(VecVT)) return SDValue(); // Combine: // ARMISD::BUILD_VECTOR E1, E2, ..., EN. // => BITCAST INSERT_VECTOR_ELT // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), // (BITCAST EN), N. SDValue Vec = DAG.getUNDEF(VecVT); SDLoc dl(N); for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { SDValue V = N->getOperand(Idx); if (V.isUndef()) continue; if (V.getOpcode() == ISD::BITCAST && V->getOperand(0).getValueType() == MVT::i32) // Fold obvious case. V = V.getOperand(0); else { V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(V.getNode()); } SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); } Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); return Vec; } static SDValue PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT VT = N->getValueType(0); SDValue Op = N->getOperand(0); SDLoc dl(N); // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x) if (Op->getOpcode() == ARMISD::PREDICATE_CAST) { // If the valuetypes are the same, we can remove the cast entirely. if (Op->getOperand(0).getValueType() == VT) return Op->getOperand(0); return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0)); } // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce // more VPNOT which might get folded as else predicates. if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) { SDValue X = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0)); SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, DCI.DAG.getConstant(65535, dl, MVT::i32)); return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C); } // Only the bottom 16 bits of the source register are used. if (Op.getValueType() == MVT::i32) { APInt DemandedMask = APInt::getLowBitsSet(32, 16); const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI)) return SDValue(N, 0); } return SDValue(); } static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDValue Op = N->getOperand(0); SDLoc dl(N); // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST if (ST->isLittle()) return DCI.DAG.getNode(ISD::BITCAST, dl, VT, Op); // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x) if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) { // If the valuetypes are the same, we can remove the cast entirely. if (Op->getOperand(0).getValueType() == VT) return Op->getOperand(0); return DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0)); } return SDValue(); } static SDValue PerformVCMPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasMVEIntegerOps()) return SDValue(); EVT VT = N->getValueType(0); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); ARMCC::CondCodes Cond = (ARMCC::CondCodes)cast(N->getOperand(2))->getZExtValue(); SDLoc dl(N); // vcmp X, 0, cc -> vcmpz X, cc if (isZeroVector(Op1)) return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0, N->getOperand(2)); unsigned SwappedCond = getSwappedCondition(Cond); if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) { // vcmp 0, X, cc -> vcmpz X, reversed(cc) if (isZeroVector(Op0)) return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1, DCI.DAG.getConstant(SwappedCond, dl, MVT::i32)); // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc) if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP) return DCI.DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0, DCI.DAG.getConstant(SwappedCond, dl, MVT::i32)); } return SDValue(); } /// PerformInsertEltCombine - Target-specific dag combine xforms for /// ISD::INSERT_VECTOR_ELT. static SDValue PerformInsertEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // Bitcast an i64 load inserted into a vector to f64. // Otherwise, the i64 value will be legalized to a pair of i32 values. EVT VT = N->getValueType(0); SDNode *Elt = N->getOperand(1).getNode(); if (VT.getVectorElementType() != MVT::i64 || !ISD::isNormalLoad(Elt) || cast(Elt)->isVolatile()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VT.getVectorNumElements()); SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); DCI.AddToWorklist(V.getNode()); SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, Vec, V, N->getOperand(2)); return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); } static SDValue PerformExtractEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue Op0 = N->getOperand(0); EVT VT = N->getValueType(0); SDLoc dl(N); // extract (vdup x) -> x if (Op0->getOpcode() == ARMISD::VDUP) { SDValue X = Op0->getOperand(0); if (VT == MVT::f16 && X.getValueType() == MVT::i32) return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X); if (VT == MVT::i32 && X.getValueType() == MVT::f16) return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X); while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST) X = X->getOperand(0); if (X.getValueType() == VT) return X; } return SDValue(); } /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for /// ISD::VECTOR_SHUFFLE. static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { // The LLVM shufflevector instruction does not require the shuffle mask // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the // operands do not match the mask length, they are extended by concatenating // them with undef vectors. That is probably the right thing for other // targets, but for NEON it is better to concatenate two double-register // size vector operands into a single quad-register size vector. Do that // transformation here: // shuffle(concat(v1, undef), concat(v2, undef)) -> // shuffle(concat(v1, v2), undef) SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0.getOpcode() != ISD::CONCAT_VECTORS || Op1.getOpcode() != ISD::CONCAT_VECTORS || Op0.getNumOperands() != 2 || Op1.getNumOperands() != 2) return SDValue(); SDValue Concat0Op1 = Op0.getOperand(1); SDValue Concat1Op1 = Op1.getOperand(1); if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef()) return SDValue(); // Skip the transformation if any of the types are illegal. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = N->getValueType(0); if (!TLI.isTypeLegal(VT) || !TLI.isTypeLegal(Concat0Op1.getValueType()) || !TLI.isTypeLegal(Concat1Op1.getValueType())) return SDValue(); SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Op0.getOperand(0), Op1.getOperand(0)); // Translate the shuffle mask. SmallVector NewMask; unsigned NumElts = VT.getVectorNumElements(); unsigned HalfElts = NumElts/2; ShuffleVectorSDNode *SVN = cast(N); for (unsigned n = 0; n < NumElts; ++n) { int MaskElt = SVN->getMaskElt(n); int NewElt = -1; if (MaskElt < (int)HalfElts) NewElt = MaskElt; else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) NewElt = HalfElts + MaskElt - NumElts; NewMask.push_back(NewElt); } return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, DAG.getUNDEF(VT), NewMask); } /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP, /// NEON load/store intrinsics, and generic vector load/stores, to merge /// base address updates. /// For generic load/stores, the memory type is assumed to be a vector. /// The caller is assumed to have checked legality. static SDValue CombineBaseUpdate(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || N->getOpcode() == ISD::INTRINSIC_W_CHAIN); const bool isStore = N->getOpcode() == ISD::STORE; const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1); SDValue Addr = N->getOperand(AddrOpIdx); MemSDNode *MemN = cast(N); SDLoc dl(N); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. We can avoid searching through Addr as it's a // predecessor to both. SmallPtrSet Visited; SmallVector Worklist; Visited.insert(Addr.getNode()); Worklist.push_back(N); Worklist.push_back(User); if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || SDNode::hasPredecessorHelper(User, Visited, Worklist)) continue; // Find the new opcode for the updating load/store. bool isLoadOp = true; bool isLaneOp = false; unsigned NewOpc = 0; unsigned NumVecs = 0; if (isIntrinsic) { unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for Neon base update"); case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; NumVecs = 1; break; case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; NumVecs = 2; break; case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; NumVecs = 3; break; case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; NumVecs = 4; break; case Intrinsic::arm_neon_vld1x2: case Intrinsic::arm_neon_vld1x3: case Intrinsic::arm_neon_vld1x4: case Intrinsic::arm_neon_vld2dup: case Intrinsic::arm_neon_vld3dup: case Intrinsic::arm_neon_vld4dup: // TODO: Support updating VLD1x and VLDxDUP nodes. For now, we just skip // combining base updates for such intrinsics. continue; case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; NumVecs = 2; isLaneOp = true; break; case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; NumVecs = 3; isLaneOp = true; break; case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; NumVecs = 4; isLaneOp = true; break; case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; NumVecs = 1; isLoadOp = false; break; case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; NumVecs = 2; isLoadOp = false; break; case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; NumVecs = 3; isLoadOp = false; break; case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; NumVecs = 4; isLoadOp = false; break; case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; NumVecs = 2; isLoadOp = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; NumVecs = 3; isLoadOp = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; NumVecs = 4; isLoadOp = false; isLaneOp = true; break; } } else { isLaneOp = true; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode for Neon base update"); case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break; case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD; NumVecs = 1; isLaneOp = false; break; case ISD::STORE: NewOpc = ARMISD::VST1_UPD; NumVecs = 1; isLaneOp = false; isLoadOp = false; break; } } // Find the size of memory referenced by the load/store. EVT VecTy; if (isLoadOp) { VecTy = N->getValueType(0); } else if (isIntrinsic) { VecTy = N->getOperand(AddrOpIdx+1).getValueType(); } else { assert(isStore && "Node has to be a load, a store, or an intrinsic!"); VecTy = N->getOperand(1).getValueType(); } unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; if (isLaneOp) NumBytes /= VecTy.getVectorNumElements(); // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); ConstantSDNode *CInc = dyn_cast(Inc.getNode()); if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) { // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two // separate instructions that make it harder to use a non-constant update. continue; } // OK, we found an ADD we can fold into the base update. // Now, create a _UPD node, taking care of not breaking alignment. EVT AlignedVecTy = VecTy; unsigned Alignment = MemN->getAlignment(); // If this is a less-than-standard-aligned load/store, change the type to // match the standard alignment. // The alignment is overlooked when selecting _UPD variants; and it's // easier to introduce bitcasts here than fix that. // There are 3 ways to get to this base-update combine: // - intrinsics: they are assumed to be properly aligned (to the standard // alignment of the memory type), so we don't need to do anything. // - ARMISD::VLDx nodes: they are only generated from the aforementioned // intrinsics, so, likewise, there's nothing to do. // - generic load/store instructions: the alignment is specified as an // explicit operand, rather than implicitly as the standard alignment // of the memory type (like the intrisics). We need to change the // memory type to match the explicit alignment. That way, we don't // generate non-standard-aligned ARMISD::VLDx nodes. if (isa(N)) { if (Alignment == 0) Alignment = 1; if (Alignment < VecTy.getScalarSizeInBits() / 8) { MVT EltTy = MVT::getIntegerVT(Alignment * 8); assert(NumVecs == 1 && "Unexpected multi-element generic load/store."); assert(!isLaneOp && "Unexpected generic load/store lane."); unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8); AlignedVecTy = MVT::getVectorVT(EltTy, NumElts); } // Don't set an explicit alignment on regular load/stores that we want // to transform to VLD/VST 1_UPD nodes. // This matches the behavior of regular load/stores, which only get an // explicit alignment if the MMO alignment is larger than the standard // alignment of the memory type. // Intrinsics, however, always get an explicit alignment, set to the // alignment of the MMO. Alignment = 1; } // Create the new updating load/store node. // First, create an SDVTList for the new updating node's results. EVT Tys[6]; unsigned NumResultVecs = (isLoadOp ? NumVecs : 0); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = AlignedVecTy; Tys[n++] = MVT::i32; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2)); // Then, gather the new node's operands. SmallVector Ops; Ops.push_back(N->getOperand(0)); // incoming chain Ops.push_back(N->getOperand(AddrOpIdx)); Ops.push_back(Inc); if (StoreSDNode *StN = dyn_cast(N)) { // Try to match the intrinsic's signature Ops.push_back(StN->getValue()); } else { // Loads (and of course intrinsics) match the intrinsics' signature, // so just add all but the alignment operand. for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i) Ops.push_back(N->getOperand(i)); } // For all node types, the alignment operand is always the last one. Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32)); // If this is a non-standard-aligned STORE, the penultimate operand is the // stored value. Bitcast it to the aligned type. if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) { SDValue &StVal = Ops[Ops.size()-2]; StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal); } EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy; SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT, MemN->getMemOperand()); // Update the uses. SmallVector NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) NewResults.push_back(SDValue(UpdN.getNode(), i)); // If this is an non-standard-aligned LOAD, the first result is the loaded // value. Bitcast it to the expected result type. if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) { SDValue &LdVal = NewResults[0]; LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal); } NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } static SDValue PerformVLDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); return CombineBaseUpdate(N, DCI); } static SDValue PerformMVEVLDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue Addr = N->getOperand(2); MemSDNode *MemN = cast(N); SDLoc dl(N); // For the stores, where there are multiple intrinsics we only actually want // to post-inc the last of the them. unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); if (IntNo == Intrinsic::arm_mve_vst2q && cast(N->getOperand(5))->getZExtValue() != 1) return SDValue(); if (IntNo == Intrinsic::arm_mve_vst4q && cast(N->getOperand(7))->getZExtValue() != 3) return SDValue(); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. We can avoid searching through Addr as it's a // predecessor to both. SmallPtrSet Visited; SmallVector Worklist; Visited.insert(Addr.getNode()); Worklist.push_back(N); Worklist.push_back(User); if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || SDNode::hasPredecessorHelper(User, Visited, Worklist)) continue; // Find the new opcode for the updating load/store. bool isLoadOp = true; unsigned NewOpc = 0; unsigned NumVecs = 0; switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for MVE VLDn combine"); case Intrinsic::arm_mve_vld2q: NewOpc = ARMISD::VLD2_UPD; NumVecs = 2; break; case Intrinsic::arm_mve_vld4q: NewOpc = ARMISD::VLD4_UPD; NumVecs = 4; break; case Intrinsic::arm_mve_vst2q: NewOpc = ARMISD::VST2_UPD; NumVecs = 2; isLoadOp = false; break; case Intrinsic::arm_mve_vst4q: NewOpc = ARMISD::VST4_UPD; NumVecs = 4; isLoadOp = false; break; } // Find the size of memory referenced by the load/store. EVT VecTy; if (isLoadOp) { VecTy = N->getValueType(0); } else { VecTy = N->getOperand(3).getValueType(); } unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); ConstantSDNode *CInc = dyn_cast(Inc.getNode()); if (!CInc || CInc->getZExtValue() != NumBytes) continue; // Create the new updating load/store node. // First, create an SDVTList for the new updating node's results. EVT Tys[6]; unsigned NumResultVecs = (isLoadOp ? NumVecs : 0); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = VecTy; Tys[n++] = MVT::i32; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); // Then, gather the new node's operands. SmallVector Ops; Ops.push_back(N->getOperand(0)); // incoming chain Ops.push_back(N->getOperand(2)); // ptr Ops.push_back(Inc); for (unsigned i = 3; i < N->getNumOperands(); ++i) Ops.push_back(N->getOperand(i)); SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy, MemN->getMemOperand()); // Update the uses. SmallVector NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) NewResults.push_back(SDValue(UpdN.getNode(), i)); NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and /// return true. static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); // vldN-dup instructions only support 64-bit vectors for N > 1. if (!VT.is64BitVector()) return false; // Check if the VDUPLANE operand is a vldN-dup intrinsic. SDNode *VLD = N->getOperand(0).getNode(); if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) return false; unsigned NumVecs = 0; unsigned NewOpc = 0; unsigned IntNo = cast(VLD->getOperand(1))->getZExtValue(); if (IntNo == Intrinsic::arm_neon_vld2lane) { NumVecs = 2; NewOpc = ARMISD::VLD2DUP; } else if (IntNo == Intrinsic::arm_neon_vld3lane) { NumVecs = 3; NewOpc = ARMISD::VLD3DUP; } else if (IntNo == Intrinsic::arm_neon_vld4lane) { NumVecs = 4; NewOpc = ARMISD::VLD4DUP; } else { return false; } // First check that all the vldN-lane uses are VDUPLANEs and that the lane // numbers match the load. unsigned VLDLaneNo = cast(VLD->getOperand(NumVecs+3))->getZExtValue(); for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { // Ignore uses of the chain result. if (UI.getUse().getResNo() == NumVecs) continue; SDNode *User = *UI; if (User->getOpcode() != ARMISD::VDUPLANE || VLDLaneNo != cast(User->getOperand(1))->getZExtValue()) return false; } // Create the vldN-dup node. EVT Tys[5]; unsigned n; for (n = 0; n < NumVecs; ++n) Tys[n] = VT; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1)); SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; MemIntrinsicSDNode *VLDMemInt = cast(VLD); SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, VLDMemInt->getMemoryVT(), VLDMemInt->getMemOperand()); // Update the uses. for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { unsigned ResNo = UI.getUse().getResNo(); // Ignore uses of the chain result. if (ResNo == NumVecs) continue; SDNode *User = *UI; DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); } // Now the vldN-lane intrinsic is dead except for its chain result. // Update uses of the chain. std::vector VLDDupResults; for (unsigned n = 0; n < NumVecs; ++n) VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); DCI.CombineTo(VLD, VLDDupResults); return true; } /// PerformVDUPLANECombine - Target-specific dag combine xforms for /// ARMISD::VDUPLANE. static SDValue PerformVDUPLANECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SDValue Op = N->getOperand(0); EVT VT = N->getValueType(0); // On MVE, we just convert the VDUPLANE to a VDUP with an extract. if (Subtarget->hasMVEIntegerOps()) { EVT ExtractVT = VT.getVectorElementType(); // We need to ensure we are creating a legal type. if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT)) ExtractVT = MVT::i32; SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT, N->getOperand(0), N->getOperand(1)); return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract); } // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. if (CombineVLDDUP(N, DCI)) return SDValue(N, 0); // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is // redundant. Ignore bit_converts for now; element sizes are checked below. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) return SDValue(); // Make sure the VMOV element size is not bigger than the VDUPLANE elements. unsigned EltSize = Op.getScalarValueSizeInBits(); // The canonical VMOV for a zero vector uses a 32-bit element size. unsigned Imm = cast(Op.getOperand(0))->getZExtValue(); unsigned EltBits; if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0) EltSize = 8; if (EltSize > VT.getScalarSizeInBits()) return SDValue(); return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); } /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP. static SDValue PerformVDUPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; SDValue Op = N->getOperand(0); SDLoc dl(N); if (Subtarget->hasMVEIntegerOps()) { // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will // need to come from a GPR. if (Op.getValueType() == MVT::f32) return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op)); else if (Op.getValueType() == MVT::f16) return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op)); } if (!Subtarget->hasNEON()) return SDValue(); // Match VDUP(LOAD) -> VLD1DUP. // We match this pattern here rather than waiting for isel because the // transform is only legal for unindexed loads. LoadSDNode *LD = dyn_cast(Op.getNode()); if (LD && Op.hasOneUse() && LD->isUnindexed() && LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) { SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1), DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) }; SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other); SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, Ops, LD->getMemoryVT(), LD->getMemOperand()); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1)); return VLDDup; } return SDValue(); } static SDValue PerformLOADCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT VT = N->getValueType(0); // If this is a legal vector load, try to combine it into a VLD1_UPD. if (ISD::isNormalLoad(N) && VT.isVector() && DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) return CombineBaseUpdate(N, DCI); return SDValue(); } // Optimize trunc store (of multiple scalars) to shuffle and store. First, // pack all of the elements in one place. Next, store to memory in fewer // chunks. static SDValue PerformTruncatingStoreCombine(StoreSDNode *St, SelectionDAG &DAG) { SDValue StVal = St->getValue(); EVT VT = StVal.getValueType(); if (!St->isTruncatingStore() || !VT.isVector()) return SDValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT StVT = St->getMemoryVT(); unsigned NumElems = VT.getVectorNumElements(); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromEltSz = VT.getScalarSizeInBits(); unsigned ToEltSz = StVT.getScalarSizeInBits(); // From, To sizes and ElemCount must be pow of two if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); unsigned SizeRatio = FromEltSz / ToEltSz; assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle. EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems * SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDLoc DL(St); SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1 : i * SizeRatio; // Can't shuffle using an illegal type. if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); SDValue Shuff = DAG.getVectorShuffle( WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec); // At this point all of the data is stored at the bottom of the // register. We now need to save it to mem. // Find the largest store unit MVT StoreType = MVT::i8; for (MVT Tp : MVT::integer_valuetypes()) { if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) StoreType = Tp; } // Didn't find a legal store type. if (!TLI.isTypeLegal(StoreType)) return SDValue(); // Bitcast the original vector into a vector of store-size units EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), StoreType, VT.getSizeInBits() / EVT(StoreType).getSizeInBits()); assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); SmallVector Chains; SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL, TLI.getPointerTy(DAG.getDataLayout())); SDValue BasePtr = St->getBasePtr(); // Perform one or more big stores into memory. unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits(); for (unsigned I = 0; I < E; I++) { SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType, ShuffWide, DAG.getIntPtrConstant(I, DL)); SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(), St->getAlignment(), St->getMemOperand()->getFlags()); BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment); Chains.push_back(Ch); } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } // Try taking a single vector store from an truncate (which would otherwise turn // into an expensive buildvector) and splitting it into a series of narrowing // stores. static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St, SelectionDAG &DAG) { if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed()) return SDValue(); SDValue Trunc = St->getValue(); if (Trunc->getOpcode() != ISD::TRUNCATE && Trunc->getOpcode() != ISD::FP_ROUND) return SDValue(); EVT FromVT = Trunc->getOperand(0).getValueType(); EVT ToVT = Trunc.getValueType(); if (!ToVT.isVector()) return SDValue(); assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements()); EVT ToEltVT = ToVT.getVectorElementType(); EVT FromEltVT = FromVT.getVectorElementType(); unsigned NumElements = 0; if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8)) NumElements = 4; if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8) NumElements = 8; if (FromEltVT == MVT::f32 && ToEltVT == MVT::f16) NumElements = 4; if (NumElements == 0 || (FromEltVT != MVT::f32 && FromVT.getVectorNumElements() == NumElements) || FromVT.getVectorNumElements() % NumElements != 0) return SDValue(); // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so // use the VMOVN over splitting the store. We are looking for patterns of: // !rev: 0 N 1 N+1 2 N+2 ... // rev: N 0 N+1 1 N+2 2 ... auto isVMOVNOriginalMask = [&](ArrayRef M, bool rev) { unsigned NumElts = ToVT.getVectorNumElements(); if (NumElts != M.size()) return false; unsigned Off0 = rev ? NumElts : 0; unsigned Off1 = rev ? 0 : NumElts; for (unsigned i = 0; i < NumElts; i += 2) { if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2)) return false; if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2)) return false; } return true; }; // It may be preferable to keep the store unsplit as the trunc may end up // being removed. Check that here. if (Trunc.getOperand(0).getOpcode() == ISD::SMIN) { if (SDValue U = PerformVQDMULHCombine(Trunc.getOperand(0).getNode(), DAG)) { DAG.ReplaceAllUsesWith(Trunc.getOperand(0), U); return SDValue(); } } if (auto *Shuffle = dyn_cast(Trunc->getOperand(0))) if (isVMOVNOriginalMask(Shuffle->getMask(), false) || isVMOVNOriginalMask(Shuffle->getMask(), true)) return SDValue(); LLVMContext &C = *DAG.getContext(); SDLoc DL(St); // Details about the old store SDValue Ch = St->getChain(); SDValue BasePtr = St->getBasePtr(); Align Alignment = St->getOriginalAlign(); MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags(); AAMDNodes AAInfo = St->getAAInfo(); // We split the store into slices of NumElements. fp16 trunc stores are vcvt // and then stored as truncating integer stores. EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements); EVT NewToVT = EVT::getVectorVT( C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements); SmallVector Stores; for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) { unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8; SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset)); SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0), DAG.getConstant(i * NumElements, DL, MVT::i32)); if (ToEltVT == MVT::f16) { SDValue FPTrunc = DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16), Extract, DAG.getConstant(0, DL, MVT::i32)); Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc); } SDValue Store = DAG.getTruncStore( Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset), NewToVT, Alignment.value(), MMOFlags, AAInfo); Stores.push_back(Store); } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores); } /// PerformSTORECombine - Target-specific dag combine xforms for /// ISD::STORE. static SDValue PerformSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { StoreSDNode *St = cast(N); if (St->isVolatile()) return SDValue(); SDValue StVal = St->getValue(); EVT VT = StVal.getValueType(); if (Subtarget->hasNEON()) if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG)) return Store; if (Subtarget->hasMVEIntegerOps()) if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG)) return NewToken; if (!ISD::isNormalStore(St)) return SDValue(); // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and // ARM stores of arguments in the same cache line. if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && StVal.getNode()->hasOneUse()) { SelectionDAG &DAG = DCI.DAG; bool isBigEndian = DAG.getDataLayout().isBigEndian(); SDLoc DL(St); SDValue BasePtr = St->getBasePtr(); SDValue NewST1 = DAG.getStore( St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0), BasePtr, St->getPointerInfo(), St->getOriginalAlign(), St->getMemOperand()->getFlags()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, DAG.getConstant(4, DL, MVT::i32)); return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(isBigEndian ? 0 : 1), OffsetPtr, St->getPointerInfo().getWithOffset(4), St->getOriginalAlign(), St->getMemOperand()->getFlags()); } if (StVal.getValueType() == MVT::i64 && StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { // Bitcast an i64 store extracted from a vector to f64. // Otherwise, the i64 value will be legalized to a pair of i32 values. SelectionDAG &DAG = DCI.DAG; SDLoc dl(StVal); SDValue IntVec = StVal.getOperand(0); EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, IntVec.getValueType().getVectorNumElements()); SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Vec, StVal.getOperand(1)); dl = SDLoc(N); SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); DCI.AddToWorklist(ExtElt.getNode()); DCI.AddToWorklist(V.getNode()); return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), St->getPointerInfo(), St->getAlignment(), St->getMemOperand()->getFlags(), St->getAAInfo()); } // If this is a legal vector store, try to combine it into a VST1_UPD. if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() && DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) return CombineBaseUpdate(N, DCI); return SDValue(); } /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) /// can replace combinations of VMUL and VCVT (floating-point to integer) /// when the VMUL has a constant operand that is a power of 2. /// /// Example (assume d17 = ): /// vmul.f32 d16, d17, d16 /// vcvt.s32.f32 d16, d16 /// becomes: /// vcvt.s32.f32 d16, d16, #3 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { if (!Subtarget->hasNEON()) return SDValue(); SDValue Op = N->getOperand(0); if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || Op.getOpcode() != ISD::FMUL) return SDValue(); SDValue ConstVec = Op->getOperand(1); if (!isa(ConstVec)) return SDValue(); MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); uint32_t FloatBits = FloatTy.getSizeInBits(); MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); uint32_t IntBits = IntTy.getSizeInBits(); unsigned NumLanes = Op.getValueType().getVectorNumElements(); if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) { // These instructions only exist converting from f32 to i32. We can handle // smaller integers by generating an extra truncate, but larger ones would // be lossy. We also can't handle anything other than 2 or 4 lanes, since // these intructions only support v2i32/v4i32 types. return SDValue(); } BitVector UndefElements; BuildVectorSDNode *BV = cast(ConstVec); int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); if (C == -1 || C == 0 || C > 32) return SDValue(); SDLoc dl(N); bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : Intrinsic::arm_neon_vcvtfp2fxu; SDValue FixConv = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0), DAG.getConstant(C, dl, MVT::i32)); if (IntBits < FloatBits) FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv); return FixConv; } /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) /// can replace combinations of VCVT (integer to floating-point) and VDIV /// when the VDIV has a constant operand that is a power of 2. /// /// Example (assume d17 = ): /// vcvt.f32.s32 d16, d16 /// vdiv.f32 d16, d17, d16 /// becomes: /// vcvt.f32.s32 d16, d16, #3 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { if (!Subtarget->hasNEON()) return SDValue(); SDValue Op = N->getOperand(0); unsigned OpOpcode = Op.getNode()->getOpcode(); if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() || (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) return SDValue(); SDValue ConstVec = N->getOperand(1); if (!isa(ConstVec)) return SDValue(); MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); uint32_t FloatBits = FloatTy.getSizeInBits(); MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); uint32_t IntBits = IntTy.getSizeInBits(); unsigned NumLanes = Op.getValueType().getVectorNumElements(); if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) { // These instructions only exist converting from i32 to f32. We can handle // smaller integers by generating an extra extend, but larger ones would // be lossy. We also can't handle anything other than 2 or 4 lanes, since // these intructions only support v2i32/v4i32 types. return SDValue(); } BitVector UndefElements; BuildVectorSDNode *BV = cast(ConstVec); int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); if (C == -1 || C == 0 || C > 32) return SDValue(); SDLoc dl(N); bool isSigned = OpOpcode == ISD::SINT_TO_FP; SDValue ConvInput = Op.getOperand(0); if (IntBits < FloatBits) ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, ConvInput); unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : Intrinsic::arm_neon_vcvtfxu2fp; return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), ConvInput, DAG.getConstant(C, dl, MVT::i32)); } static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { if (!ST->hasMVEIntegerOps()) return SDValue(); assert(N->getOpcode() == ISD::VECREDUCE_ADD); EVT ResVT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDLoc dl(N); // We are looking for something that will have illegal types if left alone, // but that we can convert to a single instruction undef MVE. For example // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A // or // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B // Cases: // VADDV u/s 8/16/32 // VMLAV u/s 8/16/32 // VADDLV u/s 32 // VMLALV u/s 16/32 auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef ExtTypes) { if (ResVT != RetTy || N0->getOpcode() != ExtendCode) return SDValue(); SDValue A = N0->getOperand(0); if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; })) return A; return SDValue(); }; auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef ExtTypes, SDValue &Mask) { if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT || !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode())) return SDValue(); Mask = N0->getOperand(0); SDValue Ext = N0->getOperand(1); if (Ext->getOpcode() != ExtendCode) return SDValue(); SDValue A = Ext->getOperand(0); if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; })) return A; return SDValue(); }; auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef ExtTypes, SDValue &A, SDValue &B) { // For a vmla we are trying to match a larger pattern: // ExtA = sext/zext A // ExtB = sext/zext B // Mul = mul ExtA, ExtB // vecreduce.add Mul // There might also be en extra extend between the mul and the addreduce, so // long as the bitwidth is high enough to make them equivalent (for example // original v8i16 might be mul at v8i32 and the reduce happens at v8i64). if (ResVT != RetTy) return false; SDValue Mul = N0; if (Mul->getOpcode() == ExtendCode && Mul->getOperand(0).getScalarValueSizeInBits() * 2 >= ResVT.getScalarSizeInBits()) Mul = Mul->getOperand(0); if (Mul->getOpcode() != ISD::MUL) return false; SDValue ExtA = Mul->getOperand(0); SDValue ExtB = Mul->getOperand(1); if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode) return false; A = ExtA->getOperand(0); B = ExtB->getOperand(0); if (A.getValueType() == B.getValueType() && llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; })) return true; return false; }; auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef ExtTypes, SDValue &A, SDValue &B, SDValue &Mask) { // Same as the pattern above with a select for the zero predicated lanes // ExtA = sext/zext A // ExtB = sext/zext B // Mul = mul ExtA, ExtB // N0 = select Mask, Mul, 0 // vecreduce.add N0 if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT || !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode())) return false; Mask = N0->getOperand(0); SDValue Mul = N0->getOperand(1); if (Mul->getOpcode() == ExtendCode && Mul->getOperand(0).getScalarValueSizeInBits() * 2 >= ResVT.getScalarSizeInBits()) Mul = Mul->getOperand(0); if (Mul->getOpcode() != ISD::MUL) return false; SDValue ExtA = Mul->getOperand(0); SDValue ExtB = Mul->getOperand(1); if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode) return false; A = ExtA->getOperand(0); B = ExtB->getOperand(0); if (A.getValueType() == B.getValueType() && llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; })) return true; return false; }; auto Create64bitNode = [&](unsigned Opcode, ArrayRef Ops) { SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node, SDValue(Node.getNode(), 1)); }; if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8})) return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A); if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8})) return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A); if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32})) return Create64bitNode(ARMISD::VADDLVs, {A}); if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32})) return Create64bitNode(ARMISD::VADDLVu, {A}); if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8})) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A)); if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8})) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A)); SDValue Mask; if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask)) return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask); if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask)) return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask); if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask)) return Create64bitNode(ARMISD::VADDLVps, {A, Mask}); if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask)) return Create64bitNode(ARMISD::VADDLVpu, {A, Mask}); if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask)) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask)); if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask)) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask)); SDValue A, B; if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B)) return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B); if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B)) return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B); if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B)) return Create64bitNode(ARMISD::VMLALVs, {A, B}); if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B)) return Create64bitNode(ARMISD::VMLALVu, {A, B}); if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B)) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B)); if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B)) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B)); if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask)) return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask); if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask)) return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask); if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B, Mask)) return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask}); if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B, Mask)) return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask}); if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask)) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask)); if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask)) return DAG.getNode(ISD::TRUNCATE, dl, ResVT, DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask)); // Some complications. We can get a case where the two inputs of the mul are // the same, then the output sext will have been helpfully converted to a // zext. Turn it back. SDValue Op = N0; if (Op->getOpcode() == ISD::VSELECT) Op = Op->getOperand(1); if (Op->getOpcode() == ISD::ZERO_EXTEND && Op->getOperand(0)->getOpcode() == ISD::MUL) { SDValue Mul = Op->getOperand(0); if (Mul->getOperand(0) == Mul->getOperand(1) && Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) { SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul); if (Op != N0) Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0), N0->getOperand(0), Ext, N0->getOperand(2)); return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext); } } return SDValue(); } static SDValue PerformVMOVNCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); unsigned IsTop = N->getConstantOperandVal(2); // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b) // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b) if ((Op1->getOpcode() == ARMISD::VQMOVNs || Op1->getOpcode() == ARMISD::VQMOVNu) && Op1->getConstantOperandVal(2) == 0) return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0), Op0, Op1->getOperand(1), N->getOperand(2)); // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting // into the top or bottom lanes. unsigned NumElts = N->getValueType(0).getVectorNumElements(); APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1)); APInt Op0DemandedElts = IsTop ? Op1DemandedElts : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1)); APInt KnownUndef, KnownZero; const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef, KnownZero, DCI)) return SDValue(N, 0); if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, KnownUndef, KnownZero, DCI)) return SDValue(N, 0); return SDValue(); } static SDValue PerformVQMOVNCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue Op0 = N->getOperand(0); unsigned IsTop = N->getConstantOperandVal(2); unsigned NumElts = N->getValueType(0).getVectorNumElements(); APInt Op0DemandedElts = APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) : APInt::getHighBitsSet(2, 1)); APInt KnownUndef, KnownZero; const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef, KnownZero, DCI)) return SDValue(N, 0); return SDValue(); } static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from // uses of the intrinsics. if (auto C = dyn_cast(N->getOperand(2))) { int ShiftAmt = C->getSExtValue(); if (ShiftAmt == 0) { SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL); DAG.ReplaceAllUsesWith(N, Merge.getNode()); return SDValue(); } if (ShiftAmt >= -32 && ShiftAmt < 0) { unsigned NewOpcode = N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL; SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1, DAG.getConstant(-ShiftAmt, DL, MVT::i32)); DAG.ReplaceAllUsesWith(N, NewShift.getNode()); return NewShift; } } return SDValue(); } /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; unsigned IntNo = cast(N->getOperand(0))->getZExtValue(); switch (IntNo) { default: // Don't do anything for most intrinsics. break; // Vector shifts: check for immediate versions and lower them. // Note: This is done during DAG combining instead of DAG legalizing because // the build_vectors for 64-bit vector element shift counts are generally // not legal, and it is hard to see their values after they get legalized to // loads from a constant pool. case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: case Intrinsic::arm_neon_vqshiftsu: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: { EVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { VShiftOpc = ARMISD::VSHLIMM; break; } if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM); break; } return SDValue(); case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshiftsu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; llvm_unreachable("invalid shift count for vqshlu intrinsic"); case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: // Narrowing shifts require an immediate right shift. if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) break; llvm_unreachable("invalid shift count for narrowing vector shift " "intrinsic"); default: llvm_unreachable("unhandled vector shift"); } switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: // Opcode already set above. break; case Intrinsic::arm_neon_vrshifts: VShiftOpc = ARMISD::VRSHRsIMM; break; case Intrinsic::arm_neon_vrshiftu: VShiftOpc = ARMISD::VRSHRuIMM; break; case Intrinsic::arm_neon_vrshiftn: VShiftOpc = ARMISD::VRSHRNIMM; break; case Intrinsic::arm_neon_vqshifts: VShiftOpc = ARMISD::VQSHLsIMM; break; case Intrinsic::arm_neon_vqshiftu: VShiftOpc = ARMISD::VQSHLuIMM; break; case Intrinsic::arm_neon_vqshiftsu: VShiftOpc = ARMISD::VQSHLsuIMM; break; case Intrinsic::arm_neon_vqshiftns: VShiftOpc = ARMISD::VQSHRNsIMM; break; case Intrinsic::arm_neon_vqshiftnu: VShiftOpc = ARMISD::VQSHRNuIMM; break; case Intrinsic::arm_neon_vqshiftnsu: VShiftOpc = ARMISD::VQSHRNsuIMM; break; case Intrinsic::arm_neon_vqrshiftns: VShiftOpc = ARMISD::VQRSHRNsIMM; break; case Intrinsic::arm_neon_vqrshiftnu: VShiftOpc = ARMISD::VQRSHRNuIMM; break; case Intrinsic::arm_neon_vqrshiftnsu: VShiftOpc = ARMISD::VQRSHRNsuIMM; break; } SDLoc dl(N); return DAG.getNode(VShiftOpc, dl, N->getValueType(0), N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32)); } case Intrinsic::arm_neon_vshiftins: { EVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) VShiftOpc = ARMISD::VSLIIMM; else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) VShiftOpc = ARMISD::VSRIIMM; else { llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); } SDLoc dl(N); return DAG.getNode(VShiftOpc, dl, N->getValueType(0), N->getOperand(1), N->getOperand(2), DAG.getConstant(Cnt, dl, MVT::i32)); } case Intrinsic::arm_neon_vqrshifts: case Intrinsic::arm_neon_vqrshiftu: // No immediate versions of these to check for. break; case Intrinsic::arm_mve_vqdmlah: case Intrinsic::arm_mve_vqdmlash: case Intrinsic::arm_mve_vqrdmlah: case Intrinsic::arm_mve_vqrdmlash: case Intrinsic::arm_mve_vmla_n_predicated: case Intrinsic::arm_mve_vmlas_n_predicated: case Intrinsic::arm_mve_vqdmlah_predicated: case Intrinsic::arm_mve_vqdmlash_predicated: case Intrinsic::arm_mve_vqrdmlah_predicated: case Intrinsic::arm_mve_vqrdmlash_predicated: { // These intrinsics all take an i32 scalar operand which is narrowed to the // size of a single lane of the vector type they return. So we don't need // any bits of that operand above that point, which allows us to eliminate // uxth/sxth. unsigned BitWidth = N->getValueType(0).getScalarSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth); if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI)) return SDValue(); break; } case Intrinsic::arm_mve_minv: case Intrinsic::arm_mve_maxv: case Intrinsic::arm_mve_minav: case Intrinsic::arm_mve_maxav: case Intrinsic::arm_mve_minv_predicated: case Intrinsic::arm_mve_maxv_predicated: case Intrinsic::arm_mve_minav_predicated: case Intrinsic::arm_mve_maxav_predicated: { // These intrinsics all take an i32 scalar operand which is narrowed to the // size of a single lane of the vector type they take as the other input. unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth); if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) return SDValue(); break; } case Intrinsic::arm_mve_addv: { // Turn this intrinsic straight into the appropriate ARMISD::VADDV node, // which allow PerformADDVecReduce to turn it into VADDLV when possible. bool Unsigned = cast(N->getOperand(2))->getZExtValue(); unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs; return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1)); } case Intrinsic::arm_mve_addlv: case Intrinsic::arm_mve_addlv_predicated: { // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR // which recombines the two outputs into an i64 bool Unsigned = cast(N->getOperand(2))->getZExtValue(); unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ? (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) : (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps); SmallVector Ops; for (unsigned i = 1, e = N->getNumOperands(); i < e; i++) if (i != 2) // skip the unsigned flag Ops.push_back(N->getOperand(i)); SDLoc dl(N); SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0), val.getValue(1)); } } return SDValue(); } /// PerformShiftCombine - Checks for immediate versions of vector shifts and /// lowers them. As with the vector shift intrinsics, this is done during DAG /// combining instead of DAG legalizing because the build_vectors for 64-bit /// vector element shift counts are generally not legal, and it is hard to see /// their values after they get legalized to loads from a constant pool. static SDValue PerformShiftCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. SDValue N1 = N->getOperand(1); if (ConstantSDNode *C = dyn_cast(N1)) { SDValue N0 = N->getOperand(0); if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && DAG.MaskedValueIsZero(N0.getOperand(0), APInt::getHighBitsSet(32, 16))) return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1); } } if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 && N->getOperand(0)->getOpcode() == ISD::AND && N->getOperand(0)->hasOneUse()) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't // usually show up because instcombine prefers to canonicalize it to // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come // out of GEP lowering in some cases. SDValue N0 = N->getOperand(0); ConstantSDNode *ShiftAmtNode = dyn_cast(N->getOperand(1)); if (!ShiftAmtNode) return SDValue(); uint32_t ShiftAmt = static_cast(ShiftAmtNode->getZExtValue()); ConstantSDNode *AndMaskNode = dyn_cast(N0->getOperand(1)); if (!AndMaskNode) return SDValue(); uint32_t AndMask = static_cast(AndMaskNode->getZExtValue()); // Don't transform uxtb/uxth. if (AndMask == 255 || AndMask == 65535) return SDValue(); if (isMask_32(AndMask)) { uint32_t MaskedBits = countLeadingZeros(AndMask); if (MaskedBits > ShiftAmt) { SDLoc DL(N); SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), DAG.getConstant(MaskedBits, DL, MVT::i32)); return DAG.getNode( ISD::SRL, DL, MVT::i32, SHL, DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32)); } } } // Nothing to be done for scalar shifts. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!VT.isVector() || !TLI.isTypeLegal(VT)) return SDValue(); if (ST->hasMVEIntegerOps() && VT == MVT::v2i64) return SDValue(); int64_t Cnt; switch (N->getOpcode()) { default: llvm_unreachable("unexpected shift opcode"); case ISD::SHL: if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) { SDLoc dl(N); return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0), DAG.getConstant(Cnt, dl, MVT::i32)); } break; case ISD::SRA: case ISD::SRL: if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM); SDLoc dl(N); return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), DAG.getConstant(Cnt, dl, MVT::i32)); } } return SDValue(); } // Look for a sign/zero/fpextend extend of a larger than legal load. This can be // split into multiple extending loads, which are simpler to deal with than an // arbitrary extend. For fp extends we use an integer extending load and a VCVTL // to convert the type to an f32. static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); if (N0.getOpcode() != ISD::LOAD) return SDValue(); LoadSDNode *LD = cast(N0.getNode()); if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() || LD->getExtensionType() != ISD::NON_EXTLOAD) return SDValue(); EVT FromVT = LD->getValueType(0); EVT ToVT = N->getValueType(0); if (!ToVT.isVector()) return SDValue(); assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements()); EVT ToEltVT = ToVT.getVectorElementType(); EVT FromEltVT = FromVT.getVectorElementType(); unsigned NumElements = 0; if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8)) NumElements = 4; if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8) NumElements = 8; if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16) NumElements = 4; if (NumElements == 0 || (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) || FromVT.getVectorNumElements() % NumElements != 0 || !isPowerOf2_32(NumElements)) return SDValue(); LLVMContext &C = *DAG.getContext(); SDLoc DL(LD); // Details about the old load SDValue Ch = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); Align Alignment = LD->getOriginalAlign(); MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); AAMDNodes AAInfo = LD->getAAInfo(); ISD::LoadExtType NewExtType = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; SDValue Offset = DAG.getUNDEF(BasePtr.getValueType()); EVT NewFromVT = EVT::getVectorVT( C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements); EVT NewToVT = EVT::getVectorVT( C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements); SmallVector Loads; SmallVector Chains; for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) { unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8; SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset)); SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset, LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT, Alignment, MMOFlags, AAInfo); Loads.push_back(NewLoad); Chains.push_back(SDValue(NewLoad.getNode(), 1)); } // Float truncs need to extended with VCVTB's into their floating point types. if (FromEltVT == MVT::f16) { SmallVector Extends; for (unsigned i = 0; i < Loads.size(); i++) { SDValue LoadBC = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]); SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC, DAG.getConstant(0, DL, MVT::i32)); Extends.push_back(FPExt); } Loads = Extends; } SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain); return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads); } /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue N0 = N->getOperand(0); // Check for sign- and zero-extensions of vector extract operations of 8- and // 16-bit vector elements. NEON and MVE support these directly. They are // handled during DAG combining because type legalization will promote them // to 32-bit types and it is messy to recognize the operations after that. if ((ST->hasNEON() || ST->hasMVEIntegerOps()) && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue Vec = N0.getOperand(0); SDValue Lane = N0.getOperand(1); EVT VT = N->getValueType(0); EVT EltVT = N0.getValueType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (VT == MVT::i32 && (EltVT == MVT::i8 || EltVT == MVT::i16) && TLI.isTypeLegal(Vec.getValueType()) && isa(Lane)) { unsigned Opc = 0; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode"); case ISD::SIGN_EXTEND: Opc = ARMISD::VGETLANEs; break; case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Opc = ARMISD::VGETLANEu; break; } return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); } } if (ST->hasMVEIntegerOps()) if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG)) return NewLoad; return SDValue(); } static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { if (ST->hasMVEFloatOps()) if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG)) return NewLoad; return SDValue(); } /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating /// saturates. static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); if (!ST->hasMVEIntegerOps()) return SDValue(); if (SDValue V = PerformVQDMULHCombine(N, DAG)) return V; if (VT != MVT::v4i32 && VT != MVT::v8i16) return SDValue(); auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) { // Check one is a smin and the other is a smax if (Min->getOpcode() != ISD::SMIN) std::swap(Min, Max); if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX) return false; APInt SaturateC; if (VT == MVT::v4i32) SaturateC = APInt(32, (1 << 15) - 1, true); else //if (VT == MVT::v8i16) SaturateC = APInt(16, (1 << 7) - 1, true); APInt MinC, MaxC; if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) || MinC != SaturateC) return false; if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) || MaxC != ~SaturateC) return false; return true; }; if (IsSignedSaturate(N, N0.getNode())) { SDLoc DL(N); MVT ExtVT, HalfVT; if (VT == MVT::v4i32) { HalfVT = MVT::v8i16; ExtVT = MVT::v4i16; } else { // if (VT == MVT::v8i16) HalfVT = MVT::v16i8; ExtVT = MVT::v8i8; } // Create a VQMOVNB with undef top lanes, then signed extended into the top // half. That extend will hopefully be removed if only the bottom bits are // demanded (though a truncating store, for example). SDValue VQMOVN = DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT), N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32)); SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN); return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast, DAG.getValueType(ExtVT)); } auto IsUnsignedSaturate = [&](SDNode *Min) { // For unsigned, we just need to check for <= 0xffff if (Min->getOpcode() != ISD::UMIN) return false; APInt SaturateC; if (VT == MVT::v4i32) SaturateC = APInt(32, (1 << 16) - 1, true); else //if (VT == MVT::v8i16) SaturateC = APInt(16, (1 << 8) - 1, true); APInt MinC; if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) || MinC != SaturateC) return false; return true; }; if (IsUnsignedSaturate(N)) { SDLoc DL(N); MVT HalfVT; unsigned ExtConst; if (VT == MVT::v4i32) { HalfVT = MVT::v8i16; ExtConst = 0x0000FFFF; } else { //if (VT == MVT::v8i16) HalfVT = MVT::v16i8; ExtConst = 0x00FF; } // Create a VQMOVNB with undef top lanes, then ZExt into the top half with // an AND. That extend will hopefully be removed if only the bottom bits are // demanded (though a truncating store, for example). SDValue VQMOVN = DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0, DAG.getConstant(0, DL, MVT::i32)); SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN); return DAG.getNode(ISD::AND, DL, VT, Bitcast, DAG.getConstant(ExtConst, DL, VT)); } return SDValue(); } static const APInt *isPowerOf2Constant(SDValue V) { ConstantSDNode *C = dyn_cast(V); if (!C) return nullptr; const APInt *CV = &C->getAPIntValue(); return CV->isPowerOf2() ? CV : nullptr; } SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const { // If we have a CMOV, OR and AND combination such as: // if (x & CN) // y |= CM; // // And: // * CN is a single bit; // * All bits covered by CM are known zero in y // // Then we can convert this into a sequence of BFI instructions. This will // always be a win if CM is a single bit, will always be no worse than the // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is // three bits (due to the extra IT instruction). SDValue Op0 = CMOV->getOperand(0); SDValue Op1 = CMOV->getOperand(1); auto CCNode = cast(CMOV->getOperand(2)); auto CC = CCNode->getAPIntValue().getLimitedValue(); SDValue CmpZ = CMOV->getOperand(4); // The compare must be against zero. if (!isNullConstant(CmpZ->getOperand(1))) return SDValue(); assert(CmpZ->getOpcode() == ARMISD::CMPZ); SDValue And = CmpZ->getOperand(0); if (And->getOpcode() != ISD::AND) return SDValue(); const APInt *AndC = isPowerOf2Constant(And->getOperand(1)); if (!AndC) return SDValue(); SDValue X = And->getOperand(0); if (CC == ARMCC::EQ) { // We're performing an "equal to zero" compare. Swap the operands so we // canonicalize on a "not equal to zero" compare. std::swap(Op0, Op1); } else { assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?"); } if (Op1->getOpcode() != ISD::OR) return SDValue(); ConstantSDNode *OrC = dyn_cast(Op1->getOperand(1)); if (!OrC) return SDValue(); SDValue Y = Op1->getOperand(0); if (Op0 != Y) return SDValue(); // Now, is it profitable to continue? APInt OrCI = OrC->getAPIntValue(); unsigned Heuristic = Subtarget->isThumb() ? 3 : 2; if (OrCI.countPopulation() > Heuristic) return SDValue(); // Lastly, can we determine that the bits defined by OrCI // are zero in Y? KnownBits Known = DAG.computeKnownBits(Y); if ((OrCI & Known.Zero) != OrCI) return SDValue(); // OK, we can do the combine. SDValue V = Y; SDLoc dl(X); EVT VT = X.getValueType(); unsigned BitInX = AndC->logBase2(); if (BitInX != 0) { // We must shift X first. X = DAG.getNode(ISD::SRL, dl, VT, X, DAG.getConstant(BitInX, dl, VT)); } for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits(); BitInY < NumActiveBits; ++BitInY) { if (OrCI[BitInY] == 0) continue; APInt Mask(VT.getSizeInBits(), 0); Mask.setBit(BitInY); V = DAG.getNode(ARMISD::BFI, dl, VT, V, X, // Confusingly, the operand is an *inverted* mask. DAG.getConstant(~Mask, dl, VT)); } return V; } // Given N, the value controlling the conditional branch, search for the loop // intrinsic, returning it, along with how the value is used. We need to handle // patterns such as the following: // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit) // (brcond (setcc (loop.decrement), 0, eq), exit) // (brcond (setcc (loop.decrement), 0, ne), header) static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm, bool &Negate) { switch (N->getOpcode()) { default: break; case ISD::XOR: { if (!isa(N.getOperand(1))) return SDValue(); if (!cast(N.getOperand(1))->isOne()) return SDValue(); Negate = !Negate; return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate); } case ISD::SETCC: { auto *Const = dyn_cast(N.getOperand(1)); if (!Const) return SDValue(); if (Const->isNullValue()) Imm = 0; else if (Const->isOne()) Imm = 1; else return SDValue(); CC = cast(N.getOperand(2))->get(); return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate); } case ISD::INTRINSIC_W_CHAIN: { unsigned IntOp = cast(N.getOperand(1))->getZExtValue(); if (IntOp != Intrinsic::test_set_loop_iterations && IntOp != Intrinsic::loop_decrement_reg) return SDValue(); return N; } } return SDValue(); } static SDValue PerformHWLoopCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST) { // The hwloop intrinsics that we're interested are used for control-flow, // either for entering or exiting the loop: // - test.set.loop.iterations will test whether its operand is zero. If it // is zero, the proceeding branch should not enter the loop. // - loop.decrement.reg also tests whether its operand is zero. If it is // zero, the proceeding branch should not branch back to the beginning of // the loop. // So here, we need to check that how the brcond is using the result of each // of the intrinsics to ensure that we're branching to the right place at the // right time. ISD::CondCode CC; SDValue Cond; int Imm = 1; bool Negate = false; SDValue Chain = N->getOperand(0); SDValue Dest; if (N->getOpcode() == ISD::BRCOND) { CC = ISD::SETEQ; Cond = N->getOperand(1); Dest = N->getOperand(2); } else { assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!"); CC = cast(N->getOperand(1))->get(); Cond = N->getOperand(2); Dest = N->getOperand(4); if (auto *Const = dyn_cast(N->getOperand(3))) { if (!Const->isOne() && !Const->isNullValue()) return SDValue(); Imm = Const->getZExtValue(); } else return SDValue(); } SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate); if (!Int) return SDValue(); if (Negate) CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32); auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) { return (CC == ISD::SETEQ && Imm == 0) || (CC == ISD::SETNE && Imm == 1) || (CC == ISD::SETLT && Imm == 1) || (CC == ISD::SETULT && Imm == 1); }; auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) { return (CC == ISD::SETEQ && Imm == 1) || (CC == ISD::SETNE && Imm == 0) || (CC == ISD::SETGT && Imm == 0) || (CC == ISD::SETUGT && Imm == 0) || (CC == ISD::SETGE && Imm == 1) || (CC == ISD::SETUGE && Imm == 1); }; assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) && "unsupported condition"); SDLoc dl(Int); SelectionDAG &DAG = DCI.DAG; SDValue Elements = Int.getOperand(2); unsigned IntOp = cast(Int->getOperand(1))->getZExtValue(); assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR) && "expected single br user"); SDNode *Br = *N->use_begin(); SDValue OtherTarget = Br->getOperand(1); // Update the unconditional branch to branch to the given Dest. auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) { SDValue NewBrOps[] = { Br->getOperand(0), Dest }; SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps); DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr); }; if (IntOp == Intrinsic::test_set_loop_iterations) { SDValue Res; // We expect this 'instruction' to branch when the counter is zero. if (IsTrueIfZero(CC, Imm)) { SDValue Ops[] = { Chain, Elements, Dest }; Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops); } else { // The logic is the reverse of what we need for WLS, so find the other // basic block target: the target of the proceeding br. UpdateUncondBr(Br, Dest, DAG); SDValue Ops[] = { Chain, Elements, OtherTarget }; Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops); } DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0)); return Res; } else { SDValue Size = DAG.getTargetConstant( cast(Int.getOperand(3))->getZExtValue(), dl, MVT::i32); SDValue Args[] = { Int.getOperand(0), Elements, Size, }; SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl, DAG.getVTList(MVT::i32, MVT::Other), Args); DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode()); // We expect this instruction to branch when the count is not zero. SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget; // Update the unconditional branch to target the loop preheader if we've // found the condition has been reversed. if (Target == OtherTarget) UpdateUncondBr(Br, Dest, DAG); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SDValue(LoopDec.getNode(), 1), Chain); SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target }; return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs); } return SDValue(); } /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND. SDValue ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const { SDValue Cmp = N->getOperand(4); if (Cmp.getOpcode() != ARMISD::CMPZ) // Only looking at NE cases. return SDValue(); EVT VT = N->getValueType(0); SDLoc dl(N); SDValue LHS = Cmp.getOperand(0); SDValue RHS = Cmp.getOperand(1); SDValue Chain = N->getOperand(0); SDValue BB = N->getOperand(1); SDValue ARMcc = N->getOperand(2); ARMCC::CondCodes CC = (ARMCC::CondCodes)cast(ARMcc)->getZExtValue(); // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0)) // -> (brcond Chain BB CC CPSR Cmp) if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() && LHS->getOperand(0)->getOpcode() == ARMISD::CMOV && LHS->getOperand(0)->hasOneUse()) { auto *LHS00C = dyn_cast(LHS->getOperand(0)->getOperand(0)); auto *LHS01C = dyn_cast(LHS->getOperand(0)->getOperand(1)); auto *LHS1C = dyn_cast(LHS->getOperand(1)); auto *RHSC = dyn_cast(RHS); if ((LHS00C && LHS00C->getZExtValue() == 0) && (LHS01C && LHS01C->getZExtValue() == 1) && (LHS1C && LHS1C->getZExtValue() == 1) && (RHSC && RHSC->getZExtValue() == 0)) { return DAG.getNode( ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2), LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4)); } } return SDValue(); } /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. SDValue ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { SDValue Cmp = N->getOperand(4); if (Cmp.getOpcode() != ARMISD::CMPZ) // Only looking at EQ and NE cases. return SDValue(); EVT VT = N->getValueType(0); SDLoc dl(N); SDValue LHS = Cmp.getOperand(0); SDValue RHS = Cmp.getOperand(1); SDValue FalseVal = N->getOperand(0); SDValue TrueVal = N->getOperand(1); SDValue ARMcc = N->getOperand(2); ARMCC::CondCodes CC = (ARMCC::CondCodes)cast(ARMcc)->getZExtValue(); // BFI is only available on V6T2+. if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) { SDValue R = PerformCMOVToBFICombine(N, DAG); if (R) return R; } // Simplify // mov r1, r0 // cmp r1, x // mov r0, y // moveq r0, x // to // cmp r0, x // movne r0, y // // mov r1, r0 // cmp r1, x // mov r0, x // movne r0, y // to // cmp r0, x // movne r0, y /// FIXME: Turn this into a target neutral optimization? SDValue Res; if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, N->getOperand(3), Cmp); } else if (CC == ARMCC::EQ && TrueVal == RHS) { SDValue ARMcc; SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, N->getOperand(3), NewCmp); } // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0)) // -> (cmov F T CC CPSR Cmp) if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) { auto *LHS0C = dyn_cast(LHS->getOperand(0)); auto *LHS1C = dyn_cast(LHS->getOperand(1)); auto *RHSC = dyn_cast(RHS); if ((LHS0C && LHS0C->getZExtValue() == 0) && (LHS1C && LHS1C->getZExtValue() == 1) && (RHSC && RHSC->getZExtValue() == 0)) { return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, LHS->getOperand(2), LHS->getOperand(3), LHS->getOperand(4)); } } if (!VT.isInteger()) return SDValue(); // Materialize a boolean comparison for integers so we can avoid branching. if (isNullConstant(FalseVal)) { if (CC == ARMCC::EQ && isOneConstant(TrueVal)) { if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) { // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it // right 5 bits will make that 32 be 1, otherwise it will be 0. // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub), DAG.getConstant(5, dl, MVT::i32)); } else { // CMOV 0, 1, ==, (CMPZ x, y) -> // (ADDCARRY (SUB x, y), t:0, t:1) // where t = (SUBCARRY 0, (SUB x, y), 0) // // The SUBCARRY computes 0 - (x - y) and this will give a borrow when // x != y. In other words, a carry C == 1 when x == y, C == 0 // otherwise. // The final ADDCARRY computes // x - y + (0 - (x - y)) + C == C SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); SDVTList VTs = DAG.getVTList(VT, MVT::i32); SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub); // ISD::SUBCARRY returns a borrow but we want the carry here // actually. SDValue Carry = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1)); Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry); } } else if (CC == ARMCC::NE && !isNullConstant(RHS) && (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) { // This seems pointless but will allow us to combine it further below. // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1 SDValue Sub = DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS); SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR, Sub.getValue(1), SDValue()); Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc, N->getOperand(3), CPSRGlue.getValue(1)); FalseVal = Sub; } } else if (isNullConstant(TrueVal)) { if (CC == ARMCC::EQ && !isNullConstant(RHS) && (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) { // This seems pointless but will allow us to combine it further below // Note that we change == for != as this is the dual for the case above. // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1 SDValue Sub = DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS); SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR, Sub.getValue(1), SDValue()); Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal, DAG.getConstant(ARMCC::NE, dl, MVT::i32), N->getOperand(3), CPSRGlue.getValue(1)); FalseVal = Sub; } } // On Thumb1, the DAG above may be further combined if z is a power of 2 // (z == 2 ^ K). // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 -> // t1 = (USUBO (SUB x, y), 1) // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1) // Result = if K != 0 then (SHL t2:0, K) else t2:0 // // This also handles the special case of comparing against zero; it's // essentially, the same pattern, except there's no SUBS: // CMOV x, z, !=, (CMPZ x, 0) -> // t1 = (USUBO x, 1) // t2 = (SUBCARRY x, t1:0, t1:1) // Result = if K != 0 then (SHL t2:0, K) else t2:0 const APInt *TrueConst; if (Subtarget->isThumb1Only() && CC == ARMCC::NE && ((FalseVal.getOpcode() == ARMISD::SUBS && FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) || (FalseVal == LHS && isNullConstant(RHS))) && (TrueConst = isPowerOf2Constant(TrueVal))) { SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned ShiftAmount = TrueConst->logBase2(); if (ShiftAmount) TrueVal = DAG.getConstant(1, dl, VT); SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal); Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1)); if (ShiftAmount) Res = DAG.getNode(ISD::SHL, dl, VT, Res, DAG.getConstant(ShiftAmount, dl, MVT::i32)); } if (Res.getNode()) { KnownBits Known = DAG.computeKnownBits(SDValue(N,0)); // Capture demanded bits information that would be otherwise lost. if (Known.Zero == 0xfffffffe) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i1)); else if (Known.Zero == 0xffffff00) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i8)); else if (Known.Zero == 0xffff0000) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i16)); } return Res; } static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue Src = N->getOperand(0); EVT DstVT = N->getValueType(0); // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE. if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) { EVT SrcVT = Src.getValueType(); if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits()) return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0)); } // We may have a bitcast of something that has already had this bitcast // combine performed on it, so skip past any VECTOR_REG_CASTs. while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST) Src = Src.getOperand(0); // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that // would be generated is at least the width of the element type. EVT SrcVT = Src.getValueType(); if ((Src.getOpcode() == ARMISD::VMOVIMM || Src.getOpcode() == ARMISD::VMVNIMM || Src.getOpcode() == ARMISD::VMOVFPIMM) && SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() && DAG.getDataLayout().isBigEndian()) return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src); return SDValue(); } SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: break; case ISD::SELECT_CC: case ISD::SELECT: return PerformSELECTCombine(N, DCI, Subtarget); case ISD::VSELECT: return PerformVSELECTCombine(N, DCI, Subtarget); case ISD::ABS: return PerformABSCombine(N, DCI, Subtarget); case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget); case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget); case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); case ISD::SUB: return PerformSUBCombine(N, DCI, Subtarget); case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); case ISD::OR: return PerformORCombine(N, DCI, Subtarget); case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); case ISD::BRCOND: case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget); case ARMISD::ADDC: case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget); case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget); case ARMISD::BFI: return PerformBFICombine(N, DCI); case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget); case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); case ARMISD::VMOVhr: return PerformVMOVhrCombine(N, DCI); case ARMISD::VMOVrh: return PerformVMOVrhCombine(N, DCI); case ISD::STORE: return PerformSTORECombine(N, DCI, Subtarget); case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget); case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); case ISD::EXTRACT_VECTOR_ELT: return PerformExtractEltCombine(N, DCI); case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget); case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI.DAG, Subtarget); case ISD::FDIV: return PerformVDIVCombine(N, DCI.DAG, Subtarget); case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DCI, Subtarget); case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); case ISD::FP_EXTEND: return PerformFPExtendCombine(N, DCI.DAG, Subtarget); case ISD::SMIN: case ISD::UMIN: case ISD::SMAX: case ISD::UMAX: return PerformMinMaxCombine(N, DCI.DAG, Subtarget); case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG); case ISD::LOAD: return PerformLOADCombine(N, DCI); case ARMISD::VLD1DUP: case ARMISD::VLD2DUP: case ARMISD::VLD3DUP: case ARMISD::VLD4DUP: return PerformVLDCombine(N, DCI); case ARMISD::BUILD_VECTOR: return PerformARMBUILD_VECTORCombine(N, DCI); case ISD::BITCAST: return PerformBITCASTCombine(N, DCI.DAG, Subtarget); case ARMISD::PREDICATE_CAST: return PerformPREDICATE_CASTCombine(N, DCI); case ARMISD::VECTOR_REG_CAST: return PerformVECTOR_REG_CASTCombine(N, DCI, Subtarget); case ARMISD::VCMP: return PerformVCMPCombine(N, DCI, Subtarget); case ISD::VECREDUCE_ADD: return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget); case ARMISD::VMOVN: return PerformVMOVNCombine(N, DCI); case ARMISD::VQMOVNs: case ARMISD::VQMOVNu: return PerformVQMOVNCombine(N, DCI); case ARMISD::ASRL: case ARMISD::LSRL: case ARMISD::LSLL: return PerformLongShiftCombine(N, DCI.DAG); case ARMISD::SMULWB: { unsigned BitWidth = N->getValueType(0).getSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) return SDValue(); break; } case ARMISD::SMULWT: { unsigned BitWidth = N->getValueType(0).getSizeInBits(); APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16); if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) return SDValue(); break; } case ARMISD::SMLALBB: case ARMISD::QADD16b: case ARMISD::QSUB16b: { unsigned BitWidth = N->getValueType(0).getSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) return SDValue(); break; } case ARMISD::SMLALBT: { unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits(); APInt LowMask = APInt::getLowBitsSet(LowWidth, 16); unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits(); APInt HighMask = APInt::getHighBitsSet(HighWidth, 16); if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) || (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI))) return SDValue(); break; } case ARMISD::SMLALTB: { unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits(); APInt HighMask = APInt::getHighBitsSet(HighWidth, 16); unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits(); APInt LowMask = APInt::getLowBitsSet(LowWidth, 16); if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) || (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI))) return SDValue(); break; } case ARMISD::SMLALTT: { unsigned BitWidth = N->getValueType(0).getSizeInBits(); APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16); if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) return SDValue(); break; } case ARMISD::QADD8b: case ARMISD::QSUB8b: { unsigned BitWidth = N->getValueType(0).getSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) return SDValue(); break; } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (cast(N->getOperand(1))->getZExtValue()) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld1x2: case Intrinsic::arm_neon_vld1x3: case Intrinsic::arm_neon_vld1x4: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vld2dup: case Intrinsic::arm_neon_vld3dup: case Intrinsic::arm_neon_vld4dup: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst1x2: case Intrinsic::arm_neon_vst1x3: case Intrinsic::arm_neon_vst1x4: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: return PerformVLDCombine(N, DCI); case Intrinsic::arm_mve_vld2q: case Intrinsic::arm_mve_vld4q: case Intrinsic::arm_mve_vst2q: case Intrinsic::arm_mve_vst4q: return PerformMVEVLDCombine(N, DCI); default: break; } break; } return SDValue(); } bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const { return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); } bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, unsigned Alignment, MachineMemOperand::Flags, bool *Fast) const { // Depends what it gets converted into if the type is weird. if (!VT.isSimple()) return false; // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); auto Ty = VT.getSimpleVT().SimpleTy; if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) { // Unaligned access can use (for example) LRDB, LRDH, LDR if (AllowsUnaligned) { if (Fast) *Fast = Subtarget->hasV7Ops(); return true; } } if (Ty == MVT::f64 || Ty == MVT::v2f64) { // For any little-endian targets with neon, we can support unaligned ld/st // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. // A big-endian target may also explicitly support unaligned accesses if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) { if (Fast) *Fast = true; return true; } } if (!Subtarget->hasMVEIntegerOps()) return false; // These are for predicates if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) { if (Fast) *Fast = true; return true; } // These are for truncated stores/narrowing loads. They are fine so long as // the alignment is at least the size of the item being loaded if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) && Alignment >= VT.getScalarSizeInBits() / 8) { if (Fast) *Fast = true; return true; } // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and // VSTRW.U32 all store the vector register in exactly the same format, and // differ only in the range of their immediate offset field and the required // alignment. So there is always a store that can be used, regardless of // actual type. // // For big endian, that is not the case. But can still emit a (VSTRB.U8; // VREV64.8) pair and get the same effect. This will likely be better than // aligning the vector through the stack. if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 || Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 || Ty == MVT::v2f64) { if (Fast) *Fast = true; return true; } return false; } EVT ARMTargetLowering::getOptimalMemOpType( const MemOp &Op, const AttributeList &FuncAttributes) const { // See if we can use NEON instructions for this... if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() && !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { bool Fast; if (Op.size() >= 16 && (Op.isAligned(Align(16)) || (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, MachineMemOperand::MONone, &Fast) && Fast))) { return MVT::v2f64; } else if (Op.size() >= 8 && (Op.isAligned(Align(8)) || (allowsMisalignedMemoryAccesses( MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) && Fast))) { return MVT::f64; } } // Let the target-independent logic figure it out. return MVT::Other; } // 64-bit integers are split into their high and low parts and held in two // different registers, so the trunc is free since the low register can just // be used. bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) return false; unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); unsigned DestBits = DstTy->getPrimitiveSizeInBits(); return (SrcBits == 64 && DestBits == 32); } bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() || !DstVT.isInteger()) return false; unsigned SrcBits = SrcVT.getSizeInBits(); unsigned DestBits = DstVT.getSizeInBits(); return (SrcBits == 64 && DestBits == 32); } bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { if (Val.getOpcode() != ISD::LOAD) return false; EVT VT1 = Val.getValueType(); if (!VT1.isSimple() || !VT1.isInteger() || !VT2.isSimple() || !VT2.isInteger()) return false; switch (VT1.getSimpleVT().SimpleTy) { default: break; case MVT::i1: case MVT::i8: case MVT::i16: // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. return true; } return false; } bool ARMTargetLowering::isFNegFree(EVT VT) const { if (!VT.isSimple()) return false; // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that // negate values directly (fneg is free). So, we don't want to let the DAG // combiner rewrite fneg into xors and some other instructions. For f16 and // FullFP16 argument passing, some bitcast nodes may be introduced, // triggering this DAG combine rewrite, so we are avoiding that with this. switch (VT.getSimpleVT().SimpleTy) { default: break; case MVT::f16: return Subtarget->hasFullFP16(); } return false; } /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth /// of the vector elements. static bool areExtractExts(Value *Ext1, Value *Ext2) { auto areExtDoubled = [](Instruction *Ext) { return Ext->getType()->getScalarSizeInBits() == 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); }; if (!match(Ext1, m_ZExtOrSExt(m_Value())) || !match(Ext2, m_ZExtOrSExt(m_Value())) || !areExtDoubled(cast(Ext1)) || !areExtDoubled(cast(Ext2))) return false; return true; } /// Check if sinking \p I's operands to I's basic block is profitable, because /// the operands can be folded into a target instruction, e.g. /// sext/zext can be folded into vsubl. bool ARMTargetLowering::shouldSinkOperands(Instruction *I, SmallVectorImpl &Ops) const { if (!I->getType()->isVectorTy()) return false; if (Subtarget->hasNEON()) { switch (I->getOpcode()) { case Instruction::Sub: case Instruction::Add: { if (!areExtractExts(I->getOperand(0), I->getOperand(1))) return false; Ops.push_back(&I->getOperandUse(0)); Ops.push_back(&I->getOperandUse(1)); return true; } default: return false; } } if (!Subtarget->hasMVEIntegerOps()) return false; auto IsFMSMul = [&](Instruction *I) { if (!I->hasOneUse()) return false; auto *Sub = cast(*I->users().begin()); return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I; }; auto IsFMS = [&](Instruction *I) { if (match(I->getOperand(0), m_FNeg(m_Value())) || match(I->getOperand(1), m_FNeg(m_Value()))) return true; return false; }; auto IsSinker = [&](Instruction *I, int Operand) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::FAdd: case Instruction::ICmp: case Instruction::FCmp: return true; case Instruction::FMul: return !IsFMSMul(I); case Instruction::Sub: case Instruction::FSub: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return Operand == 1; case Instruction::Call: if (auto *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { case Intrinsic::fma: return !IsFMS(I); case Intrinsic::arm_mve_add_predicated: case Intrinsic::arm_mve_mul_predicated: case Intrinsic::arm_mve_qadd_predicated: case Intrinsic::arm_mve_hadd_predicated: case Intrinsic::arm_mve_vqdmull_predicated: case Intrinsic::arm_mve_qdmulh_predicated: case Intrinsic::arm_mve_qrdmulh_predicated: case Intrinsic::arm_mve_fma_predicated: return true; case Intrinsic::arm_mve_sub_predicated: case Intrinsic::arm_mve_qsub_predicated: case Intrinsic::arm_mve_hsub_predicated: return Operand == 1; default: return false; } } return false; default: return false; } }; for (auto OpIdx : enumerate(I->operands())) { Instruction *Op = dyn_cast(OpIdx.value().get()); // Make sure we are not already sinking this operand if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) continue; Instruction *Shuffle = Op; if (Shuffle->getOpcode() == Instruction::BitCast) Shuffle = dyn_cast(Shuffle->getOperand(0)); // We are looking for a splat that can be sunk. if (!Shuffle || !match(Shuffle, m_Shuffle( m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), m_Undef(), m_ZeroMask()))) continue; if (!IsSinker(I, OpIdx.index())) continue; // All uses of the shuffle should be sunk to avoid duplicating it across gpr // and vector registers for (Use &U : Op->uses()) { Instruction *Insn = cast(U.getUser()); if (!IsSinker(Insn, U.getOperandNo())) return false; } Ops.push_back(&Shuffle->getOperandUse(0)); if (Shuffle != Op) Ops.push_back(&Op->getOperandUse(0)); Ops.push_back(&OpIdx.value()); } return true; } Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const { if (!Subtarget->hasMVEIntegerOps()) return nullptr; Type *SVIType = SVI->getType(); Type *ScalarType = SVIType->getScalarType(); if (ScalarType->isFloatTy()) return Type::getInt32Ty(SVIType->getContext()); if (ScalarType->isHalfTy()) return Type::getInt16Ty(SVIType->getContext()); return nullptr; } bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { EVT VT = ExtVal.getValueType(); if (!isTypeLegal(VT)) return false; if (auto *Ld = dyn_cast(ExtVal.getOperand(0))) { if (Ld->isExpandingLoad()) return false; } if (Subtarget->hasMVEIntegerOps()) return true; // Don't create a loadext if we can fold the extension into a wide/long // instruction. // If there's more than one user instruction, the loadext is desirable no // matter what. There can be two uses by the same instruction. if (ExtVal->use_empty() || !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode())) return true; SDNode *U = *ExtVal->use_begin(); if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB || U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM)) return false; return true; } bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; if (!isTypeLegal(EVT::getEVT(Ty1))) return false; assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); // Assuming the caller doesn't have a zeroext or signext return parameter, // truncation all the way down to i1 is valid. return true; } int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { if (isLegalAddressingMode(DL, AM, Ty, AS)) { if (Subtarget->hasFPAO()) return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster return 0; } return -1; } /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be /// expanded to FMAs when this method returns true, otherwise fmuladd is /// expanded to fmul + fadd. /// /// ARM supports both fused and unfused multiply-add operations; we already /// lower a pair of fmul and fadd to the latter so it's not clear that there /// would be a gain or that the gain would be worthwhile enough to risk /// correctness bugs. /// /// For MVE, we set this to true as it helps simplify the need for some /// patterns (and we don't have the non-fused floating point instruction). bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const { if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::v4f32: case MVT::v8f16: return Subtarget->hasMVEFloatOps(); case MVT::f16: return Subtarget->useFPVFMx16(); case MVT::f32: return Subtarget->useFPVFMx(); case MVT::f64: return Subtarget->useFPVFMx64(); default: break; } return false; } static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { if (V < 0) return false; unsigned Scale = 1; switch (VT.getSimpleVT().SimpleTy) { case MVT::i1: case MVT::i8: // Scale == 1; break; case MVT::i16: // Scale == 2; Scale = 2; break; default: // On thumb1 we load most things (i32, i64, floats, etc) with a LDR // Scale == 4; Scale = 4; break; } if ((V & (Scale - 1)) != 0) return false; return isUInt<5>(V / Scale); } static bool isLegalT2AddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget) { if (!VT.isInteger() && !VT.isFloatingPoint()) return false; if (VT.isVector() && Subtarget->hasNEON()) return false; if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() && !Subtarget->hasMVEFloatOps()) return false; bool IsNeg = false; if (V < 0) { IsNeg = true; V = -V; } unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U); // MVE: size * imm7 if (VT.isVector() && Subtarget->hasMVEIntegerOps()) { switch (VT.getSimpleVT().getVectorElementType().SimpleTy) { case MVT::i32: case MVT::f32: return isShiftedUInt<7,2>(V); case MVT::i16: case MVT::f16: return isShiftedUInt<7,1>(V); case MVT::i8: return isUInt<7>(V); default: return false; } } // half VLDR: 2 * imm8 if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16()) return isShiftedUInt<8, 1>(V); // VLDR and LDRD: 4 * imm8 if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8) return isShiftedUInt<8, 2>(V); if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) { // + imm12 or - imm8 if (IsNeg) return isUInt<8>(V); return isUInt<12>(V); } return false; } /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode for load / store of the /// given type. static bool isLegalAddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget) { if (V == 0) return true; if (!VT.isSimple()) return false; if (Subtarget->isThumb1Only()) return isLegalT1AddressImmediate(V, VT); else if (Subtarget->isThumb2()) return isLegalT2AddressImmediate(V, VT, Subtarget); // ARM mode. if (V < 0) V = - V; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: // +- imm12 return isUInt<12>(V); case MVT::i16: // +- imm8 return isUInt<8>(V); case MVT::f32: case MVT::f64: if (!Subtarget->hasVFP2Base()) // FIXME: NEON? return false; return isShiftedUInt<8, 2>(V); } } bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const { int Scale = AM.Scale; if (Scale < 0) return false; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (Scale == 1) return true; // r + r << imm Scale = Scale & ~1; return Scale == 2 || Scale == 4 || Scale == 8; case MVT::i64: // FIXME: What are we trying to model here? ldrd doesn't have an r + r // version in Thumb mode. // r + r if (Scale == 1) return true; // r * 2 (this can be lowered to r + r). if (!AM.HasBaseReg && Scale == 2) return true; return false; case MVT::isVoid: // Note, we allow "void" uses (basically, uses that aren't loads or // stores), because arm allows folding a scale into many arithmetic // operations. This should be made more precise and revisited later. // Allow r << imm, but the imm has to be a multiple of two. if (Scale & 1) return false; return isPowerOf2_32(Scale); } } bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM, EVT VT) const { const int Scale = AM.Scale; // Negative scales are not supported in Thumb1. if (Scale < 0) return false; // Thumb1 addressing modes do not support register scaling excepting the // following cases: // 1. Scale == 1 means no scaling. // 2. Scale == 2 this can be lowered to r + r if there is no base register. return (Scale == 1) || (!AM.HasBaseReg && Scale == 2); } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { EVT VT = getValueType(DL, Ty, true); if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) return false; // Can never fold addr of global into load/store. if (AM.BaseGV) return false; switch (AM.Scale) { case 0: // no scale reg, must be "r+i" or "r", or "i". break; default: // ARM doesn't support any R+R*scale+imm addr modes. if (AM.BaseOffs) return false; if (!VT.isSimple()) return false; if (Subtarget->isThumb1Only()) return isLegalT1ScaledAddressingMode(AM, VT); if (Subtarget->isThumb2()) return isLegalT2ScaledAddressingMode(AM, VT); int Scale = AM.Scale; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: if (Scale < 0) Scale = -Scale; if (Scale == 1) return true; // r + r << imm return isPowerOf2_32(Scale & ~1); case MVT::i16: case MVT::i64: // r +/- r if (Scale == 1 || (AM.HasBaseReg && Scale == -1)) return true; // r * 2 (this can be lowered to r + r). if (!AM.HasBaseReg && Scale == 2) return true; return false; case MVT::isVoid: // Note, we allow "void" uses (basically, uses that aren't loads or // stores), because arm allows folding a scale into many arithmetic // operations. This should be made more precise and revisited later. // Allow r << imm, but the imm has to be a multiple of two. if (Scale & 1) return false; return isPowerOf2_32(Scale); } } return true; } /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { // Thumb2 and ARM modes can use cmn for negative immediates. if (!Subtarget->isThumb()) return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 || ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1; if (Subtarget->isThumb2()) return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 || ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1; // Thumb1 doesn't have cmn, and only 8-bit immediates. return Imm >= 0 && Imm <= 255; } /// isLegalAddImmediate - Return true if the specified immediate is a legal add /// *or sub* immediate, that is the target has add or sub instructions which can /// add a register with the immediate without having to materialize the /// immediate into a register. bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { // Same encoding for add/sub, just flip the sign. int64_t AbsImm = std::abs(Imm); if (!Subtarget->isThumb()) return ARM_AM::getSOImmVal(AbsImm) != -1; if (Subtarget->isThumb2()) return ARM_AM::getT2SOImmVal(AbsImm) != -1; // Thumb1 only has 8-bit unsigned immediate. return AbsImm >= 0 && AbsImm <= 255; } static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { // AddressingMode 3 Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -256) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } } isInc = (Ptr->getOpcode() == ISD::ADD); Offset = Ptr->getOperand(1); return true; } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { // AddressingMode 2 if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x1000) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); Base = Ptr->getOperand(0); return true; } } if (Ptr->getOpcode() == ISD::ADD) { isInc = true; ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); if (ShOpcVal != ARM_AM::no_shift) { Base = Ptr->getOperand(1); Offset = Ptr->getOperand(0); } else { Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); } return true; } isInc = (Ptr->getOpcode() == ISD::ADD); Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); return true; } // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. return false; } static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x100) { // 8 bits. assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. isInc = Ptr->getOpcode() == ISD::ADD; Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } } return false; } static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment, bool isSEXTLoad, bool IsMasked, bool isLE, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; if (!isa(Ptr->getOperand(1))) return false; // We allow LE non-masked loads to change the type (for example use a vldrb.8 // as opposed to a vldrw.32). This can allow extra addressing modes or // alignments for what is otherwise an equivalent instruction. bool CanChangeType = isLE && !IsMasked; ConstantSDNode *RHS = cast(Ptr->getOperand(1)); int RHSC = (int)RHS->getZExtValue(); auto IsInRange = [&](int RHSC, int Limit, int Scale) { if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) { isInc = Ptr->getOpcode() == ISD::ADD; Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0)); return true; } return false; }; // Try to find a matching instruction based on s/zext, Alignment, Offset and // (in BE/masked) type. Base = Ptr->getOperand(0); if (VT == MVT::v4i16) { if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2)) return true; } else if (VT == MVT::v4i8 || VT == MVT::v8i8) { if (IsInRange(RHSC, 0x80, 1)) return true; } else if (Alignment >= 4 && (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) && IsInRange(RHSC, 0x80, 4)) return true; else if (Alignment >= 2 && (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) && IsInRange(RHSC, 0x80, 2)) return true; else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1)) return true; return false; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (Subtarget->isThumb1Only()) return false; EVT VT; SDValue Ptr; Align Alignment; bool isSEXTLoad = false; bool IsMasked = false; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); Alignment = LD->getAlign(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); Alignment = ST->getAlign(); } else if (MaskedLoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); Alignment = LD->getAlign(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; IsMasked = true; } else if (MaskedStoreSDNode *ST = dyn_cast(N)) { Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); Alignment = ST->getAlign(); IsMasked = true; } else return false; bool isInc; bool isLegal = false; if (VT.isVector()) isLegal = Subtarget->hasMVEIntegerOps() && getMVEIndexedAddressParts( Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked, Subtarget->isLittle(), Base, Offset, isInc, DAG); else { if (Subtarget->isThumb2()) isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); } if (!isLegal) return false; AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; return true; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; Align Alignment; bool isSEXTLoad = false, isNonExt; bool IsMasked = false; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); Alignment = LD->getAlign(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); Alignment = ST->getAlign(); isNonExt = !ST->isTruncatingStore(); } else if (MaskedLoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); Alignment = LD->getAlign(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD; IsMasked = true; } else if (MaskedStoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); Alignment = ST->getAlign(); isNonExt = !ST->isTruncatingStore(); IsMasked = true; } else return false; if (Subtarget->isThumb1Only()) { // Thumb-1 can do a limited post-inc load or store as an updating LDM. It // must be non-extending/truncating, i32, with an offset of 4. assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!"); if (Op->getOpcode() != ISD::ADD || !isNonExt) return false; auto *RHS = dyn_cast(Op->getOperand(1)); if (!RHS || RHS->getZExtValue() != 4) return false; Offset = Op->getOperand(1); Base = Op->getOperand(0); AM = ISD::POST_INC; return true; } bool isInc; bool isLegal = false; if (VT.isVector()) isLegal = Subtarget->hasMVEIntegerOps() && getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked, Subtarget->isLittle(), Base, Offset, isInc, DAG); else { if (Subtarget->isThumb2()) isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); } if (!isLegal) return false; if (Ptr != Base) { // Swap base ptr and offset to catch more post-index load / store when // it's legal. In Thumb2 mode, offset must be an immediate. if (Ptr == Offset && Op->getOpcode() == ISD::ADD && !Subtarget->isThumb2()) std::swap(Base, Offset); // Post-indexed load / store update the base pointer. if (Ptr != Base) return false; } AM = isInc ? ISD::POST_INC : ISD::POST_DEC; return true; } void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = Known.getBitWidth(); Known.resetAll(); switch (Op.getOpcode()) { default: break; case ARMISD::ADDC: case ARMISD::ADDE: case ARMISD::SUBC: case ARMISD::SUBE: // Special cases when we convert a carry to a boolean. if (Op.getResNo() == 0) { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); // (ADDE 0, 0, C) will give us a single bit. if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) && isNullConstant(RHS)) { Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); return; } } break; case ARMISD::CMOV: { // Bits are known zero/one if known on the LHS and RHS. Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1); if (Known.isUnknown()) return; KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1); Known = KnownBits::commonBits(Known, KnownRHS); return; } case ISD::INTRINSIC_W_CHAIN: { ConstantSDNode *CN = cast(Op->getOperand(1)); Intrinsic::ID IntID = static_cast(CN->getZExtValue()); switch (IntID) { default: return; case Intrinsic::arm_ldaex: case Intrinsic::arm_ldrex: { EVT VT = cast(Op)->getMemoryVT(); unsigned MemBits = VT.getScalarSizeInBits(); Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); return; } } } case ARMISD::BFI: { // Conservatively, we can recurse down the first operand // and just mask out all affected bits. Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); // The operand to BFI is already a mask suitable for removing the bits it // sets. ConstantSDNode *CI = cast(Op.getOperand(2)); const APInt &Mask = CI->getAPIntValue(); Known.Zero &= Mask; Known.One &= Mask; return; } case ARMISD::VGETLANEs: case ARMISD::VGETLANEu: { const SDValue &SrcSV = Op.getOperand(0); EVT VecVT = SrcSV.getValueType(); assert(VecVT.isVector() && "VGETLANE expected a vector type"); const unsigned NumSrcElts = VecVT.getVectorNumElements(); ConstantSDNode *Pos = cast(Op.getOperand(1).getNode()); assert(Pos->getAPIntValue().ult(NumSrcElts) && "VGETLANE index out of bounds"); unsigned Idx = Pos->getZExtValue(); APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1); EVT VT = Op.getValueType(); const unsigned DstSz = VT.getScalarSizeInBits(); const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits(); (void)SrcSz; assert(SrcSz == Known.getBitWidth()); assert(DstSz > SrcSz); if (Op.getOpcode() == ARMISD::VGETLANEs) Known = Known.sext(DstSz); else { Known = Known.zext(DstSz); } assert(DstSz == Known.getBitWidth()); break; } case ARMISD::VMOVrh: { KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); assert(KnownOp.getBitWidth() == 16); Known = KnownOp.zext(32); break; } } } bool ARMTargetLowering::targetShrinkDemandedConstant( SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const { // Delay optimization, so we don't have to deal with illegal types, or block // optimizations. if (!TLO.LegalOps) return false; // Only optimize AND for now. if (Op.getOpcode() != ISD::AND) return false; EVT VT = Op.getValueType(); // Ignore vectors. if (VT.isVector()) return false; assert(VT == MVT::i32 && "Unexpected integer type"); // Make sure the RHS really is a constant. ConstantSDNode *C = dyn_cast(Op.getOperand(1)); if (!C) return false; unsigned Mask = C->getZExtValue(); unsigned Demanded = DemandedBits.getZExtValue(); unsigned ShrunkMask = Mask & Demanded; unsigned ExpandedMask = Mask | ~Demanded; // If the mask is all zeros, let the target-independent code replace the // result with zero. if (ShrunkMask == 0) return false; // If the mask is all ones, erase the AND. (Currently, the target-independent // code won't do this, so we have to do it explicitly to avoid an infinite // loop in obscure cases.) if (ExpandedMask == ~0U) return TLO.CombineTo(Op, Op.getOperand(0)); auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool { return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0; }; auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool { if (NewMask == Mask) return true; SDLoc DL(Op); SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); return TLO.CombineTo(Op, NewOp); }; // Prefer uxtb mask. if (IsLegalMask(0xFF)) return UseMask(0xFF); // Prefer uxth mask. if (IsLegalMask(0xFFFF)) return UseMask(0xFFFF); // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2. // FIXME: Prefer a contiguous sequence of bits for other optimizations. if (ShrunkMask < 256) return UseMask(ShrunkMask); // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2. // FIXME: Prefer a contiguous sequence of bits for other optimizations. if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256) return UseMask(ExpandedMask); // Potential improvements: // // We could try to recognize lsls+lsrs or lsrs+lsls pairs here. // We could try to prefer Thumb1 immediates which can be lowered to a // two-instruction sequence. // We could try to recognize more legal ARM/Thumb2 immediates here. return false; } bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode( SDValue Op, const APInt &OriginalDemandedBits, const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { unsigned Opc = Op.getOpcode(); switch (Opc) { case ARMISD::ASRL: case ARMISD::LSRL: { // If this is result 0 and the other result is unused, see if the demand // bits allow us to shrink this long shift into a standard small shift in // the opposite direction. if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) && isa(Op->getOperand(2))) { unsigned ShAmt = Op->getConstantOperandVal(2); if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf( APInt::getAllOnesValue(32) << (32 - ShAmt))) return TLO.CombineTo( Op, TLO.DAG.getNode( ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1), TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32))); } break; } } return TargetLowering::SimplifyDemandedBitsForTargetNode( Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth); } //===----------------------------------------------------------------------===// // ARM Inline Assembly Support //===----------------------------------------------------------------------===// bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { // Looking for "rev" which is V6+. if (!Subtarget->hasV6Ops()) return false; InlineAsm *IA = cast(CI->getCalledOperand()); std::string AsmStr = IA->getAsmString(); SmallVector AsmPieces; SplitString(AsmStr, AsmPieces, ";\n"); switch (AsmPieces.size()) { default: return false; case 1: AsmStr = std::string(AsmPieces[0]); AsmPieces.clear(); SplitString(AsmStr, AsmPieces, " \t,"); // rev $0, $1 if (AsmPieces.size() == 3 && AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && IA->getConstraintString().compare(0, 4, "=l,l") == 0) { IntegerType *Ty = dyn_cast(CI->getType()); if (Ty && Ty->getBitWidth() == 32) return IntrinsicLowering::LowerToByteSwap(CI); } break; } return false; } const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const { // At this point, we have to lower this constraint to something else, so we // lower it to an "r" or "w". However, by doing this we will force the result // to be in register, while the X constraint is much more permissive. // // Although we are correct (we are free to emit anything, without // constraints), we might break use cases that would expect us to be more // efficient and emit something else. if (!Subtarget->hasVFP2Base()) return "r"; if (ConstraintVT.isFloatingPoint()) return "w"; if (ConstraintVT.isVector() && Subtarget->hasNEON() && (ConstraintVT.getSizeInBits() == 64 || ConstraintVT.getSizeInBits() == 128)) return "w"; return "r"; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. ARMTargetLowering::ConstraintType ARMTargetLowering::getConstraintType(StringRef Constraint) const { unsigned S = Constraint.size(); if (S == 1) { switch (Constraint[0]) { default: break; case 'l': return C_RegisterClass; case 'w': return C_RegisterClass; case 'h': return C_RegisterClass; case 'x': return C_RegisterClass; case 't': return C_RegisterClass; case 'j': return C_Immediate; // Constant for movw. // An address with a single base register. Due to the way we // currently handle addresses it is the same as an 'r' memory constraint. case 'Q': return C_Memory; } } else if (S == 2) { switch (Constraint[0]) { default: break; case 'T': return C_RegisterClass; // All 'U+' constraints are addresses. case 'U': return C_Memory; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight ARMTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'l': if (type->isIntegerTy()) { if (Subtarget->isThumb()) weight = CW_SpecificReg; else weight = CW_Register; } break; case 'w': if (type->isFloatingPointTy()) weight = CW_Register; break; } return weight; } using RCPair = std::pair; RCPair ARMTargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { switch (Constraint.size()) { case 1: // GCC ARM Constraint Letters switch (Constraint[0]) { case 'l': // Low regs or general regs. if (Subtarget->isThumb()) return RCPair(0U, &ARM::tGPRRegClass); return RCPair(0U, &ARM::GPRRegClass); case 'h': // High regs or no regs. if (Subtarget->isThumb()) return RCPair(0U, &ARM::hGPRRegClass); break; case 'r': if (Subtarget->isThumb1Only()) return RCPair(0U, &ARM::tGPRRegClass); return RCPair(0U, &ARM::GPRRegClass); case 'w': if (VT == MVT::Other) break; if (VT == MVT::f32) return RCPair(0U, &ARM::SPRRegClass); if (VT.getSizeInBits() == 64) return RCPair(0U, &ARM::DPRRegClass); if (VT.getSizeInBits() == 128) return RCPair(0U, &ARM::QPRRegClass); break; case 'x': if (VT == MVT::Other) break; if (VT == MVT::f32) return RCPair(0U, &ARM::SPR_8RegClass); if (VT.getSizeInBits() == 64) return RCPair(0U, &ARM::DPR_8RegClass); if (VT.getSizeInBits() == 128) return RCPair(0U, &ARM::QPR_8RegClass); break; case 't': if (VT == MVT::Other) break; if (VT == MVT::f32 || VT == MVT::i32) return RCPair(0U, &ARM::SPRRegClass); if (VT.getSizeInBits() == 64) return RCPair(0U, &ARM::DPR_VFP2RegClass); if (VT.getSizeInBits() == 128) return RCPair(0U, &ARM::QPR_VFP2RegClass); break; } break; case 2: if (Constraint[0] == 'T') { switch (Constraint[1]) { default: break; case 'e': return RCPair(0U, &ARM::tGPREvenRegClass); case 'o': return RCPair(0U, &ARM::tGPROddRegClass); } } break; default: break; } if (StringRef("{cc}").equals_lower(Constraint)) return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result; // Currently only support length 1 constraints. if (Constraint.length() != 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'j': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': ConstantSDNode *C = dyn_cast(Op); if (!C) return; int64_t CVal64 = C->getSExtValue(); int CVal = (int) CVal64; // None of these constraints allow values larger than 32 bits. Check // that the value fits in an int. if (CVal != CVal64) return; switch (ConstraintLetter) { case 'j': // Constant suitable for movw, must be between 0 and // 65535. if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps())) if (CVal >= 0 && CVal <= 65535) break; return; case 'I': if (Subtarget->isThumb1Only()) { // This must be a constant between 0 and 255, for ADD // immediates. if (CVal >= 0 && CVal <= 255) break; } else if (Subtarget->isThumb2()) { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getT2SOImmVal(CVal) != -1) break; } else { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getSOImmVal(CVal) != -1) break; } return; case 'J': if (Subtarget->isThumb1Only()) { // This must be a constant between -255 and -1, for negated ADD // immediates. This can be used in GCC with an "n" modifier that // prints the negated value, for use with SUB instructions. It is // not useful otherwise but is implemented for compatibility. if (CVal >= -255 && CVal <= -1) break; } else { // This must be a constant between -4095 and 4095. It is not clear // what this constraint is intended for. Implemented for // compatibility with GCC. if (CVal >= -4095 && CVal <= 4095) break; } return; case 'K': if (Subtarget->isThumb1Only()) { // A 32-bit value where only one byte has a nonzero value. Exclude // zero to match GCC. This constraint is used by GCC internally for // constants that can be loaded with a move/shift combination. // It is not useful otherwise but is implemented for compatibility. if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) break; } else if (Subtarget->isThumb2()) { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getT2SOImmVal(~CVal) != -1) break; } else { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getSOImmVal(~CVal) != -1) break; } return; case 'L': if (Subtarget->isThumb1Only()) { // This must be a constant between -7 and 7, // for 3-operand ADD/SUB immediate instructions. if (CVal >= -7 && CVal < 7) break; } else if (Subtarget->isThumb2()) { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getT2SOImmVal(-CVal) != -1) break; } else { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getSOImmVal(-CVal) != -1) break; } return; case 'M': if (Subtarget->isThumb1Only()) { // This must be a multiple of 4 between 0 and 1020, for // ADD sp + immediate. if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) break; } else { // A power of two or a constant between 0 and 32. This is used in // GCC for the shift amount on shifted register operands, but it is // useful in general for any shift amounts. if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) break; } return; case 'N': if (Subtarget->isThumb1Only()) { // This must be a constant between 0 and 31, for shift amounts. if (CVal >= 0 && CVal <= 31) break; } return; case 'O': if (Subtarget->isThumb1Only()) { // This must be a multiple of 4 between -508 and 508, for // ADD/SUB sp = sp + immediate. if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) break; } return; } Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType()); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } static RTLIB::Libcall getDivRemLibcall( const SDNode *N, MVT::SimpleValueType SVT) { assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && "Unhandled Opcode in getDivRemLibcall"); bool isSigned = N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::SREM; RTLIB::Libcall LC; switch (SVT) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; } return LC; } static TargetLowering::ArgListTy getDivRemArgList( const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) { assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && "Unhandled Opcode in getDivRemArgList"); bool isSigned = N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::SREM; TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { EVT ArgVT = N->getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*Context); Entry.Node = N->getOperand(i); Entry.Ty = ArgTy; Entry.IsSExt = isSigned; Entry.IsZExt = !isSigned; Args.push_back(Entry); } if (Subtarget->isTargetWindows() && Args.size() >= 2) std::swap(Args[0], Args[1]); return Args; } SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() || Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() || Subtarget->isTargetWindows()) && "Register-based DivRem lowering only"); unsigned Opcode = Op->getOpcode(); assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && "Invalid opcode for Div/Rem lowering"); bool isSigned = (Opcode == ISD::SDIVREM); EVT VT = Op->getValueType(0); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); SDLoc dl(Op); // If the target has hardware divide, use divide + multiply + subtract: // div = a / b // rem = a - b * div // return {div, rem} // This should be lowered into UDIV/SDIV + MLS later on. bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode() : Subtarget->hasDivideInARMMode(); if (hasDivide && Op->getValueType(0).isSimple() && Op->getSimpleValueType(0) == MVT::i32) { unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; const SDValue Dividend = Op->getOperand(0); const SDValue Divisor = Op->getOperand(1); SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor); SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor); SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); SDValue Values[2] = {Div, Rem}; return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values); } RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(), VT.getSimpleVT().SimpleTy); SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(), DAG.getContext(), Subtarget); SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy(DAG.getDataLayout())); Type *RetTy = StructType::get(Ty, Ty); if (Subtarget->isTargetWindows()) InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(InChain) .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); std::pair CallInfo = LowerCallTo(CLI); return CallInfo.first; } // Lowers REM using divmod helpers // see RTABI section 4.2/4.3 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const { // Build return types (div and rem) std::vector RetTyParams; Type *RetTyElement; switch (N->getValueType(0).getSimpleVT().SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break; case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break; case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break; case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break; } RetTyParams.push_back(RetTyElement); RetTyParams.push_back(RetTyElement); ArrayRef ret = ArrayRef(RetTyParams); Type *RetTy = StructType::get(*DAG.getContext(), ret); RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT(). SimpleTy); SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(), Subtarget); bool isSigned = N->getOpcode() == ISD::SREM; SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy(DAG.getDataLayout())); if (Subtarget->isTargetWindows()) InChain = WinDBZCheckDenominator(DAG, N, InChain); // Lower call CallLoweringInfo CLI(DAG); CLI.setChain(InChain) .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args)) .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N)); std::pair CallResult = LowerCallTo(CLI); // Return second (rem) result operand (first contains div) SDNode *ResNode = CallResult.first.getNode(); assert(ResNode->getNumOperands() == 2 && "divmod should return two operands"); return ResNode->getOperand(1); } SDValue ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "unsupported target platform"); SDLoc DL(Op); // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); if (DAG.getMachineFunction().getFunction().hasFnAttribute( "no-stack-arg-probe")) { MaybeAlign Align = cast(Op.getOperand(2))->getMaybeAlignValue(); SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); Chain = SP.getValue(1); SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size); if (Align) SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0), DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32)); Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP); SDValue Ops[2] = { SP, Chain }; return DAG.getMergeValues(Ops, DL); } SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size, DAG.getConstant(2, DL, MVT::i32)); SDValue Flag; Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag); Flag = Chain.getValue(1); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag); SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); Chain = NewSP.getValue(1); SDValue Ops[2] = { NewSP, Chain }; return DAG.getMergeValues(Ops, DL); } SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); const unsigned DstSz = Op.getValueType().getSizeInBits(); const unsigned SrcSz = SrcVal.getValueType().getSizeInBits(); assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 && "Unexpected type for custom-lowering FP_EXTEND"); assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) && "With both FP DP and 16, any FP conversion is legal!"); assert(!(DstSz == 32 && Subtarget->hasFP16()) && "With FP16, 16 to 32 conversion is legal!"); // Converting from 32 -> 64 is valid if we have FP64. if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) { // FIXME: Remove this when we have strict fp instruction selection patterns if (IsStrict) { SDLoc Loc(Op); SDValue Result = DAG.getNode(ISD::FP_EXTEND, Loc, Op.getValueType(), SrcVal); return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc); } return Op; } // Either we are converting from 16 -> 64, without FP16 and/or // FP.double-precision or without Armv8-fp. So we must do it in two // steps. // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32 // without FP16. So we must do a function call. SDLoc Loc(Op); RTLIB::Libcall LC; MakeLibCallOptions CallOptions; SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) { bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64()); MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32); MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64); if (Supported) { if (IsStrict) { SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc, {DstVT, MVT::Other}, {Chain, SrcVal}); Chain = SrcVal.getValue(1); } else { SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal); } } else { LC = RTLIB::getFPEXT(SrcVT, DstVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected type for custom-lowering FP_EXTEND"); std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions, Loc, Chain); } } return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal; } SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); EVT SrcVT = SrcVal.getValueType(); EVT DstVT = Op.getValueType(); const unsigned DstSz = Op.getValueType().getSizeInBits(); const unsigned SrcSz = SrcVT.getSizeInBits(); (void)DstSz; assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 && "Unexpected type for custom-lowering FP_ROUND"); assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) && "With both FP DP and 16, any FP conversion is legal!"); SDLoc Loc(Op); // Instruction from 32 -> 16 if hasFP16 is valid if (SrcSz == 32 && Subtarget->hasFP16()) return Op; // Lib call from 32 -> 16 / 64 -> [32, 16] RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected type for custom-lowering FP_ROUND"); MakeLibCallOptions CallOptions; SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); SDValue Result; std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions, Loc, Chain); return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result; } void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS."); MVT HalfT = MVT::i32; SDLoc dl(N); SDValue Hi, Lo, Tmp; if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) || !isOperationLegalOrCustom(ISD::UADDO, HalfT)) return ; unsigned OpTypeBits = HalfT.getScalarSizeInBits(); SDVTList VTList = DAG.getVTList(HalfT, MVT::i1); Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0), DAG.getConstant(0, dl, HalfT)); Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0), DAG.getConstant(1, dl, HalfT)); Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi, DAG.getConstant(OpTypeBits - 1, dl, getShiftAmountTy(HalfT, DAG.getDataLayout()))); Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo); Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi, SDValue(Lo.getNode(), 1)); Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi); Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo); Results.push_back(Lo); Results.push_back(Hi); } bool ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The ARM target isn't yet aware of offsets. return false; } bool ARM::isBitFieldInvertedMask(unsigned v) { if (v == 0xffffffff) return false; // there can be 1's on either or both "outsides", all the "inside" // bits must be 0's return isShiftedMask_32(~v); } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const { if (!Subtarget->hasVFP3Base()) return false; if (VT == MVT::f16 && Subtarget->hasFullFP16()) return ARM_AM::getFP16Imm(Imm) != -1; if (VT == MVT::f32 && Subtarget->hasFullFP16() && ARM_AM::getFP32FP16Imm(Imm) != -1) return true; if (VT == MVT::f32) return ARM_AM::getFP32Imm(Imm) != -1; if (VT == MVT::f64 && Subtarget->hasFP64()) return ARM_AM::getFP64Imm(Imm) != -1; return false; } /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment /// specified in the intrinsic calls. bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vld2dup: case Intrinsic::arm_neon_vld3dup: case Intrinsic::arm_neon_vld4dup: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast(AlignArg)->getMaybeAlignValue(); // volatile loads with NEON intrinsics not supported Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::arm_neon_vld1x2: case Intrinsic::arm_neon_vld1x3: case Intrinsic::arm_neon_vld1x4: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); Info.offset = 0; Info.align.reset(); // volatile loads with NEON intrinsics not supported Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); unsigned NumElts = 0; for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { Type *ArgTy = I.getArgOperand(ArgI)->getType(); if (!ArgTy->isVectorTy()) break; NumElts += DL.getTypeSizeInBits(ArgTy) / 64; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast(AlignArg)->getMaybeAlignValue(); // volatile stores with NEON intrinsics not supported Info.flags = MachineMemOperand::MOStore; return true; } case Intrinsic::arm_neon_vst1x2: case Intrinsic::arm_neon_vst1x3: case Intrinsic::arm_neon_vst1x4: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); unsigned NumElts = 0; for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { Type *ArgTy = I.getArgOperand(ArgI)->getType(); if (!ArgTy->isVectorTy()) break; NumElts += DL.getTypeSizeInBits(ArgTy) / 64; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align.reset(); // volatile stores with NEON intrinsics not supported Info.flags = MachineMemOperand::MOStore; return true; } case Intrinsic::arm_mve_vld2q: case Intrinsic::arm_mve_vld4q: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. Type *VecTy = cast(I.getType())->getElementType(1); unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4; Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(VecTy->getScalarSizeInBits() / 8); // volatile loads with MVE intrinsics not supported Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::arm_mve_vst2q: case Intrinsic::arm_mve_vst4q: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. Type *VecTy = I.getArgOperand(1)->getType(); unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4; Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(VecTy->getScalarSizeInBits() / 8); // volatile stores with MVE intrinsics not supported Info.flags = MachineMemOperand::MOStore; return true; } case Intrinsic::arm_ldaex: case Intrinsic::arm_ldrex: { auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); PointerType *PtrTy = cast(I.getArgOperand(0)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = DL.getABITypeAlign(PtrTy->getElementType()); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; return true; } case Intrinsic::arm_stlex: case Intrinsic::arm_strex: { auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); PointerType *PtrTy = cast(I.getArgOperand(1)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = DL.getABITypeAlign(PtrTy->getElementType()); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } case Intrinsic::arm_stlexd: case Intrinsic::arm_strexd: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i64; Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = Align(8); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; case Intrinsic::arm_ldaexd: case Intrinsic::arm_ldrexd: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i64; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(8); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; return true; default: break; } return false; } /// Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned Bits = Ty->getPrimitiveSizeInBits(); if (Bits == 0 || Bits > 32) return false; return true; } bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; return (Index == 0 || Index == ResVT.getVectorNumElements()); } Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder, ARM_MB::MemBOpt Domain) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); // First, if the target has no DMB, see what fallback we can use. if (!Subtarget->hasDataBarrier()) { // Some ARMv6 cpus can support data barriers with an mcr instruction. // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get // here. if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) { Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr); Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0), Builder.getInt32(0), Builder.getInt32(7), Builder.getInt32(10), Builder.getInt32(5)}; return Builder.CreateCall(MCR, args); } else { // Instead of using barriers, atomic accesses on these subtargets use // libcalls. llvm_unreachable("makeDMB on a target so old that it has no barriers"); } } else { Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb); // Only a full system barrier exists in the M-class architectures. Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain; Constant *CDomain = Builder.getInt32(Domain); return Builder.CreateCall(DMB, CDomain); } } // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst, AtomicOrdering Ord) const { switch (Ord) { case AtomicOrdering::NotAtomic: case AtomicOrdering::Unordered: llvm_unreachable("Invalid fence: unordered/non-atomic"); case AtomicOrdering::Monotonic: case AtomicOrdering::Acquire: return nullptr; // Nothing to do case AtomicOrdering::SequentiallyConsistent: if (!Inst->hasAtomicStore()) return nullptr; // Nothing to do LLVM_FALLTHROUGH; case AtomicOrdering::Release: case AtomicOrdering::AcquireRelease: if (Subtarget->preferISHSTBarriers()) return makeDMB(Builder, ARM_MB::ISHST); // FIXME: add a comment with a link to documentation justifying this. else return makeDMB(Builder, ARM_MB::ISH); } llvm_unreachable("Unknown fence ordering in emitLeadingFence"); } Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst, AtomicOrdering Ord) const { switch (Ord) { case AtomicOrdering::NotAtomic: case AtomicOrdering::Unordered: llvm_unreachable("Invalid fence: unordered/not-atomic"); case AtomicOrdering::Monotonic: case AtomicOrdering::Release: return nullptr; // Nothing to do case AtomicOrdering::Acquire: case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: return makeDMB(Builder, ARM_MB::ISH); } llvm_unreachable("Unknown fence ordering in emitTrailingFence"); } // Loads and stores less than 64-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit // anything for those. bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); return (Size == 64) && !Subtarget->isMClass(); } // Loads and stores less than 64-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit // anything for those. // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that // guarantee, see DDI0406C ARM architecture reference manual, // sections A8.8.72-74 LDRD) TargetLowering::AtomicExpansionKind ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { unsigned Size = LI->getType()->getPrimitiveSizeInBits(); return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly : AtomicExpansionKind::None; } // For the real atomic operations, we have ldrex/strex up to 32 bits, // and up to 64 bits on the non-M profiles TargetLowering::AtomicExpansionKind ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { if (AI->isFloatingPointOperation()) return AtomicExpansionKind::CmpXChg; unsigned Size = AI->getType()->getPrimitiveSizeInBits(); bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps(); return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW) ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { // At -O0, fast-regalloc cannot cope with the live vregs necessary to // implement cmpxchg without spilling. If the address being exchanged is also // on the stack and close enough to the spill slot, this can lead to a // situation where the monitor always gets cleared and the atomic operation // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. bool HasAtomicCmpXchg = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps(); if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg) return AtomicExpansionKind::LLSC; return AtomicExpansionKind::None; } bool ARMTargetLowering::shouldInsertFencesForAtomic( const Instruction *I) const { return InsertFencesForAtomic; } // This has so far only been implemented for MachO. bool ARMTargetLowering::useLoadStackGuardNode() const { return Subtarget->isTargetMachO(); } void ARMTargetLowering::insertSSPDeclarations(Module &M) const { if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return TargetLowering::insertSSPDeclarations(M); // MSVC CRT has a global variable holding security cookie. M.getOrInsertGlobal("__security_cookie", Type::getInt8PtrTy(M.getContext())); // MSVC CRT has a function to validate security cookie. FunctionCallee SecurityCheckCookie = M.getOrInsertFunction( "__security_check_cookie", Type::getVoidTy(M.getContext()), Type::getInt8PtrTy(M.getContext())); if (Function *F = dyn_cast(SecurityCheckCookie.getCallee())) F->addAttribute(1, Attribute::AttrKind::InReg); } Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const { // MSVC CRT has a global variable holding security cookie. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return M.getGlobalVariable("__security_cookie"); return TargetLowering::getSDagStackGuard(M); } Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const { // MSVC CRT has a function to validate security cookie. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return M.getFunction("__security_check_cookie"); return TargetLowering::getSSPStackGuardCheck(M); } bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const { // If we do not have NEON, vector types are not natively supported. if (!Subtarget->hasNEON()) return false; // Floating point values and vector values map to the same register file. // Therefore, although we could do a store extract of a vector type, this is // better to leave at float as we have more freedom in the addressing mode for // those. if (VectorTy->isFPOrFPVectorTy()) return false; // If the index is unknown at compile time, this is very expensive to lower // and it is not possible to combine the store with the extract. if (!isa(Idx)) return false; assert(VectorTy->isVectorTy() && "VectorTy is not a vector type"); unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedSize(); // We can do a store + vector extract on any vector that fits perfectly in a D // or Q register. if (BitWidth == 64 || BitWidth == 128) { Cost = 0; return true; } return false; } bool ARMTargetLowering::isCheapToSpeculateCttz() const { return Subtarget->hasV6T2Ops(); } bool ARMTargetLowering::isCheapToSpeculateCtlz() const { return Subtarget->hasV6T2Ops(); } bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const { return !Subtarget->hasMinSize() || Subtarget->isTargetWindows(); } Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Type *ValTy = cast(Addr->getType())->getElementType(); bool IsAcquire = isAcquireOrStronger(Ord); // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd // intrinsic must return {i32, i32} and we have to recombine them into a // single i64 here. if (ValTy->getPrimitiveSizeInBits() == 64) { Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd; Function *Ldrex = Intrinsic::getDeclaration(M, Int); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi"); Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); if (!Subtarget->isLittle()) std::swap (Lo, Hi); Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); return Builder.CreateOr( Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64"); } Type *Tys[] = { Addr->getType() }; Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex; Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys); return Builder.CreateTruncOrBitCast( Builder.CreateCall(Ldrex, Addr), cast(Addr->getType())->getElementType()); } void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance( IRBuilder<> &Builder) const { if (!Subtarget->hasV7Ops()) return; Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex)); } Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); bool IsRelease = isReleaseOrStronger(Ord); // Since the intrinsics must have legal type, the i64 intrinsics take two // parameters: "i32, i32". We must marshal Val into the appropriate form // before the call. if (Val->getType()->getPrimitiveSizeInBits() == 64) { Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd; Function *Strex = Intrinsic::getDeclaration(M, Int); Type *Int32Ty = Type::getInt32Ty(M->getContext()); Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo"); Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi"); if (!Subtarget->isLittle()) std::swap(Lo, Hi); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); return Builder.CreateCall(Strex, {Lo, Hi, Addr}); } Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex; Type *Tys[] = { Addr->getType() }; Function *Strex = Intrinsic::getDeclaration(M, Int, Tys); return Builder.CreateCall( Strex, {Builder.CreateZExtOrBitCast( Val, Strex->getFunctionType()->getParamType(0)), Addr}); } bool ARMTargetLowering::alignLoopsWithOptSize() const { return Subtarget->isMClass(); } /// A helper function for determining the number of interleaved accesses we /// will generate when lowering accesses of the given type. unsigned ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL) const { return (DL.getTypeSizeInBits(VecTy) + 127) / 128; } bool ARMTargetLowering::isLegalInterleavedAccessType( unsigned Factor, FixedVectorType *VecTy, const DataLayout &DL) const { unsigned VecSize = DL.getTypeSizeInBits(VecTy); unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps()) return false; // Ensure the vector doesn't have f16 elements. Even though we could do an // i16 vldN, we can't hold the f16 vectors and will end up converting via // f32. if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy()) return false; if (Subtarget->hasMVEIntegerOps() && Factor == 3) return false; // Ensure the number of vector elements is greater than 1. if (VecTy->getNumElements() < 2) return false; // Ensure the element type is legal. if (ElSize != 8 && ElSize != 16 && ElSize != 32) return false; // Ensure the total vector size is 64 or a multiple of 128. Types larger than // 128 will be split into multiple interleaved accesses. if (Subtarget->hasNEON() && VecSize == 64) return true; return VecSize % 128 == 0; } unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const { if (Subtarget->hasNEON()) return 4; if (Subtarget->hasMVEIntegerOps()) return MVEMaxSupportedInterleaveFactor; return TargetLoweringBase::getMaxSupportedInterleaveFactor(); } /// Lower an interleaved load into a vldN intrinsic. /// /// E.g. Lower an interleaved load (Factor = 2): /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements /// /// Into: /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4) /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1 bool ARMTargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); auto *VecTy = cast(Shuffles[0]->getType()); Type *EltTy = VecTy->getElementType(); const DataLayout &DL = LI->getModule()->getDataLayout(); // Skip if we do not have NEON and skip illegal vector types. We can // "legalize" wide vector types into multiple interleaved accesses as long as // the vector types are divisible by 128. if (!isLegalInterleavedAccessType(Factor, VecTy, DL)) return false; unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL); // A pointer vector can not be the return type of the ldN intrinsics. Need to // load integer vectors first and then convert to pointer vectors. if (EltTy->isPointerTy()) VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy); IRBuilder<> Builder(LI); // The base address of the load. Value *BaseAddr = LI->getPointerOperand(); if (NumLoads > 1) { // If we're going to generate more than one load, reset the sub-vector type // to something legal. VecTy = FixedVectorType::get(VecTy->getElementType(), VecTy->getNumElements() / NumLoads); // We will compute the pointer operand of each load from the original base // address using GEPs. Cast the base address to a pointer to the scalar // element type. BaseAddr = Builder.CreateBitCast( BaseAddr, VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace())); } assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!"); auto createLoadIntrinsic = [&](Value *BaseAddr) { if (Subtarget->hasNEON()) { Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace()); Type *Tys[] = {VecTy, Int8Ptr}; static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2, Intrinsic::arm_neon_vld3, Intrinsic::arm_neon_vld4}; Function *VldnFunc = Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); SmallVector Ops; Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr)); Ops.push_back(Builder.getInt32(LI->getAlignment())); return Builder.CreateCall(VldnFunc, Ops, "vldN"); } else { assert((Factor == 2 || Factor == 4) && "expected interleave factor of 2 or 4 for MVE"); Intrinsic::ID LoadInts = Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q; Type *VecEltTy = VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()); Type *Tys[] = {VecTy, VecEltTy}; Function *VldnFunc = Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys); SmallVector Ops; Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy)); return Builder.CreateCall(VldnFunc, Ops, "vldN"); } }; // Holds sub-vectors extracted from the load intrinsic return values. The // sub-vectors are associated with the shufflevector instructions they will // replace. DenseMap> SubVecs; for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { // If we're generating more than one load, compute the base address of // subsequent loads as an offset from the previous. if (LoadCount > 0) BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr, VecTy->getNumElements() * Factor); CallInst *VldN = createLoadIntrinsic(BaseAddr); // Replace uses of each shufflevector with the corresponding vector loaded // by ldN. for (unsigned i = 0; i < Shuffles.size(); i++) { ShuffleVectorInst *SV = Shuffles[i]; unsigned Index = Indices[i]; Value *SubVec = Builder.CreateExtractValue(VldN, Index); // Convert the integer vector to pointer vector if the element is pointer. if (EltTy->isPointerTy()) SubVec = Builder.CreateIntToPtr( SubVec, FixedVectorType::get(SV->getType()->getElementType(), VecTy)); SubVecs[SV].push_back(SubVec); } } // Replace uses of the shufflevector instructions with the sub-vectors // returned by the load intrinsic. If a shufflevector instruction is // associated with more than one sub-vector, those sub-vectors will be // concatenated into a single wide vector. for (ShuffleVectorInst *SVI : Shuffles) { auto &SubVec = SubVecs[SVI]; auto *WideVec = SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; SVI->replaceAllUsesWith(WideVec); } return true; } /// Lower an interleaved store into a vstN intrinsic. /// /// E.g. Lower an interleaved store (Factor = 3): /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4 /// /// Into: /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) /// /// Note that the new shufflevectors will be removed and we'll only generate one /// vst3 instruction in CodeGen. /// /// Example for a more general valid mask (Factor 3). Lower: /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> /// store <12 x i32> %i.vec, <12 x i32>* %ptr /// /// Into: /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); auto *VecTy = cast(SVI->getType()); assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store"); unsigned LaneLen = VecTy->getNumElements() / Factor; Type *EltTy = VecTy->getElementType(); auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen); const DataLayout &DL = SI->getModule()->getDataLayout(); // Skip if we do not have NEON and skip illegal vector types. We can // "legalize" wide vector types into multiple interleaved accesses as long as // the vector types are divisible by 128. if (!isLegalInterleavedAccessType(Factor, SubVecTy, DL)) return false; unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); IRBuilder<> Builder(SI); // StN intrinsics don't support pointer vectors as arguments. Convert pointer // vectors to integer vectors. if (EltTy->isPointerTy()) { Type *IntTy = DL.getIntPtrType(EltTy); // Convert to the corresponding integer vector. auto *IntVecTy = FixedVectorType::get(IntTy, cast(Op0->getType())); Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); SubVecTy = FixedVectorType::get(IntTy, LaneLen); } // The base address of the store. Value *BaseAddr = SI->getPointerOperand(); if (NumStores > 1) { // If we're going to generate more than one store, reset the lane length // and sub-vector type to something legal. LaneLen /= NumStores; SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen); // We will compute the pointer operand of each store from the original base // address using GEPs. Cast the base address to a pointer to the scalar // element type. BaseAddr = Builder.CreateBitCast( BaseAddr, SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace())); } assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!"); auto Mask = SVI->getShuffleMask(); auto createStoreIntrinsic = [&](Value *BaseAddr, SmallVectorImpl &Shuffles) { if (Subtarget->hasNEON()) { static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2, Intrinsic::arm_neon_vst3, Intrinsic::arm_neon_vst4}; Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace()); Type *Tys[] = {Int8Ptr, SubVecTy}; Function *VstNFunc = Intrinsic::getDeclaration( SI->getModule(), StoreInts[Factor - 2], Tys); SmallVector Ops; Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr)); for (auto S : Shuffles) Ops.push_back(S); Ops.push_back(Builder.getInt32(SI->getAlignment())); Builder.CreateCall(VstNFunc, Ops); } else { assert((Factor == 2 || Factor == 4) && "expected interleave factor of 2 or 4 for MVE"); Intrinsic::ID StoreInts = Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q; Type *EltPtrTy = SubVecTy->getElementType()->getPointerTo( SI->getPointerAddressSpace()); Type *Tys[] = {EltPtrTy, SubVecTy}; Function *VstNFunc = Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys); SmallVector Ops; Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy)); for (auto S : Shuffles) Ops.push_back(S); for (unsigned F = 0; F < Factor; F++) { Ops.push_back(Builder.getInt32(F)); Builder.CreateCall(VstNFunc, Ops); Ops.pop_back(); } } }; for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { // If we generating more than one store, we compute the base address of // subsequent stores as an offset from the previous. if (StoreCount > 0) BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(), BaseAddr, LaneLen * Factor); SmallVector Shuffles; // Split the shufflevector operands into sub vectors for the new vstN call. for (unsigned i = 0; i < Factor; i++) { unsigned IdxI = StoreCount * LaneLen * Factor + i; if (Mask[IdxI] >= 0) { Shuffles.push_back(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0))); } else { unsigned StartMask = 0; for (unsigned j = 1; j < LaneLen; j++) { unsigned IdxJ = StoreCount * LaneLen * Factor + j; if (Mask[IdxJ * Factor + IdxI] >= 0) { StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; break; } } // Note: If all elements in a chunk are undefs, StartMask=0! // Note: Filling undef gaps with random elements is ok, since // those elements were being written anyway (with undefs). // In the case of all undefs we're defaulting to using elems from 0 // Note: StartMask cannot be negative, it's checked in // isReInterleaveMask Shuffles.push_back(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(StartMask, LaneLen, 0))); } } createStoreIntrinsic(BaseAddr, Shuffles); } return true; } enum HABaseType { HA_UNKNOWN = 0, HA_FLOAT, HA_DOUBLE, HA_VECT64, HA_VECT128 }; static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base, uint64_t &Members) { if (auto *ST = dyn_cast(Ty)) { for (unsigned i = 0; i < ST->getNumElements(); ++i) { uint64_t SubMembers = 0; if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers)) return false; Members += SubMembers; } } else if (auto *AT = dyn_cast(Ty)) { uint64_t SubMembers = 0; if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers)) return false; Members += SubMembers * AT->getNumElements(); } else if (Ty->isFloatTy()) { if (Base != HA_UNKNOWN && Base != HA_FLOAT) return false; Members = 1; Base = HA_FLOAT; } else if (Ty->isDoubleTy()) { if (Base != HA_UNKNOWN && Base != HA_DOUBLE) return false; Members = 1; Base = HA_DOUBLE; } else if (auto *VT = dyn_cast(Ty)) { Members = 1; switch (Base) { case HA_FLOAT: case HA_DOUBLE: return false; case HA_VECT64: return VT->getPrimitiveSizeInBits().getFixedSize() == 64; case HA_VECT128: return VT->getPrimitiveSizeInBits().getFixedSize() == 128; case HA_UNKNOWN: switch (VT->getPrimitiveSizeInBits().getFixedSize()) { case 64: Base = HA_VECT64; return true; case 128: Base = HA_VECT128; return true; default: return false; } } } return (Members > 0 && Members <= 4); } /// Return the correct alignment for the current calling convention. Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy, DataLayout DL) const { const Align ABITypeAlign = DL.getABITypeAlign(ArgTy); if (!ArgTy->isVectorTy()) return ABITypeAlign; // Avoid over-aligning vector parameters. It would require realigning the // stack and waste space for no real benefit. return std::min(ABITypeAlign, DL.getStackAlignment()); } /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when /// passing according to AAPCS rules. bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { if (getEffectiveCallingConv(CallConv, isVarArg) != CallingConv::ARM_AAPCS_VFP) return false; HABaseType Base = HA_UNKNOWN; uint64_t Members = 0; bool IsHA = isHomogeneousAggregate(Ty, Base, Members); LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump()); bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy(); return IsHA || IsIntArray; } Register ARMTargetLowering::getExceptionPointerRegister( const Constant *PersonalityFn) const { // Platforms which do not use SjLj EH may return values in these registers // via the personality function. return Subtarget->useSjLjEH() ? Register() : ARM::R0; } Register ARMTargetLowering::getExceptionSelectorRegister( const Constant *PersonalityFn) const { // Platforms which do not use SjLj EH may return values in these registers // via the personality function. return Subtarget->useSjLjEH() ? Register() : ARM::R1; } void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { // Update IsSplitCSR in ARMFunctionInfo. ARMFunctionInfo *AFI = Entry->getParent()->getInfo(); AFI->setIsSplitCSR(true); } void ARMTargetLowering::insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const { const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); if (!IStart) return; const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); MachineBasicBlock::iterator MBBI = Entry->begin(); for (const MCPhysReg *I = IStart; *I; ++I) { const TargetRegisterClass *RC = nullptr; if (ARM::GPRRegClass.contains(*I)) RC = &ARM::GPRRegClass; else if (ARM::DPRRegClass.contains(*I)) RC = &ARM::DPRRegClass; else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); Register NewVR = MRI->createVirtualRegister(RC); // Create copy from CSR to a virtual register. // FIXME: this currently does not emit CFI pseudo-instructions, it works // fine for CXX_FAST_TLS since the C++-style TLS access functions should be // nounwind. If we want to generalize this later, we may need to emit // CFI pseudo-instructions. assert(Entry->getParent()->getFunction().hasFnAttribute( Attribute::NoUnwind) && "Function should be nounwind in insertCopiesSplitCSR!"); Entry->addLiveIn(*I); BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(*I); // Insert the copy-back instructions right before the terminator. for (auto *Exit : Exits) BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), TII->get(TargetOpcode::COPY), *I) .addReg(NewVR); } } void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const { MF.getFrameInfo().computeMaxCallFrameSize(MF); TargetLoweringBase::finalizeLowering(MF); }