//===-- X86InstrInfo.td - Main X86 Instruction Definition --*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // X86 specific DAG Nodes. // def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>; def SDTX86FCmp : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>; def SDTX86Cmov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>, SDTCisVT<4, i32>]>; // Unary and binary operator instructions that set EFLAGS as a side-effect. def SDTUnaryArithWithFlags : SDTypeProfile<2, 1, [SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTBinaryArithWithFlags : SDTypeProfile<2, 2, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>]>; // SDTBinaryArithWithFlagsInOut - RES1, EFLAGS = op LHS, RHS, EFLAGS def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>, SDTCisVT<4, i32>]>; // RES1, RES2, FLAGS = op LHS, RHS def SDT2ResultBinaryArithWithFlags : SDTypeProfile<3, 2, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTX86BrCond : SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86SetCC : SDTypeProfile<1, 2, [SDTCisVT<0, i8>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86SetCC_C : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86sahf : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i8>]>; def SDTX86rdrand : SDTypeProfile<2, 0, [SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTX86rdpkru : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDTX86wrpkru : SDTypeProfile<0, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>, SDTCisVT<2, i8>]>; def SDTX86cas8pair : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def SDTX86cas16pair : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i64>]>; def SDTLockBinaryArithWithFlags : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisInt<2>]>; def SDTLockUnaryArithWithFlags : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>; def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDT_X86NtBrind : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>, SDTCisVT<1, iPTR>, SDTCisVT<2, iPTR>]>; def SDT_X86VAARG_64 : SDTypeProfile<1, -1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVT<3, i8>, SDTCisVT<4, i32>]>; def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>; def SDTX86Void : SDTypeProfile<0, 0, []>; def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TLSBASEADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86WIN_ALLOCA : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; def SDT_X86SEG_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>; def SDT_X86PROBED_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>; def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>; def SDT_X86MEMBARRIER : SDTypeProfile<0, 0, []>; def SDT_X86ENQCMD : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisSameAs<1, 2>]>; def SDT_X86AESENCDECKL : SDTypeProfile<2, 2, [SDTCisVT<0, v2i64>, SDTCisVT<1, i32>, SDTCisVT<2, v2i64>, SDTCisPtrTy<3>]>; def X86MemBarrier : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIER, [SDNPHasChain,SDNPSideEffect]>; def X86MFence : SDNode<"X86ISD::MFENCE", SDT_X86MEMBARRIER, [SDNPHasChain]>; def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>; def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>; def X86fshl : SDNode<"X86ISD::FSHL", SDTIntShiftDOp>; def X86fshr : SDNode<"X86ISD::FSHR", SDTIntShiftDOp>; def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>; def X86fcmp : SDNode<"X86ISD::FCMP", SDTX86FCmp>; def X86strict_fcmp : SDNode<"X86ISD::STRICT_FCMP", SDTX86FCmp, [SDNPHasChain]>; def X86strict_fcmps : SDNode<"X86ISD::STRICT_FCMPS", SDTX86FCmp, [SDNPHasChain]>; def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>; def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>; def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond, [SDNPHasChain]>; def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>; def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>; def X86rdrand : SDNode<"X86ISD::RDRAND", SDTX86rdrand, [SDNPHasChain, SDNPSideEffect]>; def X86rdseed : SDNode<"X86ISD::RDSEED", SDTX86rdrand, [SDNPHasChain, SDNPSideEffect]>; def X86rdpkru : SDNode<"X86ISD::RDPKRU", SDTX86rdpkru, [SDNPHasChain, SDNPSideEffect]>; def X86wrpkru : SDNode<"X86ISD::WRPKRU", SDTX86wrpkru, [SDNPHasChain, SDNPSideEffect]>; def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86cas8pair, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86cas16 : SDNode<"X86ISD::LCMPXCHG16_DAG", SDTX86cas16pair, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def X86iret : SDNode<"X86ISD::IRET", SDTX86Ret, [SDNPHasChain, SDNPOptInGlue]>; def X86vastart_save_xmm_regs : SDNode<"X86ISD::VASTART_SAVE_XMM_REGS", SDT_X86VASTART_SAVE_XMM_REGS, [SDNPHasChain, SDNPVariadic]>; def X86vaarg64 : SDNode<"X86ISD::VAARG_64", SDT_X86VAARG_64, [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>; def X86callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def X86callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86call : SDNode<"X86ISD::CALL", SDT_X86Call, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; def X86NoTrackCall : SDNode<"X86ISD::NT_CALL", SDT_X86Call, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; def X86NoTrackBrind : SDNode<"X86ISD::NT_BRIND", SDT_X86NtBrind, [SDNPHasChain]>; def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore]>; def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad]>; def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>; def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>; def X86RecoverFrameAlloc : SDNode<"ISD::LOCAL_RECOVER", SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisInt<1>]>>; def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86tlsbaseaddr : SDNode<"X86ISD::TLSBASEADDR", SDT_X86TLSBASEADDR, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET, [SDNPHasChain]>; def X86eh_sjlj_setjmp : SDNode<"X86ISD::EH_SJLJ_SETJMP", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, [SDNPHasChain, SDNPSideEffect]>; def X86eh_sjlj_longjmp : SDNode<"X86ISD::EH_SJLJ_LONGJMP", SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPSideEffect]>; def X86eh_sjlj_setup_dispatch : SDNode<"X86ISD::EH_SJLJ_SETUP_DISPATCH", SDTypeProfile<0, 0, []>, [SDNPHasChain, SDNPSideEffect]>; def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>; def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86umul_flag : SDNode<"X86ISD::UMUL", SDT2ResultBinaryArithWithFlags, [SDNPCommutative]>; def X86adc_flag : SDNode<"X86ISD::ADC", SDTBinaryArithWithFlagsInOut>; def X86sbb_flag : SDNode<"X86ISD::SBB", SDTBinaryArithWithFlagsInOut>; def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86lock_add : SDNode<"X86ISD::LADD", SDTLockBinaryArithWithFlags, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86lock_sub : SDNode<"X86ISD::LSUB", SDTLockBinaryArithWithFlags, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86lock_or : SDNode<"X86ISD::LOR", SDTLockBinaryArithWithFlags, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86lock_xor : SDNode<"X86ISD::LXOR", SDTLockBinaryArithWithFlags, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86lock_and : SDNode<"X86ISD::LAND", SDTLockBinaryArithWithFlags, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86bextr : SDNode<"X86ISD::BEXTR", SDTIntBinOp>; def X86bextri : SDNode<"X86ISD::BEXTRI", SDTIntBinOp>; def X86bzhi : SDNode<"X86ISD::BZHI", SDTIntBinOp>; def X86pdep : SDNode<"X86ISD::PDEP", SDTIntBinOp>; def X86pext : SDNode<"X86ISD::PEXT", SDTIntBinOp>; def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>; def X86WinAlloca : SDNode<"X86ISD::WIN_ALLOCA", SDT_X86WIN_ALLOCA, [SDNPHasChain, SDNPOutGlue]>; def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA, [SDNPHasChain]>; def X86ProbedAlloca : SDNode<"X86ISD::PROBED_ALLOCA", SDT_X86PROBED_ALLOCA, [SDNPHasChain]>; def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def X86lwpins : SDNode<"X86ISD::LWPINS", SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPSideEffect]>; def X86umwait : SDNode<"X86ISD::UMWAIT", SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>, [SDNPHasChain, SDNPSideEffect]>; def X86tpause : SDNode<"X86ISD::TPAUSE", SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>, [SDNPHasChain, SDNPSideEffect]>; def X86enqcmd : SDNode<"X86ISD::ENQCMD", SDT_X86ENQCMD, [SDNPHasChain, SDNPSideEffect]>; def X86enqcmds : SDNode<"X86ISD::ENQCMDS", SDT_X86ENQCMD, [SDNPHasChain, SDNPSideEffect]>; def X86testui : SDNode<"X86ISD::TESTUI", SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>, [SDNPHasChain, SDNPSideEffect]>; def X86aesenc128kl : SDNode<"X86ISD::AESENC128KL", SDT_X86AESENCDECKL, [SDNPHasChain, SDNPMayLoad, SDNPSideEffect, SDNPMemOperand]>; def X86aesdec128kl : SDNode<"X86ISD::AESDEC128KL", SDT_X86AESENCDECKL, [SDNPHasChain, SDNPMayLoad, SDNPSideEffect, SDNPMemOperand]>; def X86aesenc256kl : SDNode<"X86ISD::AESENC256KL", SDT_X86AESENCDECKL, [SDNPHasChain, SDNPMayLoad, SDNPSideEffect, SDNPMemOperand]>; def X86aesdec256kl : SDNode<"X86ISD::AESDEC256KL", SDT_X86AESENCDECKL, [SDNPHasChain, SDNPMayLoad, SDNPSideEffect, SDNPMemOperand]>; //===----------------------------------------------------------------------===// // X86 Operand Definitions. // // A version of ptr_rc which excludes SP, ESP, and RSP. This is used for // the index operand of an address, to conform to x86 encoding restrictions. def ptr_rc_nosp : PointerLikeRegClass<1>; // *mem - Operand definitions for the funky X86 addressing mode operands. // def X86MemAsmOperand : AsmOperandClass { let Name = "Mem"; } let RenderMethod = "addMemOperands", SuperClasses = [X86MemAsmOperand] in { def X86Mem8AsmOperand : AsmOperandClass { let Name = "Mem8"; } def X86Mem16AsmOperand : AsmOperandClass { let Name = "Mem16"; } def X86Mem32AsmOperand : AsmOperandClass { let Name = "Mem32"; } def X86Mem64AsmOperand : AsmOperandClass { let Name = "Mem64"; } def X86Mem80AsmOperand : AsmOperandClass { let Name = "Mem80"; } def X86Mem128AsmOperand : AsmOperandClass { let Name = "Mem128"; } def X86Mem256AsmOperand : AsmOperandClass { let Name = "Mem256"; } def X86Mem512AsmOperand : AsmOperandClass { let Name = "Mem512"; } // Gather mem operands def X86Mem64_RC128Operand : AsmOperandClass { let Name = "Mem64_RC128"; } def X86Mem128_RC128Operand : AsmOperandClass { let Name = "Mem128_RC128"; } def X86Mem256_RC128Operand : AsmOperandClass { let Name = "Mem256_RC128"; } def X86Mem128_RC256Operand : AsmOperandClass { let Name = "Mem128_RC256"; } def X86Mem256_RC256Operand : AsmOperandClass { let Name = "Mem256_RC256"; } def X86Mem64_RC128XOperand : AsmOperandClass { let Name = "Mem64_RC128X"; } def X86Mem128_RC128XOperand : AsmOperandClass { let Name = "Mem128_RC128X"; } def X86Mem256_RC128XOperand : AsmOperandClass { let Name = "Mem256_RC128X"; } def X86Mem128_RC256XOperand : AsmOperandClass { let Name = "Mem128_RC256X"; } def X86Mem256_RC256XOperand : AsmOperandClass { let Name = "Mem256_RC256X"; } def X86Mem512_RC256XOperand : AsmOperandClass { let Name = "Mem512_RC256X"; } def X86Mem256_RC512Operand : AsmOperandClass { let Name = "Mem256_RC512"; } def X86Mem512_RC512Operand : AsmOperandClass { let Name = "Mem512_RC512"; } def X86SibMemOperand : AsmOperandClass { let Name = "SibMem"; } } def X86AbsMemAsmOperand : AsmOperandClass { let Name = "AbsMem"; let SuperClasses = [X86MemAsmOperand]; } class X86MemOperand : Operand { let PrintMethod = printMethod; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, SEGMENT_REG); let ParserMatchClass = parserMatchClass; let OperandType = "OPERAND_MEMORY"; } // Gather mem operands class X86VMemOperand : X86MemOperand { let MIOperandInfo = (ops ptr_rc, i8imm, RC, i32imm, SEGMENT_REG); } def anymem : X86MemOperand<"printMemReference">; def X86any_fcmp : PatFrags<(ops node:$lhs, node:$rhs), [(X86strict_fcmp node:$lhs, node:$rhs), (X86fcmp node:$lhs, node:$rhs)]>; // FIXME: Right now we allow any size during parsing, but we might want to // restrict to only unsized memory. def opaquemem : X86MemOperand<"printMemReference">; def sibmem: X86MemOperand<"printMemReference", X86SibMemOperand>; def i8mem : X86MemOperand<"printbytemem", X86Mem8AsmOperand>; def i16mem : X86MemOperand<"printwordmem", X86Mem16AsmOperand>; def i32mem : X86MemOperand<"printdwordmem", X86Mem32AsmOperand>; def i64mem : X86MemOperand<"printqwordmem", X86Mem64AsmOperand>; def i128mem : X86MemOperand<"printxmmwordmem", X86Mem128AsmOperand>; def i256mem : X86MemOperand<"printymmwordmem", X86Mem256AsmOperand>; def i512mem : X86MemOperand<"printzmmwordmem", X86Mem512AsmOperand>; def f32mem : X86MemOperand<"printdwordmem", X86Mem32AsmOperand>; def f64mem : X86MemOperand<"printqwordmem", X86Mem64AsmOperand>; def f80mem : X86MemOperand<"printtbytemem", X86Mem80AsmOperand>; def f128mem : X86MemOperand<"printxmmwordmem", X86Mem128AsmOperand>; def f256mem : X86MemOperand<"printymmwordmem", X86Mem256AsmOperand>; def f512mem : X86MemOperand<"printzmmwordmem", X86Mem512AsmOperand>; // Gather mem operands def vx64mem : X86VMemOperand; def vx128mem : X86VMemOperand; def vx256mem : X86VMemOperand; def vy128mem : X86VMemOperand; def vy256mem : X86VMemOperand; def vx64xmem : X86VMemOperand; def vx128xmem : X86VMemOperand; def vx256xmem : X86VMemOperand; def vy128xmem : X86VMemOperand; def vy256xmem : X86VMemOperand; def vy512xmem : X86VMemOperand; def vz256mem : X86VMemOperand; def vz512mem : X86VMemOperand; // A version of i8mem for use on x86-64 and x32 that uses a NOREX GPR instead // of a plain GPR, so that it doesn't potentially require a REX prefix. def ptr_rc_norex : PointerLikeRegClass<2>; def ptr_rc_norex_nosp : PointerLikeRegClass<3>; def i8mem_NOREX : Operand { let PrintMethod = "printbytemem"; let MIOperandInfo = (ops ptr_rc_norex, i8imm, ptr_rc_norex_nosp, i32imm, SEGMENT_REG); let ParserMatchClass = X86Mem8AsmOperand; let OperandType = "OPERAND_MEMORY"; } // GPRs available for tailcall. // It represents GR32_TC, GR64_TC or GR64_TCW64. def ptr_rc_tailcall : PointerLikeRegClass<4>; // Special i32mem for addresses of load folding tail calls. These are not // allowed to use callee-saved registers since they must be scheduled // after callee-saved register are popped. def i32mem_TC : Operand { let PrintMethod = "printdwordmem"; let MIOperandInfo = (ops ptr_rc_tailcall, i8imm, ptr_rc_tailcall, i32imm, SEGMENT_REG); let ParserMatchClass = X86Mem32AsmOperand; let OperandType = "OPERAND_MEMORY"; } // Special i64mem for addresses of load folding tail calls. These are not // allowed to use callee-saved registers since they must be scheduled // after callee-saved register are popped. def i64mem_TC : Operand { let PrintMethod = "printqwordmem"; let MIOperandInfo = (ops ptr_rc_tailcall, i8imm, ptr_rc_tailcall, i32imm, SEGMENT_REG); let ParserMatchClass = X86Mem64AsmOperand; let OperandType = "OPERAND_MEMORY"; } // Special parser to detect 16-bit mode to select 16-bit displacement. def X86AbsMem16AsmOperand : AsmOperandClass { let Name = "AbsMem16"; let RenderMethod = "addAbsMemOperands"; let SuperClasses = [X86AbsMemAsmOperand]; } // Branch targets print as pc-relative values. class BranchTargetOperand : Operand { let OperandType = "OPERAND_PCREL"; let PrintMethod = "printPCRelImm"; let ParserMatchClass = X86AbsMemAsmOperand; } def i32imm_brtarget : BranchTargetOperand; def i16imm_brtarget : BranchTargetOperand; // 64-bits but only 32 bits are significant, and those bits are treated as being // pc relative. def i64i32imm_brtarget : BranchTargetOperand; def brtarget : BranchTargetOperand; def brtarget8 : BranchTargetOperand; def brtarget16 : BranchTargetOperand { let ParserMatchClass = X86AbsMem16AsmOperand; } def brtarget32 : BranchTargetOperand; let RenderMethod = "addSrcIdxOperands" in { def X86SrcIdx8Operand : AsmOperandClass { let Name = "SrcIdx8"; let SuperClasses = [X86Mem8AsmOperand]; } def X86SrcIdx16Operand : AsmOperandClass { let Name = "SrcIdx16"; let SuperClasses = [X86Mem16AsmOperand]; } def X86SrcIdx32Operand : AsmOperandClass { let Name = "SrcIdx32"; let SuperClasses = [X86Mem32AsmOperand]; } def X86SrcIdx64Operand : AsmOperandClass { let Name = "SrcIdx64"; let SuperClasses = [X86Mem64AsmOperand]; } } // RenderMethod = "addSrcIdxOperands" let RenderMethod = "addDstIdxOperands" in { def X86DstIdx8Operand : AsmOperandClass { let Name = "DstIdx8"; let SuperClasses = [X86Mem8AsmOperand]; } def X86DstIdx16Operand : AsmOperandClass { let Name = "DstIdx16"; let SuperClasses = [X86Mem16AsmOperand]; } def X86DstIdx32Operand : AsmOperandClass { let Name = "DstIdx32"; let SuperClasses = [X86Mem32AsmOperand]; } def X86DstIdx64Operand : AsmOperandClass { let Name = "DstIdx64"; let SuperClasses = [X86Mem64AsmOperand]; } } // RenderMethod = "addDstIdxOperands" let RenderMethod = "addMemOffsOperands" in { def X86MemOffs16_8AsmOperand : AsmOperandClass { let Name = "MemOffs16_8"; let SuperClasses = [X86Mem8AsmOperand]; } def X86MemOffs16_16AsmOperand : AsmOperandClass { let Name = "MemOffs16_16"; let SuperClasses = [X86Mem16AsmOperand]; } def X86MemOffs16_32AsmOperand : AsmOperandClass { let Name = "MemOffs16_32"; let SuperClasses = [X86Mem32AsmOperand]; } def X86MemOffs32_8AsmOperand : AsmOperandClass { let Name = "MemOffs32_8"; let SuperClasses = [X86Mem8AsmOperand]; } def X86MemOffs32_16AsmOperand : AsmOperandClass { let Name = "MemOffs32_16"; let SuperClasses = [X86Mem16AsmOperand]; } def X86MemOffs32_32AsmOperand : AsmOperandClass { let Name = "MemOffs32_32"; let SuperClasses = [X86Mem32AsmOperand]; } def X86MemOffs32_64AsmOperand : AsmOperandClass { let Name = "MemOffs32_64"; let SuperClasses = [X86Mem64AsmOperand]; } def X86MemOffs64_8AsmOperand : AsmOperandClass { let Name = "MemOffs64_8"; let SuperClasses = [X86Mem8AsmOperand]; } def X86MemOffs64_16AsmOperand : AsmOperandClass { let Name = "MemOffs64_16"; let SuperClasses = [X86Mem16AsmOperand]; } def X86MemOffs64_32AsmOperand : AsmOperandClass { let Name = "MemOffs64_32"; let SuperClasses = [X86Mem32AsmOperand]; } def X86MemOffs64_64AsmOperand : AsmOperandClass { let Name = "MemOffs64_64"; let SuperClasses = [X86Mem64AsmOperand]; } } // RenderMethod = "addMemOffsOperands" class X86SrcIdxOperand : X86MemOperand { let MIOperandInfo = (ops ptr_rc, SEGMENT_REG); } class X86DstIdxOperand : X86MemOperand { let MIOperandInfo = (ops ptr_rc); } def srcidx8 : X86SrcIdxOperand<"printSrcIdx8", X86SrcIdx8Operand>; def srcidx16 : X86SrcIdxOperand<"printSrcIdx16", X86SrcIdx16Operand>; def srcidx32 : X86SrcIdxOperand<"printSrcIdx32", X86SrcIdx32Operand>; def srcidx64 : X86SrcIdxOperand<"printSrcIdx64", X86SrcIdx64Operand>; def dstidx8 : X86DstIdxOperand<"printDstIdx8", X86DstIdx8Operand>; def dstidx16 : X86DstIdxOperand<"printDstIdx16", X86DstIdx16Operand>; def dstidx32 : X86DstIdxOperand<"printDstIdx32", X86DstIdx32Operand>; def dstidx64 : X86DstIdxOperand<"printDstIdx64", X86DstIdx64Operand>; class X86MemOffsOperand : X86MemOperand { let MIOperandInfo = (ops immOperand, SEGMENT_REG); } def offset16_8 : X86MemOffsOperand; def offset16_16 : X86MemOffsOperand; def offset16_32 : X86MemOffsOperand; def offset32_8 : X86MemOffsOperand; def offset32_16 : X86MemOffsOperand; def offset32_32 : X86MemOffsOperand; def offset32_64 : X86MemOffsOperand; def offset64_8 : X86MemOffsOperand; def offset64_16 : X86MemOffsOperand; def offset64_32 : X86MemOffsOperand; def offset64_64 : X86MemOffsOperand; def ccode : Operand { let PrintMethod = "printCondCode"; let OperandNamespace = "X86"; let OperandType = "OPERAND_COND_CODE"; } class ImmSExtAsmOperandClass : AsmOperandClass { let SuperClasses = [ImmAsmOperand]; let RenderMethod = "addImmOperands"; } def X86GR32orGR64AsmOperand : AsmOperandClass { let Name = "GR32orGR64"; } def GR32orGR64 : RegisterOperand { let ParserMatchClass = X86GR32orGR64AsmOperand; } def X86GR16orGR32orGR64AsmOperand : AsmOperandClass { let Name = "GR16orGR32orGR64"; } def GR16orGR32orGR64 : RegisterOperand { let ParserMatchClass = X86GR16orGR32orGR64AsmOperand; } def AVX512RCOperand : AsmOperandClass { let Name = "AVX512RC"; } def AVX512RC : Operand { let PrintMethod = "printRoundingControl"; let OperandNamespace = "X86"; let OperandType = "OPERAND_ROUNDING_CONTROL"; let ParserMatchClass = AVX512RCOperand; } // Sign-extended immediate classes. We don't need to define the full lattice // here because there is no instruction with an ambiguity between ImmSExti64i32 // and ImmSExti32i8. // // The strange ranges come from the fact that the assembler always works with // 64-bit immediates, but for a 16-bit target value we want to accept both "-1" // (which will be a -1ULL), and "0xFF" (-1 in 16-bits). // [0, 0x7FFFFFFF] | // [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i32"; } // [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] | // [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti16i8"; let SuperClasses = [ImmSExti64i32AsmOperand]; } // [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] | // [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti32i8"; } // [0, 0x0000007F] | // [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i8"; let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand, ImmSExti64i32AsmOperand]; } // 4-bit immediate used by some XOP instructions // [0, 0xF] def ImmUnsignedi4AsmOperand : AsmOperandClass { let Name = "ImmUnsignedi4"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidImmUnsignedi4"; } // Unsigned immediate used by SSE/AVX instructions // [0, 0xFF] // [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmUnsignedi8AsmOperand : AsmOperandClass { let Name = "ImmUnsignedi8"; let RenderMethod = "addImmOperands"; } // A couple of more descriptive operand definitions. // 16-bits but only 8 bits are significant. def i16i8imm : Operand { let ParserMatchClass = ImmSExti16i8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 32-bits but only 8 bits are significant. def i32i8imm : Operand { let ParserMatchClass = ImmSExti32i8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 64-bits but only 32 bits are significant. def i64i32imm : Operand { let ParserMatchClass = ImmSExti64i32AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 64-bits but only 8 bits are significant. def i64i8imm : Operand { let ParserMatchClass = ImmSExti64i8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // Unsigned 4-bit immediate used by some XOP instructions. def u4imm : Operand { let PrintMethod = "printU8Imm"; let ParserMatchClass = ImmUnsignedi4AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // Unsigned 8-bit immediate used by SSE/AVX instructions. def u8imm : Operand { let PrintMethod = "printU8Imm"; let ParserMatchClass = ImmUnsignedi8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 16-bit immediate but only 8-bits are significant and they are unsigned. // Used by BT instructions. def i16u8imm : Operand { let PrintMethod = "printU8Imm"; let ParserMatchClass = ImmUnsignedi8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 32-bit immediate but only 8-bits are significant and they are unsigned. // Used by some SSE/AVX instructions that use intrinsics. def i32u8imm : Operand { let PrintMethod = "printU8Imm"; let ParserMatchClass = ImmUnsignedi8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } // 64-bit immediate but only 8-bits are significant and they are unsigned. // Used by BT instructions. def i64u8imm : Operand { let PrintMethod = "printU8Imm"; let ParserMatchClass = ImmUnsignedi8AsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } def lea64_32mem : Operand { let PrintMethod = "printMemReference"; let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, SEGMENT_REG); let ParserMatchClass = X86MemAsmOperand; } // Memory operands that use 64-bit pointers in both ILP32 and LP64. def lea64mem : Operand { let PrintMethod = "printMemReference"; let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, SEGMENT_REG); let ParserMatchClass = X86MemAsmOperand; } let RenderMethod = "addMaskPairOperands" in { def VK1PairAsmOperand : AsmOperandClass { let Name = "VK1Pair"; } def VK2PairAsmOperand : AsmOperandClass { let Name = "VK2Pair"; } def VK4PairAsmOperand : AsmOperandClass { let Name = "VK4Pair"; } def VK8PairAsmOperand : AsmOperandClass { let Name = "VK8Pair"; } def VK16PairAsmOperand : AsmOperandClass { let Name = "VK16Pair"; } } def VK1Pair : RegisterOperand { let ParserMatchClass = VK1PairAsmOperand; } def VK2Pair : RegisterOperand { let ParserMatchClass = VK2PairAsmOperand; } def VK4Pair : RegisterOperand { let ParserMatchClass = VK4PairAsmOperand; } def VK8Pair : RegisterOperand { let ParserMatchClass = VK8PairAsmOperand; } def VK16Pair : RegisterOperand { let ParserMatchClass = VK16PairAsmOperand; } //===----------------------------------------------------------------------===// // X86 Complex Pattern Definitions. // // Define X86-specific addressing mode. def addr : ComplexPattern; def lea32addr : ComplexPattern; // In 64-bit mode 32-bit LEAs can use RIP-relative addressing. def lea64_32addr : ComplexPattern; def tls32addr : ComplexPattern; def tls32baseaddr : ComplexPattern; def lea64addr : ComplexPattern; def tls64addr : ComplexPattern; def tls64baseaddr : ComplexPattern; def vectoraddr : ComplexPattern; // A relocatable immediate is an operand that can be relocated by the linker to // an immediate, such as a regular symbol in non-PIC code. def relocImm : ComplexPattern; //===----------------------------------------------------------------------===// // X86 Instruction Predicate Definitions. def TruePredicate : Predicate<"true">; def HasCMov : Predicate<"Subtarget->hasCMov()">; def NoCMov : Predicate<"!Subtarget->hasCMov()">; def HasMMX : Predicate<"Subtarget->hasMMX()">; def Has3DNow : Predicate<"Subtarget->has3DNow()">; def Has3DNowA : Predicate<"Subtarget->has3DNowA()">; def HasSSE1 : Predicate<"Subtarget->hasSSE1()">; def UseSSE1 : Predicate<"Subtarget->hasSSE1() && !Subtarget->hasAVX()">; def HasSSE2 : Predicate<"Subtarget->hasSSE2()">; def UseSSE2 : Predicate<"Subtarget->hasSSE2() && !Subtarget->hasAVX()">; def HasSSE3 : Predicate<"Subtarget->hasSSE3()">; def UseSSE3 : Predicate<"Subtarget->hasSSE3() && !Subtarget->hasAVX()">; def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">; def UseSSSE3 : Predicate<"Subtarget->hasSSSE3() && !Subtarget->hasAVX()">; def HasSSE41 : Predicate<"Subtarget->hasSSE41()">; def NoSSE41 : Predicate<"!Subtarget->hasSSE41()">; def UseSSE41 : Predicate<"Subtarget->hasSSE41() && !Subtarget->hasAVX()">; def HasSSE42 : Predicate<"Subtarget->hasSSE42()">; def UseSSE42 : Predicate<"Subtarget->hasSSE42() && !Subtarget->hasAVX()">; def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">; def NoAVX : Predicate<"!Subtarget->hasAVX()">; def HasAVX : Predicate<"Subtarget->hasAVX()">; def HasAVX2 : Predicate<"Subtarget->hasAVX2()">; def HasAVX1Only : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX2()">; def HasAVX512 : Predicate<"Subtarget->hasAVX512()">; def UseAVX : Predicate<"Subtarget->hasAVX() && !Subtarget->hasAVX512()">; def UseAVX2 : Predicate<"Subtarget->hasAVX2() && !Subtarget->hasAVX512()">; def NoAVX512 : Predicate<"!Subtarget->hasAVX512()">; def HasCDI : Predicate<"Subtarget->hasCDI()">; def HasVPOPCNTDQ : Predicate<"Subtarget->hasVPOPCNTDQ()">; def HasPFI : Predicate<"Subtarget->hasPFI()">; def HasERI : Predicate<"Subtarget->hasERI()">; def HasDQI : Predicate<"Subtarget->hasDQI()">; def NoDQI : Predicate<"!Subtarget->hasDQI()">; def HasBWI : Predicate<"Subtarget->hasBWI()">; def NoBWI : Predicate<"!Subtarget->hasBWI()">; def HasVLX : Predicate<"Subtarget->hasVLX()">; def NoVLX : Predicate<"!Subtarget->hasVLX()">; def NoVLX_Or_NoBWI : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasBWI()">; def NoVLX_Or_NoDQI : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasDQI()">; def PKU : Predicate<"Subtarget->hasPKU()">; def HasVNNI : Predicate<"Subtarget->hasVNNI()">; def HasVP2INTERSECT : Predicate<"Subtarget->hasVP2INTERSECT()">; def HasBF16 : Predicate<"Subtarget->hasBF16()">; def HasAVXVNNI : Predicate <"Subtarget->hasAVXVNNI()">; def NoVLX_Or_NoVNNI : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasVNNI()">; def HasBITALG : Predicate<"Subtarget->hasBITALG()">; def HasPOPCNT : Predicate<"Subtarget->hasPOPCNT()">; def HasAES : Predicate<"Subtarget->hasAES()">; def HasVAES : Predicate<"Subtarget->hasVAES()">; def NoVLX_Or_NoVAES : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasVAES()">; def HasFXSR : Predicate<"Subtarget->hasFXSR()">; def HasXSAVE : Predicate<"Subtarget->hasXSAVE()">; def HasXSAVEOPT : Predicate<"Subtarget->hasXSAVEOPT()">; def HasXSAVEC : Predicate<"Subtarget->hasXSAVEC()">; def HasXSAVES : Predicate<"Subtarget->hasXSAVES()">; def HasPCLMUL : Predicate<"Subtarget->hasPCLMUL()">; def NoVLX_Or_NoVPCLMULQDQ : Predicate<"!Subtarget->hasVLX() || !Subtarget->hasVPCLMULQDQ()">; def HasVPCLMULQDQ : Predicate<"Subtarget->hasVPCLMULQDQ()">; def HasGFNI : Predicate<"Subtarget->hasGFNI()">; def HasFMA : Predicate<"Subtarget->hasFMA()">; def HasFMA4 : Predicate<"Subtarget->hasFMA4()">; def NoFMA4 : Predicate<"!Subtarget->hasFMA4()">; def HasXOP : Predicate<"Subtarget->hasXOP()">; def HasTBM : Predicate<"Subtarget->hasTBM()">; def NoTBM : Predicate<"!Subtarget->hasTBM()">; def HasLWP : Predicate<"Subtarget->hasLWP()">; def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">; def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">; def HasF16C : Predicate<"Subtarget->hasF16C()">; def HasFSGSBase : Predicate<"Subtarget->hasFSGSBase()">; def HasLZCNT : Predicate<"Subtarget->hasLZCNT()">; def HasBMI : Predicate<"Subtarget->hasBMI()">; def HasBMI2 : Predicate<"Subtarget->hasBMI2()">; def NoBMI2 : Predicate<"!Subtarget->hasBMI2()">; def HasVBMI : Predicate<"Subtarget->hasVBMI()">; def HasVBMI2 : Predicate<"Subtarget->hasVBMI2()">; def HasIFMA : Predicate<"Subtarget->hasIFMA()">; def HasRTM : Predicate<"Subtarget->hasRTM()">; def HasADX : Predicate<"Subtarget->hasADX()">; def HasSHA : Predicate<"Subtarget->hasSHA()">; def HasSGX : Predicate<"Subtarget->hasSGX()">; def HasRDSEED : Predicate<"Subtarget->hasRDSEED()">; def HasSSEPrefetch : Predicate<"Subtarget->hasSSEPrefetch()">; def NoSSEPrefetch : Predicate<"!Subtarget->hasSSEPrefetch()">; def HasPrefetchW : Predicate<"Subtarget->hasPrefetchW()">; def HasPREFETCHWT1 : Predicate<"Subtarget->hasPREFETCHWT1()">; def HasLAHFSAHF : Predicate<"Subtarget->hasLAHFSAHF()">; def HasMWAITX : Predicate<"Subtarget->hasMWAITX()">; def HasCLZERO : Predicate<"Subtarget->hasCLZERO()">; def HasCLDEMOTE : Predicate<"Subtarget->hasCLDEMOTE()">; def HasMOVDIRI : Predicate<"Subtarget->hasMOVDIRI()">; def HasMOVDIR64B : Predicate<"Subtarget->hasMOVDIR64B()">; def HasPTWRITE : Predicate<"Subtarget->hasPTWRITE()">; def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">; def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">; def HasSHSTK : Predicate<"Subtarget->hasSHSTK()">; def HasCLFLUSHOPT : Predicate<"Subtarget->hasCLFLUSHOPT()">; def HasCLWB : Predicate<"Subtarget->hasCLWB()">; def HasWBNOINVD : Predicate<"Subtarget->hasWBNOINVD()">; def HasRDPID : Predicate<"Subtarget->hasRDPID()">; def HasWAITPKG : Predicate<"Subtarget->hasWAITPKG()">; def HasINVPCID : Predicate<"Subtarget->hasINVPCID()">; def HasCmpxchg8b : Predicate<"Subtarget->hasCmpxchg8b()">; def HasCmpxchg16b: Predicate<"Subtarget->hasCmpxchg16b()">; def HasPCONFIG : Predicate<"Subtarget->hasPCONFIG()">; def HasENQCMD : Predicate<"Subtarget->hasENQCMD()">; def HasKL : Predicate<"Subtarget->hasKL()">; def HasWIDEKL : Predicate<"Subtarget->hasWIDEKL()">; def HasHRESET : Predicate<"Subtarget->hasHRESET()">; def HasSERIALIZE : Predicate<"Subtarget->hasSERIALIZE()">; def HasTSXLDTRK : Predicate<"Subtarget->hasTSXLDTRK()">; def HasAMXTILE : Predicate<"Subtarget->hasAMXTILE()">; def HasAMXBF16 : Predicate<"Subtarget->hasAMXBF16()">; def HasAMXINT8 : Predicate<"Subtarget->hasAMXINT8()">; def HasUINTR : Predicate<"Subtarget->hasUINTR()">; def Not64BitMode : Predicate<"!Subtarget->is64Bit()">, AssemblerPredicate<(all_of (not Mode64Bit)), "Not 64-bit mode">; def In64BitMode : Predicate<"Subtarget->is64Bit()">, AssemblerPredicate<(all_of Mode64Bit), "64-bit mode">; def IsLP64 : Predicate<"Subtarget->isTarget64BitLP64()">; def NotLP64 : Predicate<"!Subtarget->isTarget64BitLP64()">; def In16BitMode : Predicate<"Subtarget->is16Bit()">, AssemblerPredicate<(all_of Mode16Bit), "16-bit mode">; def Not16BitMode : Predicate<"!Subtarget->is16Bit()">, AssemblerPredicate<(all_of (not Mode16Bit)), "Not 16-bit mode">; def In32BitMode : Predicate<"Subtarget->is32Bit()">, AssemblerPredicate<(all_of Mode32Bit), "32-bit mode">; def IsWin64 : Predicate<"Subtarget->isTargetWin64()">; def NotWin64 : Predicate<"!Subtarget->isTargetWin64()">; def NotWin64WithoutFP : Predicate<"!Subtarget->isTargetWin64() ||" "Subtarget->getFrameLowering()->hasFP(*MF)"> { let RecomputePerFunction = 1; } def IsPS4 : Predicate<"Subtarget->isTargetPS4()">; def NotPS4 : Predicate<"!Subtarget->isTargetPS4()">; def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">; def NotNaCl : Predicate<"!Subtarget->isTargetNaCl()">; def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">; def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">; def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||" "TM.getCodeModel() == CodeModel::Kernel">; def IsNotPIC : Predicate<"!TM.isPositionIndependent()">; // We could compute these on a per-module basis but doing so requires accessing // the Function object through the Subtarget and objections were raised // to that (see post-commit review comments for r301750). let RecomputePerFunction = 1 in { def OptForSize : Predicate<"shouldOptForSize(MF)">; def OptForMinSize : Predicate<"MF->getFunction().hasMinSize()">; def OptForSpeed : Predicate<"!shouldOptForSize(MF)">; def UseIncDec : Predicate<"!Subtarget->slowIncDec() || " "shouldOptForSize(MF)">; def NoSSE41_Or_OptForSize : Predicate<"shouldOptForSize(MF) || " "!Subtarget->hasSSE41()">; } def CallImmAddr : Predicate<"Subtarget->isLegalToCallImmediateAddr()">; def FavorMemIndirectCall : Predicate<"!Subtarget->slowTwoMemOps()">; def HasFastMem32 : Predicate<"!Subtarget->isUnalignedMem32Slow()">; def HasFastLZCNT : Predicate<"Subtarget->hasFastLZCNT()">; def HasFastSHLDRotate : Predicate<"Subtarget->hasFastSHLDRotate()">; def HasERMSB : Predicate<"Subtarget->hasERMSB()">; def HasFSRM : Predicate<"Subtarget->hasFSRM()">; def HasMFence : Predicate<"Subtarget->hasMFence()">; def UseIndirectThunkCalls : Predicate<"Subtarget->useIndirectThunkCalls()">; def NotUseIndirectThunkCalls : Predicate<"!Subtarget->useIndirectThunkCalls()">; //===----------------------------------------------------------------------===// // X86 Instruction Format Definitions. // include "X86InstrFormats.td" //===----------------------------------------------------------------------===// // Pattern fragments. // // X86 specific condition code. These correspond to CondCode in // X86InstrInfo.h. They must be kept in synch. def X86_COND_O : PatLeaf<(i8 0)>; def X86_COND_NO : PatLeaf<(i8 1)>; def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C def X86_COND_AE : PatLeaf<(i8 3)>; // alt. COND_NC def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z def X86_COND_NE : PatLeaf<(i8 5)>; // alt. COND_NZ def X86_COND_BE : PatLeaf<(i8 6)>; // alt. COND_NA def X86_COND_A : PatLeaf<(i8 7)>; // alt. COND_NBE def X86_COND_S : PatLeaf<(i8 8)>; def X86_COND_NS : PatLeaf<(i8 9)>; def X86_COND_P : PatLeaf<(i8 10)>; // alt. COND_PE def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO def X86_COND_L : PatLeaf<(i8 12)>; // alt. COND_NGE def X86_COND_GE : PatLeaf<(i8 13)>; // alt. COND_NL def X86_COND_LE : PatLeaf<(i8 14)>; // alt. COND_NG def X86_COND_G : PatLeaf<(i8 15)>; // alt. COND_NLE def i16immSExt8 : ImmLeaf(Imm); }]>; def i32immSExt8 : ImmLeaf(Imm); }]>; def i64immSExt8 : ImmLeaf(Imm); }]>; def i64immSExt32 : ImmLeaf(Imm); }]>; def i64timmSExt32 : TImmLeaf(Imm); }]>; def i16relocImmSExt8 : PatLeaf<(i16 relocImm), [{ return isSExtAbsoluteSymbolRef(8, N); }]>; def i32relocImmSExt8 : PatLeaf<(i32 relocImm), [{ return isSExtAbsoluteSymbolRef(8, N); }]>; def i64relocImmSExt8 : PatLeaf<(i64 relocImm), [{ return isSExtAbsoluteSymbolRef(8, N); }]>; def i64relocImmSExt32 : PatLeaf<(i64 relocImm), [{ return isSExtAbsoluteSymbolRef(32, N); }]>; // If we have multiple users of an immediate, it's much smaller to reuse // the register, rather than encode the immediate in every instruction. // This has the risk of increasing register pressure from stretched live // ranges, however, the immediates should be trivial to rematerialize by // the RA in the event of high register pressure. // TODO : This is currently enabled for stores and binary ops. There are more // cases for which this can be enabled, though this catches the bulk of the // issues. // TODO2 : This should really also be enabled under O2, but there's currently // an issue with RA where we don't pull the constants into their users // when we rematerialize them. I'll follow-up on enabling O2 after we fix that // issue. // TODO3 : This is currently limited to single basic blocks (DAG creation // pulls block immediates to the top and merges them if necessary). // Eventually, it would be nice to allow ConstantHoisting to merge constants // globally for potentially added savings. // def imm_su : PatLeaf<(imm), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i64immSExt32_su : PatLeaf<(i64immSExt32), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def relocImm8_su : PatLeaf<(i8 relocImm), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def relocImm16_su : PatLeaf<(i16 relocImm), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def relocImm32_su : PatLeaf<(i32 relocImm), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i16relocImmSExt8_su : PatLeaf<(i16relocImmSExt8), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i32relocImmSExt8_su : PatLeaf<(i32relocImmSExt8), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i64relocImmSExt8_su : PatLeaf<(i64relocImmSExt8), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i64relocImmSExt32_su : PatLeaf<(i64relocImmSExt32), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i16immSExt8_su : PatLeaf<(i16immSExt8), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i32immSExt8_su : PatLeaf<(i32immSExt8), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; def i64immSExt8_su : PatLeaf<(i64immSExt8), [{ return !shouldAvoidImmediateInstFormsForSize(N); }]>; // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit // unsigned field. def i64immZExt32 : ImmLeaf(Imm); }]>; def i64immZExt32SExt8 : ImmLeaf(Imm) && isInt<8>(static_cast(Imm)); }]>; // Helper fragments for loads. // It's safe to fold a zextload/extload from i1 as a regular i8 load. The // upper bits are guaranteed to be zero and we were going to emit a MOV8rm // which might get folded during peephole anyway. def loadi8 : PatFrag<(ops node:$ptr), (i8 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); ISD::LoadExtType ExtType = LD->getExtensionType(); return ExtType == ISD::NON_EXTLOAD || ExtType == ISD::EXTLOAD || ExtType == ISD::ZEXTLOAD; }]>; // It's always safe to treat a anyext i16 load as a i32 load if the i16 is // known to be 32-bit aligned or better. Ditto for i8 to i16. def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD && EnablePromoteAnyextLoad) return LD->getAlignment() >= 2 && LD->isSimple(); return false; }]>; def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD && EnablePromoteAnyextLoad) return LD->getAlignment() >= 4 && LD->isSimple(); return false; }]>; def loadi64 : PatFrag<(ops node:$ptr), (i64 (load node:$ptr))>; def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>; def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>; def loadf80 : PatFrag<(ops node:$ptr), (f80 (load node:$ptr))>; def loadf128 : PatFrag<(ops node:$ptr), (f128 (load node:$ptr))>; def alignedloadf128 : PatFrag<(ops node:$ptr), (f128 (load node:$ptr)), [{ LoadSDNode *Ld = cast(N); return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize(); }]>; def memopf128 : PatFrag<(ops node:$ptr), (f128 (load node:$ptr)), [{ LoadSDNode *Ld = cast(N); return Subtarget->hasSSEUnalignedMem() || Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize(); }]>; def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>; def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>; def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>; def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>; def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>; def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>; def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>; def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>; def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>; def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>; def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>; def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>; def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>; def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>; def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>; def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>; def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>; def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>; def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>; def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>; def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>; def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>; def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>; def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>; def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>; // We can treat an i8/i16 extending load to i64 as a 32 bit load if its known // to be 4 byte aligned or better. def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType != ISD::EXTLOAD) return false; if (LD->getMemoryVT() == MVT::i32) return true; return LD->getAlignment() >= 4 && LD->isSimple(); }]>; // An 'and' node with a single use. def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'srl' node with a single use. def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'trunc' node with a single use. def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{ return N->hasOneUse(); }]>; //===----------------------------------------------------------------------===// // Instruction list. // // Nop let hasSideEffects = 0, SchedRW = [WriteNop] in { def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>; def NOOPW : I<0x1f, MRMXm, (outs), (ins i16mem:$zero), "nop{w}\t$zero", []>, TB, OpSize16, NotMemoryFoldable; def NOOPL : I<0x1f, MRMXm, (outs), (ins i32mem:$zero), "nop{l}\t$zero", []>, TB, OpSize32, NotMemoryFoldable; def NOOPQ : RI<0x1f, MRMXm, (outs), (ins i64mem:$zero), "nop{q}\t$zero", []>, TB, NotMemoryFoldable, Requires<[In64BitMode]>; // Also allow register so we can assemble/disassemble def NOOPWr : I<0x1f, MRMXr, (outs), (ins GR16:$zero), "nop{w}\t$zero", []>, TB, OpSize16, NotMemoryFoldable; def NOOPLr : I<0x1f, MRMXr, (outs), (ins GR32:$zero), "nop{l}\t$zero", []>, TB, OpSize32, NotMemoryFoldable; def NOOPQr : RI<0x1f, MRMXr, (outs), (ins GR64:$zero), "nop{q}\t$zero", []>, TB, NotMemoryFoldable, Requires<[In64BitMode]>; } // Constructing a stack frame. def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl), "enter\t$len, $lvl", []>, Sched<[WriteMicrocoded]>; let SchedRW = [WriteALU] in { let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, hasSideEffects=0 in def LEAVE : I<0xC9, RawFrm, (outs), (ins), "leave", []>, Requires<[Not64BitMode]>; let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, hasSideEffects = 0 in def LEAVE64 : I<0xC9, RawFrm, (outs), (ins), "leave", []>, Requires<[In64BitMode]>; } // SchedRW //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1, SchedRW = [WriteSystem] in def Int_eh_sjlj_setup_dispatch : PseudoI<(outs), (ins), [(X86eh_sjlj_setup_dispatch)]>; let Defs = [ESP], Uses = [ESP], hasSideEffects=0 in { let mayLoad = 1, SchedRW = [WriteLoad] in { def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>, OpSize16; def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>, OpSize32, Requires<[Not64BitMode]>; // Long form for the disassembler. let isCodeGenOnly = 1, ForceDisassemble = 1 in { def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>, OpSize16, NotMemoryFoldable; def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>, OpSize32, Requires<[Not64BitMode]>, NotMemoryFoldable; } // isCodeGenOnly = 1, ForceDisassemble = 1 } // mayLoad, SchedRW let mayStore = 1, mayLoad = 1, SchedRW = [WriteCopy] in { def POP16rmm: I<0x8F, MRM0m, (outs), (ins i16mem:$dst), "pop{w}\t$dst", []>, OpSize16; def POP32rmm: I<0x8F, MRM0m, (outs), (ins i32mem:$dst), "pop{l}\t$dst", []>, OpSize32, Requires<[Not64BitMode]>; } // mayStore, mayLoad, SchedRW let mayStore = 1, SchedRW = [WriteStore] in { def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>, OpSize16; def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>, OpSize32, Requires<[Not64BitMode]>; // Long form for the disassembler. let isCodeGenOnly = 1, ForceDisassemble = 1 in { def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>, OpSize16, NotMemoryFoldable; def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>, OpSize32, Requires<[Not64BitMode]>, NotMemoryFoldable; } // isCodeGenOnly = 1, ForceDisassemble = 1 def PUSH16i8 : Ii8<0x6a, RawFrm, (outs), (ins i16i8imm:$imm), "push{w}\t$imm", []>, OpSize16; def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), "push{w}\t$imm", []>, OpSize16; def PUSH32i8 : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm), "push{l}\t$imm", []>, OpSize32, Requires<[Not64BitMode]>; def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm), "push{l}\t$imm", []>, OpSize32, Requires<[Not64BitMode]>; } // mayStore, SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteCopy] in { def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src", []>, OpSize16; def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src", []>, OpSize32, Requires<[Not64BitMode]>; } // mayLoad, mayStore, SchedRW } let mayLoad = 1, mayStore = 1, usesCustomInserter = 1, SchedRW = [WriteRMW], Defs = [ESP] in { let Uses = [ESP] in def RDFLAGS32 : PseudoI<(outs GR32:$dst), (ins), [(set GR32:$dst, (int_x86_flags_read_u32))]>, Requires<[Not64BitMode]>; let Uses = [RSP] in def RDFLAGS64 : PseudoI<(outs GR64:$dst), (ins), [(set GR64:$dst, (int_x86_flags_read_u64))]>, Requires<[In64BitMode]>; } let mayLoad = 1, mayStore = 1, usesCustomInserter = 1, SchedRW = [WriteRMW] in { let Defs = [ESP, EFLAGS, DF], Uses = [ESP] in def WRFLAGS32 : PseudoI<(outs), (ins GR32:$src), [(int_x86_flags_write_u32 GR32:$src)]>, Requires<[Not64BitMode]>; let Defs = [RSP, EFLAGS, DF], Uses = [RSP] in def WRFLAGS64 : PseudoI<(outs), (ins GR64:$src), [(int_x86_flags_write_u64 GR64:$src)]>, Requires<[In64BitMode]>; } let Defs = [ESP, EFLAGS, DF], Uses = [ESP], mayLoad = 1, hasSideEffects=0, SchedRW = [WriteLoad] in { def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", []>, OpSize16; def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", []>, OpSize32, Requires<[Not64BitMode]>; } let Defs = [ESP], Uses = [ESP, EFLAGS, DF], mayStore = 1, hasSideEffects=0, SchedRW = [WriteStore] in { def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", []>, OpSize16; def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", []>, OpSize32, Requires<[Not64BitMode]>; } let Defs = [RSP], Uses = [RSP], hasSideEffects=0 in { let mayLoad = 1, SchedRW = [WriteLoad] in { def POP64r : I<0x58, AddRegFrm, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>, OpSize32, Requires<[In64BitMode]>; // Long form for the disassembler. let isCodeGenOnly = 1, ForceDisassemble = 1 in { def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>, OpSize32, Requires<[In64BitMode]>, NotMemoryFoldable; } // isCodeGenOnly = 1, ForceDisassemble = 1 } // mayLoad, SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteCopy] in def POP64rmm: I<0x8F, MRM0m, (outs), (ins i64mem:$dst), "pop{q}\t$dst", []>, OpSize32, Requires<[In64BitMode]>; let mayStore = 1, SchedRW = [WriteStore] in { def PUSH64r : I<0x50, AddRegFrm, (outs), (ins GR64:$reg), "push{q}\t$reg", []>, OpSize32, Requires<[In64BitMode]>; // Long form for the disassembler. let isCodeGenOnly = 1, ForceDisassemble = 1 in { def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", []>, OpSize32, Requires<[In64BitMode]>, NotMemoryFoldable; } // isCodeGenOnly = 1, ForceDisassemble = 1 } // mayStore, SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteCopy] in { def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", []>, OpSize32, Requires<[In64BitMode]>; } // mayLoad, mayStore, SchedRW } let Defs = [RSP], Uses = [RSP], hasSideEffects = 0, mayStore = 1, SchedRW = [WriteStore] in { def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm), "push{q}\t$imm", []>, OpSize32, Requires<[In64BitMode]>; def PUSH64i32 : Ii32S<0x68, RawFrm, (outs), (ins i64i32imm:$imm), "push{q}\t$imm", []>, OpSize32, Requires<[In64BitMode]>; } let Defs = [RSP, EFLAGS, DF], Uses = [RSP], mayLoad = 1, hasSideEffects=0 in def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", []>, OpSize32, Requires<[In64BitMode]>, Sched<[WriteLoad]>; let Defs = [RSP], Uses = [RSP, EFLAGS, DF], mayStore = 1, hasSideEffects=0 in def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", []>, OpSize32, Requires<[In64BitMode]>, Sched<[WriteStore]>; let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP], mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteLoad] in { def POPA32 : I<0x61, RawFrm, (outs), (ins), "popal", []>, OpSize32, Requires<[Not64BitMode]>; def POPA16 : I<0x61, RawFrm, (outs), (ins), "popaw", []>, OpSize16, Requires<[Not64BitMode]>; } let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], mayStore = 1, hasSideEffects = 0, SchedRW = [WriteStore] in { def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pushal", []>, OpSize32, Requires<[Not64BitMode]>; def PUSHA16 : I<0x60, RawFrm, (outs), (ins), "pushaw", []>, OpSize16, Requires<[Not64BitMode]>; } let Constraints = "$src = $dst", SchedRW = [WriteBSWAP32] in { // This instruction is a consequence of BSWAP32r observing operand size. The // encoding is valid, but the behavior is undefined. let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in def BSWAP16r_BAD : I<0xC8, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), "bswap{w}\t$dst", []>, OpSize16, TB; // GR32 = bswap GR32 def BSWAP32r : I<0xC8, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "bswap{l}\t$dst", [(set GR32:$dst, (bswap GR32:$src))]>, OpSize32, TB; let SchedRW = [WriteBSWAP64] in def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src), "bswap{q}\t$dst", [(set GR64:$dst, (bswap GR64:$src))]>, TB; } // Constraints = "$src = $dst", SchedRW // Bit scan instructions. let Defs = [EFLAGS] in { def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))]>, PS, OpSize16, Sched<[WriteBSF]>; def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))]>, PS, OpSize16, Sched<[WriteBSFLd]>; def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))]>, PS, OpSize32, Sched<[WriteBSF]>; def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))]>, PS, OpSize32, Sched<[WriteBSFLd]>; def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))]>, PS, Sched<[WriteBSF]>; def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))]>, PS, Sched<[WriteBSFLd]>; def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))]>, PS, OpSize16, Sched<[WriteBSR]>; def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))]>, PS, OpSize16, Sched<[WriteBSRLd]>; def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))]>, PS, OpSize32, Sched<[WriteBSR]>; def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))]>, PS, OpSize32, Sched<[WriteBSRLd]>; def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsr{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))]>, PS, Sched<[WriteBSR]>; def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsr{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))]>, PS, Sched<[WriteBSRLd]>; } // Defs = [EFLAGS] let SchedRW = [WriteMicrocoded] in { let Defs = [EDI,ESI], Uses = [EDI,ESI,DF] in { def MOVSB : I<0xA4, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src), "movsb\t{$src, $dst|$dst, $src}", []>; def MOVSW : I<0xA5, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src), "movsw\t{$src, $dst|$dst, $src}", []>, OpSize16; def MOVSL : I<0xA5, RawFrmDstSrc, (outs), (ins dstidx32:$dst, srcidx32:$src), "movs{l|d}\t{$src, $dst|$dst, $src}", []>, OpSize32; def MOVSQ : RI<0xA5, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src), "movsq\t{$src, $dst|$dst, $src}", []>, Requires<[In64BitMode]>; } let Defs = [EDI], Uses = [AL,EDI,DF] in def STOSB : I<0xAA, RawFrmDst, (outs), (ins dstidx8:$dst), "stosb\t{%al, $dst|$dst, al}", []>; let Defs = [EDI], Uses = [AX,EDI,DF] in def STOSW : I<0xAB, RawFrmDst, (outs), (ins dstidx16:$dst), "stosw\t{%ax, $dst|$dst, ax}", []>, OpSize16; let Defs = [EDI], Uses = [EAX,EDI,DF] in def STOSL : I<0xAB, RawFrmDst, (outs), (ins dstidx32:$dst), "stos{l|d}\t{%eax, $dst|$dst, eax}", []>, OpSize32; let Defs = [RDI], Uses = [RAX,RDI,DF] in def STOSQ : RI<0xAB, RawFrmDst, (outs), (ins dstidx64:$dst), "stosq\t{%rax, $dst|$dst, rax}", []>, Requires<[In64BitMode]>; let Defs = [EDI,EFLAGS], Uses = [AL,EDI,DF] in def SCASB : I<0xAE, RawFrmDst, (outs), (ins dstidx8:$dst), "scasb\t{$dst, %al|al, $dst}", []>; let Defs = [EDI,EFLAGS], Uses = [AX,EDI,DF] in def SCASW : I<0xAF, RawFrmDst, (outs), (ins dstidx16:$dst), "scasw\t{$dst, %ax|ax, $dst}", []>, OpSize16; let Defs = [EDI,EFLAGS], Uses = [EAX,EDI,DF] in def SCASL : I<0xAF, RawFrmDst, (outs), (ins dstidx32:$dst), "scas{l|d}\t{$dst, %eax|eax, $dst}", []>, OpSize32; let Defs = [EDI,EFLAGS], Uses = [RAX,EDI,DF] in def SCASQ : RI<0xAF, RawFrmDst, (outs), (ins dstidx64:$dst), "scasq\t{$dst, %rax|rax, $dst}", []>, Requires<[In64BitMode]>; let Defs = [EDI,ESI,EFLAGS], Uses = [EDI,ESI,DF] in { def CMPSB : I<0xA6, RawFrmDstSrc, (outs), (ins dstidx8:$dst, srcidx8:$src), "cmpsb\t{$dst, $src|$src, $dst}", []>; def CMPSW : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx16:$dst, srcidx16:$src), "cmpsw\t{$dst, $src|$src, $dst}", []>, OpSize16; def CMPSL : I<0xA7, RawFrmDstSrc, (outs), (ins dstidx32:$dst, srcidx32:$src), "cmps{l|d}\t{$dst, $src|$src, $dst}", []>, OpSize32; def CMPSQ : RI<0xA7, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src), "cmpsq\t{$dst, $src|$src, $dst}", []>, Requires<[In64BitMode]>; } } // SchedRW //===----------------------------------------------------------------------===// // Move Instructions. // let SchedRW = [WriteMove] in { let hasSideEffects = 0, isMoveReg = 1 in { def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", []>; def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize16; def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>, OpSize32; def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", []>; } let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, imm:$src)]>; def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, imm:$src)]>, OpSize16; def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, imm:$src)]>, OpSize32; def MOV64ri32 : RIi32S<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, i64immSExt32:$src)]>; } let isReMaterializable = 1, isMoveImm = 1 in { def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src), "movabs{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, imm:$src)]>; } // Longer forms that use a ModR/M byte. Needed for disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def MOV8ri_alt : Ii8 <0xC6, MRM0r, (outs GR8 :$dst), (ins i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOV8ri">; def MOV16ri_alt : Ii16<0xC7, MRM0r, (outs GR16:$dst), (ins i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize16, FoldGenData<"MOV16ri">; def MOV32ri_alt : Ii32<0xC7, MRM0r, (outs GR32:$dst), (ins i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>, OpSize32, FoldGenData<"MOV32ri">; } } // SchedRW let SchedRW = [WriteStore] in { def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store (i8 imm_su:$src), addr:$dst)]>; def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store (i16 imm_su:$src), addr:$dst)]>, OpSize16; def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store (i32 imm_su:$src), addr:$dst)]>, OpSize32; def MOV64mi32 : RIi32S<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store i64immSExt32_su:$src, addr:$dst)]>, Requires<[In64BitMode]>; } // SchedRW def : Pat<(i32 relocImm:$src), (MOV32ri relocImm:$src)>; def : Pat<(i64 relocImm:$src), (MOV64ri relocImm:$src)>; def : Pat<(store (i8 relocImm8_su:$src), addr:$dst), (MOV8mi addr:$dst, relocImm8_su:$src)>; def : Pat<(store (i16 relocImm16_su:$src), addr:$dst), (MOV16mi addr:$dst, relocImm16_su:$src)>; def : Pat<(store (i32 relocImm32_su:$src), addr:$dst), (MOV32mi addr:$dst, relocImm32_su:$src)>; def : Pat<(store (i64 i64relocImmSExt32_su:$src), addr:$dst), (MOV64mi32 addr:$dst, i64immSExt32_su:$src)>; let hasSideEffects = 0 in { /// Memory offset versions of moves. The immediate is an address mode sized /// offset from the segment base. let SchedRW = [WriteALU] in { let mayLoad = 1 in { let Defs = [AL] in def MOV8ao32 : Ii32<0xA0, RawFrmMemOffs, (outs), (ins offset32_8:$src), "mov{b}\t{$src, %al|al, $src}", []>, AdSize32; let Defs = [AX] in def MOV16ao32 : Ii32<0xA1, RawFrmMemOffs, (outs), (ins offset32_16:$src), "mov{w}\t{$src, %ax|ax, $src}", []>, OpSize16, AdSize32; let Defs = [EAX] in def MOV32ao32 : Ii32<0xA1, RawFrmMemOffs, (outs), (ins offset32_32:$src), "mov{l}\t{$src, %eax|eax, $src}", []>, OpSize32, AdSize32; let Defs = [RAX] in def MOV64ao32 : RIi32<0xA1, RawFrmMemOffs, (outs), (ins offset32_64:$src), "mov{q}\t{$src, %rax|rax, $src}", []>, AdSize32; let Defs = [AL] in def MOV8ao16 : Ii16<0xA0, RawFrmMemOffs, (outs), (ins offset16_8:$src), "mov{b}\t{$src, %al|al, $src}", []>, AdSize16; let Defs = [AX] in def MOV16ao16 : Ii16<0xA1, RawFrmMemOffs, (outs), (ins offset16_16:$src), "mov{w}\t{$src, %ax|ax, $src}", []>, OpSize16, AdSize16; let Defs = [EAX] in def MOV32ao16 : Ii16<0xA1, RawFrmMemOffs, (outs), (ins offset16_32:$src), "mov{l}\t{$src, %eax|eax, $src}", []>, AdSize16, OpSize32; } // mayLoad let mayStore = 1 in { let Uses = [AL] in def MOV8o32a : Ii32<0xA2, RawFrmMemOffs, (outs), (ins offset32_8:$dst), "mov{b}\t{%al, $dst|$dst, al}", []>, AdSize32; let Uses = [AX] in def MOV16o32a : Ii32<0xA3, RawFrmMemOffs, (outs), (ins offset32_16:$dst), "mov{w}\t{%ax, $dst|$dst, ax}", []>, OpSize16, AdSize32; let Uses = [EAX] in def MOV32o32a : Ii32<0xA3, RawFrmMemOffs, (outs), (ins offset32_32:$dst), "mov{l}\t{%eax, $dst|$dst, eax}", []>, OpSize32, AdSize32; let Uses = [RAX] in def MOV64o32a : RIi32<0xA3, RawFrmMemOffs, (outs), (ins offset32_64:$dst), "mov{q}\t{%rax, $dst|$dst, rax}", []>, AdSize32; let Uses = [AL] in def MOV8o16a : Ii16<0xA2, RawFrmMemOffs, (outs), (ins offset16_8:$dst), "mov{b}\t{%al, $dst|$dst, al}", []>, AdSize16; let Uses = [AX] in def MOV16o16a : Ii16<0xA3, RawFrmMemOffs, (outs), (ins offset16_16:$dst), "mov{w}\t{%ax, $dst|$dst, ax}", []>, OpSize16, AdSize16; let Uses = [EAX] in def MOV32o16a : Ii16<0xA3, RawFrmMemOffs, (outs), (ins offset16_32:$dst), "mov{l}\t{%eax, $dst|$dst, eax}", []>, OpSize32, AdSize16; } // mayStore // These forms all have full 64-bit absolute addresses in their instructions // and use the movabs mnemonic to indicate this specific form. let mayLoad = 1 in { let Defs = [AL] in def MOV8ao64 : Ii64<0xA0, RawFrmMemOffs, (outs), (ins offset64_8:$src), "movabs{b}\t{$src, %al|al, $src}", []>, AdSize64; let Defs = [AX] in def MOV16ao64 : Ii64<0xA1, RawFrmMemOffs, (outs), (ins offset64_16:$src), "movabs{w}\t{$src, %ax|ax, $src}", []>, OpSize16, AdSize64; let Defs = [EAX] in def MOV32ao64 : Ii64<0xA1, RawFrmMemOffs, (outs), (ins offset64_32:$src), "movabs{l}\t{$src, %eax|eax, $src}", []>, OpSize32, AdSize64; let Defs = [RAX] in def MOV64ao64 : RIi64<0xA1, RawFrmMemOffs, (outs), (ins offset64_64:$src), "movabs{q}\t{$src, %rax|rax, $src}", []>, AdSize64; } // mayLoad let mayStore = 1 in { let Uses = [AL] in def MOV8o64a : Ii64<0xA2, RawFrmMemOffs, (outs), (ins offset64_8:$dst), "movabs{b}\t{%al, $dst|$dst, al}", []>, AdSize64; let Uses = [AX] in def MOV16o64a : Ii64<0xA3, RawFrmMemOffs, (outs), (ins offset64_16:$dst), "movabs{w}\t{%ax, $dst|$dst, ax}", []>, OpSize16, AdSize64; let Uses = [EAX] in def MOV32o64a : Ii64<0xA3, RawFrmMemOffs, (outs), (ins offset64_32:$dst), "movabs{l}\t{%eax, $dst|$dst, eax}", []>, OpSize32, AdSize64; let Uses = [RAX] in def MOV64o64a : RIi64<0xA3, RawFrmMemOffs, (outs), (ins offset64_64:$dst), "movabs{q}\t{%rax, $dst|$dst, rax}", []>, AdSize64; } // mayStore } // SchedRW } // hasSideEffects = 0 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, SchedRW = [WriteMove], isMoveReg = 1 in { def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src), "mov{b}\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOV8rr">; def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize16, FoldGenData<"MOV16rr">; def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>, OpSize32, FoldGenData<"MOV32rr">; def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", []>, FoldGenData<"MOV64rr">; } // Reversed version with ".s" suffix for GAS compatibility. def : InstAlias<"mov{b}.s\t{$src, $dst|$dst, $src}", (MOV8rr_REV GR8:$dst, GR8:$src), 0>; def : InstAlias<"mov{w}.s\t{$src, $dst|$dst, $src}", (MOV16rr_REV GR16:$dst, GR16:$src), 0>; def : InstAlias<"mov{l}.s\t{$src, $dst|$dst, $src}", (MOV32rr_REV GR32:$dst, GR32:$src), 0>; def : InstAlias<"mov{q}.s\t{$src, $dst|$dst, $src}", (MOV64rr_REV GR64:$dst, GR64:$src), 0>; def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}", (MOV8rr_REV GR8:$dst, GR8:$src), 0, "att">; def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}", (MOV16rr_REV GR16:$dst, GR16:$src), 0, "att">; def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}", (MOV32rr_REV GR32:$dst, GR32:$src), 0, "att">; def : InstAlias<"mov.s\t{$src, $dst|$dst, $src}", (MOV64rr_REV GR64:$dst, GR64:$src), 0, "att">; let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in { def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, (loadi8 addr:$src))]>; def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (loadi16 addr:$src))]>, OpSize16; def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (loadi32 addr:$src))]>, OpSize32; def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (load addr:$src))]>; } let SchedRW = [WriteStore] in { def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store GR8:$src, addr:$dst)]>; def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store GR16:$src, addr:$dst)]>, OpSize16; def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store GR32:$src, addr:$dst)]>, OpSize32; def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store GR64:$src, addr:$dst)]>; } // SchedRW // Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so // that they can be used for copying and storing h registers, which can't be // encoded when a REX prefix is present. let isCodeGenOnly = 1 in { let hasSideEffects = 0, isMoveReg = 1 in def MOV8rr_NOREX : I<0x88, MRMDestReg, (outs GR8_NOREX:$dst), (ins GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src}", []>, Sched<[WriteMove]>; let mayStore = 1, hasSideEffects = 0 in def MOV8mr_NOREX : I<0x88, MRMDestMem, (outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src}", []>, Sched<[WriteStore]>; let mayLoad = 1, hasSideEffects = 0, canFoldAsLoad = 1, isReMaterializable = 1 in def MOV8rm_NOREX : I<0x8A, MRMSrcMem, (outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src}", []>, Sched<[WriteLoad]>; } // Condition code ops, incl. set if equal/not equal/... let SchedRW = [WriteLAHFSAHF] in { let Defs = [EFLAGS], Uses = [AH], hasSideEffects = 0 in def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", []>, // flags = AH Requires<[HasLAHFSAHF]>; let Defs = [AH], Uses = [EFLAGS], hasSideEffects = 0 in def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", []>, // AH = flags Requires<[HasLAHFSAHF]>; } // SchedRW //===----------------------------------------------------------------------===// // Bit tests instructions: BT, BTS, BTR, BTC. let Defs = [EFLAGS] in { let SchedRW = [WriteBitTest] in { def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))]>, OpSize16, TB, NotMemoryFoldable; def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))]>, OpSize32, TB, NotMemoryFoldable; def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))]>, TB, NotMemoryFoldable; } // SchedRW // Unlike with the register+register form, the memory+register form of the // bt instruction does not ignore the high bits of the index. From ISel's // perspective, this is pretty bizarre. Make these instructions disassembly // only for now. These instructions are also slow on modern CPUs so that's // another reason to avoid generating them. let mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteBitTestRegLd] in { def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB, NotMemoryFoldable; def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB, NotMemoryFoldable; def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", []>, TB, NotMemoryFoldable; } let SchedRW = [WriteBitTest] in { def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16u8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, imm:$src2))]>, OpSize16, TB; def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32u8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR32:$src1, imm:$src2))]>, OpSize32, TB; def BT64ri8 : RIi8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64u8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR64:$src1, imm:$src2))]>, TB; } // SchedRW // Note that these instructions aren't slow because that only applies when the // other operand is in a register. When it's an immediate, bt is still fast. let SchedRW = [WriteBitTestImmLd] in { def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16u8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi16 addr:$src1), imm:$src2))]>, OpSize16, TB; def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32u8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi32 addr:$src1), imm:$src2))]>, OpSize32, TB; def BT64mi8 : RIi8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64u8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi64 addr:$src1), imm:$src2))]>, TB, Requires<[In64BitMode]>; } // SchedRW let hasSideEffects = 0 in { let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in { def BTC16rr : I<0xBB, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB, NotMemoryFoldable; def BTC32rr : I<0xBB, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB, NotMemoryFoldable; def BTC64rr : RI<0xBB, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB, NotMemoryFoldable; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetRegRMW] in { def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB, NotMemoryFoldable; def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB, NotMemoryFoldable; def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB, NotMemoryFoldable; } let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in { def BTC16ri8 : Ii8<0xBA, MRM7r, (outs GR16:$dst), (ins GR16:$src1, i16u8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB; def BTC32ri8 : Ii8<0xBA, MRM7r, (outs GR32:$dst), (ins GR32:$src1, i32u8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB; def BTC64ri8 : RIi8<0xBA, MRM7r, (outs GR64:$dst), (ins GR64:$src1, i64u8imm:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetImmRMW] in { def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16u8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB; def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32u8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB; def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64u8imm:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB, Requires<[In64BitMode]>; } let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in { def BTR16rr : I<0xB3, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB, NotMemoryFoldable; def BTR32rr : I<0xB3, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB, NotMemoryFoldable; def BTR64rr : RI<0xB3, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB, NotMemoryFoldable; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetRegRMW] in { def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB, NotMemoryFoldable; def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB, NotMemoryFoldable; def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB, NotMemoryFoldable; } let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in { def BTR16ri8 : Ii8<0xBA, MRM6r, (outs GR16:$dst), (ins GR16:$src1, i16u8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB; def BTR32ri8 : Ii8<0xBA, MRM6r, (outs GR32:$dst), (ins GR32:$src1, i32u8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB; def BTR64ri8 : RIi8<0xBA, MRM6r, (outs GR64:$dst), (ins GR64:$src1, i64u8imm:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetImmRMW] in { def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16u8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB; def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32u8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB; def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64u8imm:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB, Requires<[In64BitMode]>; } let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in { def BTS16rr : I<0xAB, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB, NotMemoryFoldable; def BTS32rr : I<0xAB, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB, NotMemoryFoldable; def BTS64rr : RI<0xAB, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB, NotMemoryFoldable; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetRegRMW] in { def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB, NotMemoryFoldable; def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB, NotMemoryFoldable; def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB, NotMemoryFoldable; } let SchedRW = [WriteBitTestSet], Constraints = "$src1 = $dst" in { def BTS16ri8 : Ii8<0xBA, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i16u8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB; def BTS32ri8 : Ii8<0xBA, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i32u8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB; def BTS64ri8 : RIi8<0xBA, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i64u8imm:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, SchedRW = [WriteBitTestSetImmRMW] in { def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16u8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, TB; def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32u8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, TB; def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64u8imm:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB, Requires<[In64BitMode]>; } } // hasSideEffects = 0 } // Defs = [EFLAGS] //===----------------------------------------------------------------------===// // Atomic support // // Atomic swap. These are just normal xchg instructions. But since a memory // operand is referenced, the atomicity is ensured. multiclass ATOMIC_SWAP opc8, bits<8> opc, string mnemonic, string frag> { let Constraints = "$val = $dst", SchedRW = [WriteALULd, WriteRMW] in { def NAME#8rm : I(frag # "_8") addr:$ptr, GR8:$val))]>; def NAME#16rm : I(frag # "_16") addr:$ptr, GR16:$val))]>, OpSize16; def NAME#32rm : I(frag # "_32") addr:$ptr, GR32:$val))]>, OpSize32; def NAME#64rm : RI(frag # "_64") addr:$ptr, GR64:$val))]>; } } defm XCHG : ATOMIC_SWAP<0x86, 0x87, "xchg", "atomic_swap">, NotMemoryFoldable; // Swap between registers. let SchedRW = [WriteXCHG] in { let Constraints = "$src1 = $dst1, $src2 = $dst2", hasSideEffects = 0 in { def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst1, GR8:$dst2), (ins GR8:$src1, GR8:$src2), "xchg{b}\t{$src2, $src1|$src1, $src2}", []>, NotMemoryFoldable; def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst1, GR16:$dst2), (ins GR16:$src1, GR16:$src2), "xchg{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize16, NotMemoryFoldable; def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst1, GR32:$dst2), (ins GR32:$src1, GR32:$src2), "xchg{l}\t{$src2, $src1|$src1, $src2}", []>, OpSize32, NotMemoryFoldable; def XCHG64rr : RI<0x87, MRMSrcReg, (outs GR64:$dst1, GR64:$dst2), (ins GR64:$src1 ,GR64:$src2), "xchg{q}\t{$src2, $src1|$src1, $src2}", []>, NotMemoryFoldable; } // Swap between EAX and other registers. let Constraints = "$src = $dst", hasSideEffects = 0 in { let Uses = [AX], Defs = [AX] in def XCHG16ar : I<0x90, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), "xchg{w}\t{$src, %ax|ax, $src}", []>, OpSize16; let Uses = [EAX], Defs = [EAX] in def XCHG32ar : I<0x90, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "xchg{l}\t{$src, %eax|eax, $src}", []>, OpSize32; let Uses = [RAX], Defs = [RAX] in def XCHG64ar : RI<0x90, AddRegFrm, (outs GR64:$dst), (ins GR64:$src), "xchg{q}\t{$src, %rax|rax, $src}", []>; } } // SchedRW let hasSideEffects = 0, Constraints = "$src1 = $dst1, $src2 = $dst2", Defs = [EFLAGS], SchedRW = [WriteXCHG] in { def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst1, GR8:$dst2), (ins GR8:$src1, GR8:$src2), "xadd{b}\t{$src2, $src1|$src1, $src2}", []>, TB; def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst1, GR16:$dst2), (ins GR16:$src1, GR16:$src2), "xadd{w}\t{$src2, $src1|$src1, $src2}", []>, TB, OpSize16; def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst1, GR32:$dst2), (ins GR32:$src1, GR32:$src2), "xadd{l}\t{$src2, $src1|$src1, $src2}", []>, TB, OpSize32; def XADD64rr : RI<0xC1, MRMDestReg, (outs GR64:$dst1, GR64:$dst2), (ins GR64:$src1, GR64:$src2), "xadd{q}\t{$src2, $src1|$src1, $src2}", []>, TB; } // SchedRW let mayLoad = 1, mayStore = 1, hasSideEffects = 0, Constraints = "$val = $dst", Defs = [EFLAGS], SchedRW = [WriteALULd, WriteRMW] in { def XADD8rm : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr), "xadd{b}\t{$val, $ptr|$ptr, $val}", []>, TB; def XADD16rm : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr), "xadd{w}\t{$val, $ptr|$ptr, $val}", []>, TB, OpSize16; def XADD32rm : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr), "xadd{l}\t{$val, $ptr|$ptr, $val}", []>, TB, OpSize32; def XADD64rm : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val, i64mem:$ptr), "xadd{q}\t{$val, $ptr|$ptr, $val}", []>, TB; } let SchedRW = [WriteCMPXCHG], hasSideEffects = 0 in { let Defs = [AL, EFLAGS], Uses = [AL] in def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB, NotMemoryFoldable; let Defs = [AX, EFLAGS], Uses = [AX] in def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, NotMemoryFoldable; let Defs = [EAX, EFLAGS], Uses = [EAX] in def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32, NotMemoryFoldable; let Defs = [RAX, EFLAGS], Uses = [RAX] in def CMPXCHG64rr : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB, NotMemoryFoldable; } // SchedRW, hasSideEffects let SchedRW = [WriteCMPXCHGRMW], mayLoad = 1, mayStore = 1, hasSideEffects = 0 in { let Defs = [AL, EFLAGS], Uses = [AL] in def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB, NotMemoryFoldable; let Defs = [AX, EFLAGS], Uses = [AX] in def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, NotMemoryFoldable; let Defs = [EAX, EFLAGS], Uses = [EAX] in def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32, NotMemoryFoldable; let Defs = [RAX, EFLAGS], Uses = [RAX] in def CMPXCHG64rm : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB, NotMemoryFoldable; let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst), "cmpxchg8b\t$dst", []>, TB, Requires<[HasCmpxchg8b]>; let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in // NOTE: In64BitMode check needed for the AssemblerPredicate. def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst), "cmpxchg16b\t$dst", []>, TB, Requires<[HasCmpxchg16b,In64BitMode]>; } // SchedRW, mayLoad, mayStore, hasSideEffects // Lock instruction prefix let SchedRW = [WriteMicrocoded] in def LOCK_PREFIX : I<0xF0, PrefixByte, (outs), (ins), "lock", []>; let SchedRW = [WriteNop] in { // Rex64 instruction prefix def REX64_PREFIX : I<0x48, PrefixByte, (outs), (ins), "rex64", []>, Requires<[In64BitMode]>; // Data16 instruction prefix def DATA16_PREFIX : I<0x66, PrefixByte, (outs), (ins), "data16", []>; } // SchedRW // Repeat string operation instruction prefixes let Defs = [ECX], Uses = [ECX,DF], SchedRW = [WriteMicrocoded] in { // Repeat (used with INS, OUTS, MOVS, LODS and STOS) def REP_PREFIX : I<0xF3, PrefixByte, (outs), (ins), "rep", []>; // Repeat while not equal (used with CMPS and SCAS) def REPNE_PREFIX : I<0xF2, PrefixByte, (outs), (ins), "repne", []>; } // String manipulation instructions let SchedRW = [WriteMicrocoded] in { let Defs = [AL,ESI], Uses = [ESI,DF] in def LODSB : I<0xAC, RawFrmSrc, (outs), (ins srcidx8:$src), "lodsb\t{$src, %al|al, $src}", []>; let Defs = [AX,ESI], Uses = [ESI,DF] in def LODSW : I<0xAD, RawFrmSrc, (outs), (ins srcidx16:$src), "lodsw\t{$src, %ax|ax, $src}", []>, OpSize16; let Defs = [EAX,ESI], Uses = [ESI,DF] in def LODSL : I<0xAD, RawFrmSrc, (outs), (ins srcidx32:$src), "lods{l|d}\t{$src, %eax|eax, $src}", []>, OpSize32; let Defs = [RAX,ESI], Uses = [ESI,DF] in def LODSQ : RI<0xAD, RawFrmSrc, (outs), (ins srcidx64:$src), "lodsq\t{$src, %rax|rax, $src}", []>, Requires<[In64BitMode]>; } let SchedRW = [WriteSystem] in { let Defs = [ESI], Uses = [DX,ESI,DF] in { def OUTSB : I<0x6E, RawFrmSrc, (outs), (ins srcidx8:$src), "outsb\t{$src, %dx|dx, $src}", []>; def OUTSW : I<0x6F, RawFrmSrc, (outs), (ins srcidx16:$src), "outsw\t{$src, %dx|dx, $src}", []>, OpSize16; def OUTSL : I<0x6F, RawFrmSrc, (outs), (ins srcidx32:$src), "outs{l|d}\t{$src, %dx|dx, $src}", []>, OpSize32; } let Defs = [EDI], Uses = [DX,EDI,DF] in { def INSB : I<0x6C, RawFrmDst, (outs), (ins dstidx8:$dst), "insb\t{%dx, $dst|$dst, dx}", []>; def INSW : I<0x6D, RawFrmDst, (outs), (ins dstidx16:$dst), "insw\t{%dx, $dst|$dst, dx}", []>, OpSize16; def INSL : I<0x6D, RawFrmDst, (outs), (ins dstidx32:$dst), "ins{l|d}\t{%dx, $dst|$dst, dx}", []>, OpSize32; } } // EFLAGS management instructions. let SchedRW = [WriteALU], Defs = [EFLAGS], Uses = [EFLAGS] in { def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", []>; def STC : I<0xF9, RawFrm, (outs), (ins), "stc", []>; def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", []>; } // DF management instructions. let SchedRW = [WriteALU], Defs = [DF] in { def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", []>; def STD : I<0xFD, RawFrm, (outs), (ins), "std", []>; } // Table lookup instructions let Uses = [AL,EBX], Defs = [AL], hasSideEffects = 0, mayLoad = 1 in def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", []>, Sched<[WriteLoad]>; let SchedRW = [WriteMicrocoded] in { // ASCII Adjust After Addition let Uses = [AL,EFLAGS], Defs = [AX,EFLAGS], hasSideEffects = 0 in def AAA : I<0x37, RawFrm, (outs), (ins), "aaa", []>, Requires<[Not64BitMode]>; // ASCII Adjust AX Before Division let Uses = [AX], Defs = [AX,EFLAGS], hasSideEffects = 0 in def AAD8i8 : Ii8<0xD5, RawFrm, (outs), (ins i8imm:$src), "aad\t$src", []>, Requires<[Not64BitMode]>; // ASCII Adjust AX After Multiply let Uses = [AL], Defs = [AX,EFLAGS], hasSideEffects = 0 in def AAM8i8 : Ii8<0xD4, RawFrm, (outs), (ins i8imm:$src), "aam\t$src", []>, Requires<[Not64BitMode]>; // ASCII Adjust AL After Subtraction - sets let Uses = [AL,EFLAGS], Defs = [AX,EFLAGS], hasSideEffects = 0 in def AAS : I<0x3F, RawFrm, (outs), (ins), "aas", []>, Requires<[Not64BitMode]>; // Decimal Adjust AL after Addition let Uses = [AL,EFLAGS], Defs = [AL,EFLAGS], hasSideEffects = 0 in def DAA : I<0x27, RawFrm, (outs), (ins), "daa", []>, Requires<[Not64BitMode]>; // Decimal Adjust AL after Subtraction let Uses = [AL,EFLAGS], Defs = [AL,EFLAGS], hasSideEffects = 0 in def DAS : I<0x2F, RawFrm, (outs), (ins), "das", []>, Requires<[Not64BitMode]>; } // SchedRW let SchedRW = [WriteSystem] in { // Check Array Index Against Bounds // Note: "bound" does not have reversed operands in at&t syntax. def BOUNDS16rm : I<0x62, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bound\t$dst, $src", []>, OpSize16, Requires<[Not64BitMode]>; def BOUNDS32rm : I<0x62, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bound\t$dst, $src", []>, OpSize32, Requires<[Not64BitMode]>; // Adjust RPL Field of Segment Selector def ARPL16rr : I<0x63, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "arpl\t{$src, $dst|$dst, $src}", []>, Requires<[Not64BitMode]>, NotMemoryFoldable; let mayStore = 1 in def ARPL16mr : I<0x63, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "arpl\t{$src, $dst|$dst, $src}", []>, Requires<[Not64BitMode]>, NotMemoryFoldable; } // SchedRW //===----------------------------------------------------------------------===// // MOVBE Instructions // let Predicates = [HasMOVBE] in { let SchedRW = [WriteALULd] in { def MOVBE16rm : I<0xF0, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "movbe{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (bswap (loadi16 addr:$src)))]>, OpSize16, T8PS; def MOVBE32rm : I<0xF0, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movbe{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bswap (loadi32 addr:$src)))]>, OpSize32, T8PS; def MOVBE64rm : RI<0xF0, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "movbe{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bswap (loadi64 addr:$src)))]>, T8PS; } let SchedRW = [WriteStore] in { def MOVBE16mr : I<0xF1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "movbe{w}\t{$src, $dst|$dst, $src}", [(store (bswap GR16:$src), addr:$dst)]>, OpSize16, T8PS; def MOVBE32mr : I<0xF1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movbe{l}\t{$src, $dst|$dst, $src}", [(store (bswap GR32:$src), addr:$dst)]>, OpSize32, T8PS; def MOVBE64mr : RI<0xF1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "movbe{q}\t{$src, $dst|$dst, $src}", [(store (bswap GR64:$src), addr:$dst)]>, T8PS; } } //===----------------------------------------------------------------------===// // RDRAND Instruction // let Predicates = [HasRDRAND], Defs = [EFLAGS], SchedRW = [WriteSystem] in { def RDRAND16r : I<0xC7, MRM6r, (outs GR16:$dst), (ins), "rdrand{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86rdrand))]>, OpSize16, PS; def RDRAND32r : I<0xC7, MRM6r, (outs GR32:$dst), (ins), "rdrand{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86rdrand))]>, OpSize32, PS; def RDRAND64r : RI<0xC7, MRM6r, (outs GR64:$dst), (ins), "rdrand{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86rdrand))]>, PS; } //===----------------------------------------------------------------------===// // RDSEED Instruction // let Predicates = [HasRDSEED], Defs = [EFLAGS], SchedRW = [WriteSystem] in { def RDSEED16r : I<0xC7, MRM7r, (outs GR16:$dst), (ins), "rdseed{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86rdseed))]>, OpSize16, PS; def RDSEED32r : I<0xC7, MRM7r, (outs GR32:$dst), (ins), "rdseed{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86rdseed))]>, OpSize32, PS; def RDSEED64r : RI<0xC7, MRM7r, (outs GR64:$dst), (ins), "rdseed{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86rdseed))]>, PS; } //===----------------------------------------------------------------------===// // LZCNT Instruction // let Predicates = [HasLZCNT], Defs = [EFLAGS] in { def LZCNT16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "lzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctlz GR16:$src)), (implicit EFLAGS)]>, XS, OpSize16, Sched<[WriteLZCNT]>; def LZCNT16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "lzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctlz (loadi16 addr:$src))), (implicit EFLAGS)]>, XS, OpSize16, Sched<[WriteLZCNTLd]>; def LZCNT32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "lzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctlz GR32:$src)), (implicit EFLAGS)]>, XS, OpSize32, Sched<[WriteLZCNT]>; def LZCNT32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "lzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctlz (loadi32 addr:$src))), (implicit EFLAGS)]>, XS, OpSize32, Sched<[WriteLZCNTLd]>; def LZCNT64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "lzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctlz GR64:$src)), (implicit EFLAGS)]>, XS, Sched<[WriteLZCNT]>; def LZCNT64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "lzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctlz (loadi64 addr:$src))), (implicit EFLAGS)]>, XS, Sched<[WriteLZCNTLd]>; } //===----------------------------------------------------------------------===// // BMI Instructions // let Predicates = [HasBMI], Defs = [EFLAGS] in { def TZCNT16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "tzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (cttz GR16:$src)), (implicit EFLAGS)]>, XS, OpSize16, Sched<[WriteTZCNT]>; def TZCNT16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "tzcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (cttz (loadi16 addr:$src))), (implicit EFLAGS)]>, XS, OpSize16, Sched<[WriteTZCNTLd]>; def TZCNT32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "tzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (cttz GR32:$src)), (implicit EFLAGS)]>, XS, OpSize32, Sched<[WriteTZCNT]>; def TZCNT32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "tzcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (cttz (loadi32 addr:$src))), (implicit EFLAGS)]>, XS, OpSize32, Sched<[WriteTZCNTLd]>; def TZCNT64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "tzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (cttz GR64:$src)), (implicit EFLAGS)]>, XS, Sched<[WriteTZCNT]>; def TZCNT64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "tzcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (cttz (loadi64 addr:$src))), (implicit EFLAGS)]>, XS, Sched<[WriteTZCNTLd]>; } multiclass bmi_bls { let hasSideEffects = 0 in { def rr : I<0xF3, RegMRM, (outs RC:$dst), (ins RC:$src), !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"), []>, T8PS, VEX_4V, Sched<[sched]>; let mayLoad = 1 in def rm : I<0xF3, MemMRM, (outs RC:$dst), (ins x86memop:$src), !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"), []>, T8PS, VEX_4V, Sched<[sched.Folded]>; } } let Predicates = [HasBMI], Defs = [EFLAGS] in { defm BLSR32 : bmi_bls<"blsr{l}", MRM1r, MRM1m, GR32, i32mem, WriteBLS>; defm BLSR64 : bmi_bls<"blsr{q}", MRM1r, MRM1m, GR64, i64mem, WriteBLS>, VEX_W; defm BLSMSK32 : bmi_bls<"blsmsk{l}", MRM2r, MRM2m, GR32, i32mem, WriteBLS>; defm BLSMSK64 : bmi_bls<"blsmsk{q}", MRM2r, MRM2m, GR64, i64mem, WriteBLS>, VEX_W; defm BLSI32 : bmi_bls<"blsi{l}", MRM3r, MRM3m, GR32, i32mem, WriteBLS>; defm BLSI64 : bmi_bls<"blsi{q}", MRM3r, MRM3m, GR64, i64mem, WriteBLS>, VEX_W; } //===----------------------------------------------------------------------===// // Pattern fragments to auto generate BMI instructions. //===----------------------------------------------------------------------===// def or_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs), (X86or_flag node:$lhs, node:$rhs), [{ return hasNoCarryFlagUses(SDValue(N, 1)); }]>; def xor_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs), (X86xor_flag node:$lhs, node:$rhs), [{ return hasNoCarryFlagUses(SDValue(N, 1)); }]>; def and_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs), (X86and_flag node:$lhs, node:$rhs), [{ return hasNoCarryFlagUses(SDValue(N, 1)); }]>; let Predicates = [HasBMI] in { // FIXME: patterns for the load versions are not implemented def : Pat<(and GR32:$src, (add GR32:$src, -1)), (BLSR32rr GR32:$src)>; def : Pat<(and GR64:$src, (add GR64:$src, -1)), (BLSR64rr GR64:$src)>; def : Pat<(xor GR32:$src, (add GR32:$src, -1)), (BLSMSK32rr GR32:$src)>; def : Pat<(xor GR64:$src, (add GR64:$src, -1)), (BLSMSK64rr GR64:$src)>; def : Pat<(and GR32:$src, (ineg GR32:$src)), (BLSI32rr GR32:$src)>; def : Pat<(and GR64:$src, (ineg GR64:$src)), (BLSI64rr GR64:$src)>; // Versions to match flag producing ops. def : Pat<(and_flag_nocf GR32:$src, (add GR32:$src, -1)), (BLSR32rr GR32:$src)>; def : Pat<(and_flag_nocf GR64:$src, (add GR64:$src, -1)), (BLSR64rr GR64:$src)>; def : Pat<(xor_flag_nocf GR32:$src, (add GR32:$src, -1)), (BLSMSK32rr GR32:$src)>; def : Pat<(xor_flag_nocf GR64:$src, (add GR64:$src, -1)), (BLSMSK64rr GR64:$src)>; def : Pat<(and_flag_nocf GR32:$src, (ineg GR32:$src)), (BLSI32rr GR32:$src)>; def : Pat<(and_flag_nocf GR64:$src, (ineg GR64:$src)), (BLSI64rr GR64:$src)>; } multiclass bmi_bextr opc, string mnemonic, RegisterClass RC, X86MemOperand x86memop, SDNode OpNode, PatFrag ld_frag, X86FoldableSchedWrite Sched> { def rr : I, T8PS, VEX, Sched<[Sched]>; def rm : I, T8PS, VEX, Sched<[Sched.Folded, // x86memop:$src1 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // RC:$src2 Sched.ReadAfterFold]>; } let Predicates = [HasBMI], Defs = [EFLAGS] in { defm BEXTR32 : bmi_bextr<0xF7, "bextr{l}", GR32, i32mem, X86bextr, loadi32, WriteBEXTR>; defm BEXTR64 : bmi_bextr<0xF7, "bextr{q}", GR64, i64mem, X86bextr, loadi64, WriteBEXTR>, VEX_W; } multiclass bmi_bzhi opc, string mnemonic, RegisterClass RC, X86MemOperand x86memop, Intrinsic Int, PatFrag ld_frag, X86FoldableSchedWrite Sched> { def rr : I, T8PS, VEX, Sched<[Sched]>; def rm : I, T8PS, VEX, Sched<[Sched.Folded, // x86memop:$src1 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // RC:$src2 Sched.ReadAfterFold]>; } let Predicates = [HasBMI2], Defs = [EFLAGS] in { defm BZHI32 : bmi_bzhi<0xF5, "bzhi{l}", GR32, i32mem, X86bzhi, loadi32, WriteBZHI>; defm BZHI64 : bmi_bzhi<0xF5, "bzhi{q}", GR64, i64mem, X86bzhi, loadi64, WriteBZHI>, VEX_W; } def CountTrailingOnes : SDNodeXFormgetZExtValue()), SDLoc(N)); }]>; def BEXTRMaskXForm : SDNodeXFormgetZExtValue()); return getI32Imm(Length << 8, SDLoc(N)); }]>; def AndMask64 : ImmLeaf(Imm); }]>; // Use BEXTR for 64-bit 'and' with large immediate 'mask'. let Predicates = [HasBMI, NoBMI2, NoTBM] in { def : Pat<(and GR64:$src, AndMask64:$mask), (BEXTR64rr GR64:$src, (SUBREG_TO_REG (i64 0), (MOV32ri (BEXTRMaskXForm imm:$mask)), sub_32bit))>; def : Pat<(and (loadi64 addr:$src), AndMask64:$mask), (BEXTR64rm addr:$src, (SUBREG_TO_REG (i64 0), (MOV32ri (BEXTRMaskXForm imm:$mask)), sub_32bit))>; } // Use BZHI for 64-bit 'and' with large immediate 'mask'. let Predicates = [HasBMI2, NoTBM] in { def : Pat<(and GR64:$src, AndMask64:$mask), (BZHI64rr GR64:$src, (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (MOV8ri (CountTrailingOnes imm:$mask)), sub_8bit))>; def : Pat<(and (loadi64 addr:$src), AndMask64:$mask), (BZHI64rm addr:$src, (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (MOV8ri (CountTrailingOnes imm:$mask)), sub_8bit))>; } multiclass bmi_pdep_pext { def rr : I<0xF5, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set RC:$dst, (OpNode RC:$src1, RC:$src2))]>, VEX_4V, Sched<[WriteALU]>; def rm : I<0xF5, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set RC:$dst, (OpNode RC:$src1, (ld_frag addr:$src2)))]>, VEX_4V, Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>; } let Predicates = [HasBMI2] in { defm PDEP32 : bmi_pdep_pext<"pdep{l}", GR32, i32mem, X86pdep, loadi32>, T8XD; defm PDEP64 : bmi_pdep_pext<"pdep{q}", GR64, i64mem, X86pdep, loadi64>, T8XD, VEX_W; defm PEXT32 : bmi_pdep_pext<"pext{l}", GR32, i32mem, X86pext, loadi32>, T8XS; defm PEXT64 : bmi_pdep_pext<"pext{q}", GR64, i64mem, X86pext, loadi64>, T8XS, VEX_W; } //===----------------------------------------------------------------------===// // TBM Instructions // let Predicates = [HasTBM], Defs = [EFLAGS] in { multiclass tbm_bextri opc, RegisterClass RC, string OpcodeStr, X86MemOperand x86memop, PatFrag ld_frag, SDNode OpNode, Operand immtype, SDPatternOperator immoperator, X86FoldableSchedWrite Sched> { def ri : Ii32, XOP, XOPA, Sched<[Sched]>; def mi : Ii32, XOP, XOPA, Sched<[Sched.Folded]>; } defm BEXTRI32 : tbm_bextri<0x10, GR32, "bextr{l}", i32mem, loadi32, X86bextri, i32imm, timm, WriteBEXTR>; let ImmT = Imm32S in defm BEXTRI64 : tbm_bextri<0x10, GR64, "bextr{q}", i64mem, loadi64, X86bextri, i64i32imm, i64timmSExt32, WriteBEXTR>, VEX_W; multiclass tbm_binary_rm opc, Format FormReg, Format FormMem, RegisterClass RC, string OpcodeStr, X86MemOperand x86memop, X86FoldableSchedWrite Sched> { let hasSideEffects = 0 in { def rr : I, XOP_4V, XOP9, Sched<[Sched]>; let mayLoad = 1 in def rm : I, XOP_4V, XOP9, Sched<[Sched.Folded]>; } } multiclass tbm_binary_intr opc, string OpcodeStr, X86FoldableSchedWrite Sched, Format FormReg, Format FormMem> { defm NAME#32 : tbm_binary_rm; defm NAME#64 : tbm_binary_rm, VEX_W; } defm BLCFILL : tbm_binary_intr<0x01, "blcfill", WriteALU, MRM1r, MRM1m>; defm BLCI : tbm_binary_intr<0x02, "blci", WriteALU, MRM6r, MRM6m>; defm BLCIC : tbm_binary_intr<0x01, "blcic", WriteALU, MRM5r, MRM5m>; defm BLCMSK : tbm_binary_intr<0x02, "blcmsk", WriteALU, MRM1r, MRM1m>; defm BLCS : tbm_binary_intr<0x01, "blcs", WriteALU, MRM3r, MRM3m>; defm BLSFILL : tbm_binary_intr<0x01, "blsfill", WriteALU, MRM2r, MRM2m>; defm BLSIC : tbm_binary_intr<0x01, "blsic", WriteALU, MRM6r, MRM6m>; defm T1MSKC : tbm_binary_intr<0x01, "t1mskc", WriteALU, MRM7r, MRM7m>; defm TZMSK : tbm_binary_intr<0x01, "tzmsk", WriteALU, MRM4r, MRM4m>; } // HasTBM, EFLAGS // Use BEXTRI for 64-bit 'and' with large immediate 'mask'. let Predicates = [HasTBM] in { def : Pat<(and GR64:$src, AndMask64:$mask), (BEXTRI64ri GR64:$src, (BEXTRMaskXForm imm:$mask))>; def : Pat<(and (loadi64 addr:$src), AndMask64:$mask), (BEXTRI64mi addr:$src, (BEXTRMaskXForm imm:$mask))>; } //===----------------------------------------------------------------------===// // Lightweight Profiling Instructions let Predicates = [HasLWP], SchedRW = [WriteSystem] in { def LLWPCB : I<0x12, MRM0r, (outs), (ins GR32:$src), "llwpcb\t$src", [(int_x86_llwpcb GR32:$src)]>, XOP, XOP9; def SLWPCB : I<0x12, MRM1r, (outs GR32:$dst), (ins), "slwpcb\t$dst", [(set GR32:$dst, (int_x86_slwpcb))]>, XOP, XOP9; def LLWPCB64 : I<0x12, MRM0r, (outs), (ins GR64:$src), "llwpcb\t$src", [(int_x86_llwpcb GR64:$src)]>, XOP, XOP9, VEX_W; def SLWPCB64 : I<0x12, MRM1r, (outs GR64:$dst), (ins), "slwpcb\t$dst", [(set GR64:$dst, (int_x86_slwpcb))]>, XOP, XOP9, VEX_W; multiclass lwpins_intr { def rri : Ii32<0x12, MRM0r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl), "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", [(set EFLAGS, (X86lwpins RC:$src0, GR32:$src1, timm:$cntl))]>, XOP_4V, XOPA; let mayLoad = 1 in def rmi : Ii32<0x12, MRM0m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl), "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", [(set EFLAGS, (X86lwpins RC:$src0, (loadi32 addr:$src1), timm:$cntl))]>, XOP_4V, XOPA; } let Defs = [EFLAGS] in { defm LWPINS32 : lwpins_intr; defm LWPINS64 : lwpins_intr, VEX_W; } // EFLAGS multiclass lwpval_intr { def rri : Ii32<0x12, MRM1r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl), "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", [(Int RC:$src0, GR32:$src1, timm:$cntl)]>, XOP_4V, XOPA; let mayLoad = 1 in def rmi : Ii32<0x12, MRM1m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl), "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", [(Int RC:$src0, (loadi32 addr:$src1), timm:$cntl)]>, XOP_4V, XOPA; } defm LWPVAL32 : lwpval_intr; defm LWPVAL64 : lwpval_intr, VEX_W; } // HasLWP, SchedRW //===----------------------------------------------------------------------===// // MONITORX/MWAITX Instructions // let SchedRW = [ WriteSystem ] in { let Uses = [ EAX, ECX, EDX ] in def MONITORX32rrr : I<0x01, MRM_FA, (outs), (ins), "monitorx", []>, TB, Requires<[ HasMWAITX, Not64BitMode ]>; let Uses = [ RAX, ECX, EDX ] in def MONITORX64rrr : I<0x01, MRM_FA, (outs), (ins), "monitorx", []>, TB, Requires<[ HasMWAITX, In64BitMode ]>; let Uses = [ ECX, EAX, EBX ] in { def MWAITXrrr : I<0x01, MRM_FB, (outs), (ins), "mwaitx", []>, TB, Requires<[ HasMWAITX ]>; } } // SchedRW def : InstAlias<"mwaitx\t{%eax, %ecx, %ebx|ebx, ecx, eax}", (MWAITXrrr)>, Requires<[ Not64BitMode ]>; def : InstAlias<"mwaitx\t{%rax, %rcx, %rbx|rbx, rcx, rax}", (MWAITXrrr)>, Requires<[ In64BitMode ]>; def : InstAlias<"monitorx\t{%eax, %ecx, %edx|edx, ecx, eax}", (MONITORX32rrr)>, Requires<[ Not64BitMode ]>; def : InstAlias<"monitorx\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITORX64rrr)>, Requires<[ In64BitMode ]>; //===----------------------------------------------------------------------===// // WAITPKG Instructions // let SchedRW = [WriteSystem] in { def UMONITOR16 : I<0xAE, MRM6r, (outs), (ins GR16:$src), "umonitor\t$src", [(int_x86_umonitor GR16:$src)]>, XS, AdSize16, Requires<[HasWAITPKG, Not64BitMode]>; def UMONITOR32 : I<0xAE, MRM6r, (outs), (ins GR32:$src), "umonitor\t$src", [(int_x86_umonitor GR32:$src)]>, XS, AdSize32, Requires<[HasWAITPKG]>; def UMONITOR64 : I<0xAE, MRM6r, (outs), (ins GR64:$src), "umonitor\t$src", [(int_x86_umonitor GR64:$src)]>, XS, AdSize64, Requires<[HasWAITPKG, In64BitMode]>; let Uses = [EAX, EDX], Defs = [EFLAGS] in { def UMWAIT : I<0xAE, MRM6r, (outs), (ins GR32orGR64:$src), "umwait\t$src", [(set EFLAGS, (X86umwait GR32orGR64:$src, EDX, EAX))]>, XD, Requires<[HasWAITPKG]>; def TPAUSE : I<0xAE, MRM6r, (outs), (ins GR32orGR64:$src), "tpause\t$src", [(set EFLAGS, (X86tpause GR32orGR64:$src, EDX, EAX))]>, PD, Requires<[HasWAITPKG]>, NotMemoryFoldable; } } // SchedRW //===----------------------------------------------------------------------===// // MOVDIRI - Move doubleword/quadword as direct store // let SchedRW = [WriteStore] in { def MOVDIRI32 : I<0xF9, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movdiri\t{$src, $dst|$dst, $src}", [(int_x86_directstore32 addr:$dst, GR32:$src)]>, T8PS, Requires<[HasMOVDIRI]>; def MOVDIRI64 : RI<0xF9, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "movdiri\t{$src, $dst|$dst, $src}", [(int_x86_directstore64 addr:$dst, GR64:$src)]>, T8PS, Requires<[In64BitMode, HasMOVDIRI]>; } // SchedRW //===----------------------------------------------------------------------===// // MOVDIR64B - Move 64 bytes as direct store // let SchedRW = [WriteStore] in { def MOVDIR64B16 : I<0xF8, MRMSrcMem, (outs), (ins GR16:$dst, i512mem:$src), "movdir64b\t{$src, $dst|$dst, $src}", []>, T8PD, AdSize16, Requires<[HasMOVDIR64B, Not64BitMode]>; def MOVDIR64B32 : I<0xF8, MRMSrcMem, (outs), (ins GR32:$dst, i512mem:$src), "movdir64b\t{$src, $dst|$dst, $src}", [(int_x86_movdir64b GR32:$dst, addr:$src)]>, T8PD, AdSize32, Requires<[HasMOVDIR64B]>; def MOVDIR64B64 : I<0xF8, MRMSrcMem, (outs), (ins GR64:$dst, i512mem:$src), "movdir64b\t{$src, $dst|$dst, $src}", [(int_x86_movdir64b GR64:$dst, addr:$src)]>, T8PD, AdSize64, Requires<[HasMOVDIR64B, In64BitMode]>; } // SchedRW //===----------------------------------------------------------------------===// // ENQCMD/S - Enqueue 64-byte command as user with 64-byte write atomicity // let SchedRW = [WriteStore], Defs = [EFLAGS] in { def ENQCMD16 : I<0xF8, MRMSrcMem, (outs), (ins GR16:$dst, i512mem:$src), "enqcmd\t{$src, $dst|$dst, $src}", [(set EFLAGS, (X86enqcmd GR16:$dst, addr:$src))]>, T8XD, AdSize16, Requires<[HasENQCMD, Not64BitMode]>; def ENQCMD32 : I<0xF8, MRMSrcMem, (outs), (ins GR32:$dst, i512mem:$src), "enqcmd\t{$src, $dst|$dst, $src}", [(set EFLAGS, (X86enqcmd GR32:$dst, addr:$src))]>, T8XD, AdSize32, Requires<[HasENQCMD]>; def ENQCMD64 : I<0xF8, MRMSrcMem, (outs), (ins GR64:$dst, i512mem:$src), "enqcmd\t{$src, $dst|$dst, $src}", [(set EFLAGS, (X86enqcmd GR64:$dst, addr:$src))]>, T8XD, AdSize64, Requires<[HasENQCMD, In64BitMode]>; def ENQCMDS16 : I<0xF8, MRMSrcMem, (outs), (ins GR16:$dst, i512mem:$src), "enqcmds\t{$src, $dst|$dst, $src}", [(set EFLAGS, (X86enqcmds GR16:$dst, addr:$src))]>, T8XS, AdSize16, Requires<[HasENQCMD, Not64BitMode]>; def ENQCMDS32 : I<0xF8, MRMSrcMem, (outs), (ins GR32:$dst, i512mem:$src), "enqcmds\t{$src, $dst|$dst, $src}", [(set EFLAGS, (X86enqcmds GR32:$dst, addr:$src))]>, T8XS, AdSize32, Requires<[HasENQCMD]>; def ENQCMDS64 : I<0xF8, MRMSrcMem, (outs), (ins GR64:$dst, i512mem:$src), "enqcmds\t{$src, $dst|$dst, $src}", [(set EFLAGS, (X86enqcmds GR64:$dst, addr:$src))]>, T8XS, AdSize64, Requires<[HasENQCMD, In64BitMode]>; } //===----------------------------------------------------------------------===// // CLZERO Instruction // let SchedRW = [WriteLoad] in { let Uses = [EAX] in def CLZERO32r : I<0x01, MRM_FC, (outs), (ins), "clzero", []>, TB, Requires<[HasCLZERO, Not64BitMode]>; let Uses = [RAX] in def CLZERO64r : I<0x01, MRM_FC, (outs), (ins), "clzero", []>, TB, Requires<[HasCLZERO, In64BitMode]>; } // SchedRW def : InstAlias<"clzero\t{%eax|eax}", (CLZERO32r)>, Requires<[Not64BitMode]>; def : InstAlias<"clzero\t{%rax|rax}", (CLZERO64r)>, Requires<[In64BitMode]>; //===----------------------------------------------------------------------===// // HRESET Instruction // let Uses = [EAX], SchedRW = [WriteSystem] in def HRESET : Ii8<0xF0, MRM_C0, (outs), (ins i32u8imm:$imm), "hreset\t$imm", []>, Requires<[HasHRESET]>, TAXS; //===----------------------------------------------------------------------===// // SERIALIZE Instruction // def SERIALIZE : I<0x01, MRM_E8, (outs), (ins), "serialize", [(int_x86_serialize)]>, PS, Requires<[HasSERIALIZE]>; //===----------------------------------------------------------------------===// // TSXLDTRK - TSX Suspend Load Address Tracking // let Predicates = [HasTSXLDTRK] in { def XSUSLDTRK : I<0x01, MRM_E8, (outs), (ins), "xsusldtrk", [(int_x86_xsusldtrk)]>, XD; def XRESLDTRK : I<0x01, MRM_E9, (outs), (ins), "xresldtrk", [(int_x86_xresldtrk)]>, XD; } //===----------------------------------------------------------------------===// // UINTR Instructions // let Predicates = [HasUINTR, In64BitMode] in { def UIRET : I<0x01, MRM_EC, (outs), (ins), "uiret", []>, XS; def CLUI : I<0x01, MRM_EE, (outs), (ins), "clui", [(int_x86_clui)]>, XS; def STUI : I<0x01, MRM_EF, (outs), (ins), "stui", [(int_x86_stui)]>, XS; def SENDUIPI : I<0xC7, MRM6r, (outs), (ins GR64:$arg), "senduipi\t$arg", [(int_x86_senduipi GR64:$arg)]>, XS; let Defs = [EFLAGS] in def TESTUI : I<0x01, MRM_ED, (outs), (ins), "testui", [(set EFLAGS, (X86testui))]>, XS; } //===----------------------------------------------------------------------===// // Pattern fragments to auto generate TBM instructions. //===----------------------------------------------------------------------===// let Predicates = [HasTBM] in { // FIXME: patterns for the load versions are not implemented def : Pat<(and GR32:$src, (add GR32:$src, 1)), (BLCFILL32rr GR32:$src)>; def : Pat<(and GR64:$src, (add GR64:$src, 1)), (BLCFILL64rr GR64:$src)>; def : Pat<(or GR32:$src, (not (add GR32:$src, 1))), (BLCI32rr GR32:$src)>; def : Pat<(or GR64:$src, (not (add GR64:$src, 1))), (BLCI64rr GR64:$src)>; // Extra patterns because opt can optimize the above patterns to this. def : Pat<(or GR32:$src, (sub -2, GR32:$src)), (BLCI32rr GR32:$src)>; def : Pat<(or GR64:$src, (sub -2, GR64:$src)), (BLCI64rr GR64:$src)>; def : Pat<(and (not GR32:$src), (add GR32:$src, 1)), (BLCIC32rr GR32:$src)>; def : Pat<(and (not GR64:$src), (add GR64:$src, 1)), (BLCIC64rr GR64:$src)>; def : Pat<(xor GR32:$src, (add GR32:$src, 1)), (BLCMSK32rr GR32:$src)>; def : Pat<(xor GR64:$src, (add GR64:$src, 1)), (BLCMSK64rr GR64:$src)>; def : Pat<(or GR32:$src, (add GR32:$src, 1)), (BLCS32rr GR32:$src)>; def : Pat<(or GR64:$src, (add GR64:$src, 1)), (BLCS64rr GR64:$src)>; def : Pat<(or GR32:$src, (add GR32:$src, -1)), (BLSFILL32rr GR32:$src)>; def : Pat<(or GR64:$src, (add GR64:$src, -1)), (BLSFILL64rr GR64:$src)>; def : Pat<(or (not GR32:$src), (add GR32:$src, -1)), (BLSIC32rr GR32:$src)>; def : Pat<(or (not GR64:$src), (add GR64:$src, -1)), (BLSIC64rr GR64:$src)>; def : Pat<(or (not GR32:$src), (add GR32:$src, 1)), (T1MSKC32rr GR32:$src)>; def : Pat<(or (not GR64:$src), (add GR64:$src, 1)), (T1MSKC64rr GR64:$src)>; def : Pat<(and (not GR32:$src), (add GR32:$src, -1)), (TZMSK32rr GR32:$src)>; def : Pat<(and (not GR64:$src), (add GR64:$src, -1)), (TZMSK64rr GR64:$src)>; // Patterns to match flag producing ops. def : Pat<(and_flag_nocf GR32:$src, (add GR32:$src, 1)), (BLCFILL32rr GR32:$src)>; def : Pat<(and_flag_nocf GR64:$src, (add GR64:$src, 1)), (BLCFILL64rr GR64:$src)>; def : Pat<(or_flag_nocf GR32:$src, (not (add GR32:$src, 1))), (BLCI32rr GR32:$src)>; def : Pat<(or_flag_nocf GR64:$src, (not (add GR64:$src, 1))), (BLCI64rr GR64:$src)>; // Extra patterns because opt can optimize the above patterns to this. def : Pat<(or_flag_nocf GR32:$src, (sub -2, GR32:$src)), (BLCI32rr GR32:$src)>; def : Pat<(or_flag_nocf GR64:$src, (sub -2, GR64:$src)), (BLCI64rr GR64:$src)>; def : Pat<(and_flag_nocf (not GR32:$src), (add GR32:$src, 1)), (BLCIC32rr GR32:$src)>; def : Pat<(and_flag_nocf (not GR64:$src), (add GR64:$src, 1)), (BLCIC64rr GR64:$src)>; def : Pat<(xor_flag_nocf GR32:$src, (add GR32:$src, 1)), (BLCMSK32rr GR32:$src)>; def : Pat<(xor_flag_nocf GR64:$src, (add GR64:$src, 1)), (BLCMSK64rr GR64:$src)>; def : Pat<(or_flag_nocf GR32:$src, (add GR32:$src, 1)), (BLCS32rr GR32:$src)>; def : Pat<(or_flag_nocf GR64:$src, (add GR64:$src, 1)), (BLCS64rr GR64:$src)>; def : Pat<(or_flag_nocf GR32:$src, (add GR32:$src, -1)), (BLSFILL32rr GR32:$src)>; def : Pat<(or_flag_nocf GR64:$src, (add GR64:$src, -1)), (BLSFILL64rr GR64:$src)>; def : Pat<(or_flag_nocf (not GR32:$src), (add GR32:$src, -1)), (BLSIC32rr GR32:$src)>; def : Pat<(or_flag_nocf (not GR64:$src), (add GR64:$src, -1)), (BLSIC64rr GR64:$src)>; def : Pat<(or_flag_nocf (not GR32:$src), (add GR32:$src, 1)), (T1MSKC32rr GR32:$src)>; def : Pat<(or_flag_nocf (not GR64:$src), (add GR64:$src, 1)), (T1MSKC64rr GR64:$src)>; def : Pat<(and_flag_nocf (not GR32:$src), (add GR32:$src, -1)), (TZMSK32rr GR32:$src)>; def : Pat<(and_flag_nocf (not GR64:$src), (add GR64:$src, -1)), (TZMSK64rr GR64:$src)>; } // HasTBM //===----------------------------------------------------------------------===// // Memory Instructions // let Predicates = [HasCLFLUSHOPT], SchedRW = [WriteLoad] in def CLFLUSHOPT : I<0xAE, MRM7m, (outs), (ins i8mem:$src), "clflushopt\t$src", [(int_x86_clflushopt addr:$src)]>, PD; let Predicates = [HasCLWB], SchedRW = [WriteLoad] in def CLWB : I<0xAE, MRM6m, (outs), (ins i8mem:$src), "clwb\t$src", [(int_x86_clwb addr:$src)]>, PD, NotMemoryFoldable; let Predicates = [HasCLDEMOTE], SchedRW = [WriteLoad] in def CLDEMOTE : I<0x1C, MRM0m, (outs), (ins i8mem:$src), "cldemote\t$src", [(int_x86_cldemote addr:$src)]>, PS; //===----------------------------------------------------------------------===// // Subsystems. //===----------------------------------------------------------------------===// include "X86InstrArithmetic.td" include "X86InstrCMovSetCC.td" include "X86InstrExtension.td" include "X86InstrControl.td" include "X86InstrShiftRotate.td" // X87 Floating Point Stack. include "X86InstrFPStack.td" // SIMD support (SSE, MMX and AVX) include "X86InstrFragmentsSIMD.td" // FMA - Fused Multiply-Add support (requires FMA) include "X86InstrFMA.td" // XOP include "X86InstrXOP.td" // SSE, MMX and 3DNow! vector support. include "X86InstrSSE.td" include "X86InstrAVX512.td" include "X86InstrMMX.td" include "X86Instr3DNow.td" // MPX instructions include "X86InstrMPX.td" include "X86InstrVMX.td" include "X86InstrSVM.td" include "X86InstrTSX.td" include "X86InstrSGX.td" include "X86InstrTDX.td" // Key Locker instructions include "X86InstrKL.td" // AMX instructions include "X86InstrAMX.td" // System instructions. include "X86InstrSystem.td" // Compiler Pseudo Instructions and Pat Patterns include "X86InstrCompiler.td" include "X86InstrVecCompiler.td" //===----------------------------------------------------------------------===// // Assembler Mnemonic Aliases //===----------------------------------------------------------------------===// def : MnemonicAlias<"call", "callw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"call", "calll", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"call", "callq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"cbw", "cbtw", "att">; def : MnemonicAlias<"cwde", "cwtl", "att">; def : MnemonicAlias<"cwd", "cwtd", "att">; def : MnemonicAlias<"cdq", "cltd", "att">; def : MnemonicAlias<"cdqe", "cltq", "att">; def : MnemonicAlias<"cqo", "cqto", "att">; // In 64-bit mode lret maps to lretl; it is not ambiguous with lretq. def : MnemonicAlias<"lret", "lretw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"lret", "lretl", "att">, Requires<[Not16BitMode]>; def : MnemonicAlias<"leavel", "leave", "att">, Requires<[Not64BitMode]>; def : MnemonicAlias<"leaveq", "leave", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"loopz", "loope">; def : MnemonicAlias<"loopnz", "loopne">; def : MnemonicAlias<"pop", "popw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"pop", "popl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"pop", "popq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"popf", "popfw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"popf", "popfl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"popf", "popfq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"popf", "popfq", "intel">, Requires<[In64BitMode]>; def : MnemonicAlias<"popfd", "popfl", "att">; def : MnemonicAlias<"popfw", "popf", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"popfw", "popf", "intel">, Requires<[In64BitMode]>; // FIXME: This is wrong for "push reg". "push %bx" should turn into pushw in // all modes. However: "push (addr)" and "push $42" should default to // pushl/pushq depending on the current mode. Similar for "pop %bx" def : MnemonicAlias<"push", "pushw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"push", "pushl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"push", "pushq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"pushf", "pushfw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"pushf", "pushfl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"pushf", "pushfq", "intel">, Requires<[In64BitMode]>; def : MnemonicAlias<"pushfd", "pushfl", "att">; def : MnemonicAlias<"pushfw", "pushf", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"pushfw", "pushf", "intel">, Requires<[In64BitMode]>; def : MnemonicAlias<"popad", "popal", "intel">, Requires<[Not64BitMode]>; def : MnemonicAlias<"pushad", "pushal", "intel">, Requires<[Not64BitMode]>; def : MnemonicAlias<"popa", "popaw", "intel">, Requires<[In16BitMode]>; def : MnemonicAlias<"pusha", "pushaw", "intel">, Requires<[In16BitMode]>; def : MnemonicAlias<"popa", "popal", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"pusha", "pushal", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"popa", "popaw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"pusha", "pushaw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"popa", "popal", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"pusha", "pushal", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"repe", "rep">; def : MnemonicAlias<"repz", "rep">; def : MnemonicAlias<"repnz", "repne">; def : MnemonicAlias<"ret", "retw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"ret", "retl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"ret", "retq", "att">, Requires<[In64BitMode]>; // Apply 'ret' behavior to 'retn' def : MnemonicAlias<"retn", "retw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"retn", "retl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"retn", "retq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"retn", "ret", "intel">; def : MnemonicAlias<"sal", "shl", "intel">; def : MnemonicAlias<"salb", "shlb", "att">; def : MnemonicAlias<"salw", "shlw", "att">; def : MnemonicAlias<"sall", "shll", "att">; def : MnemonicAlias<"salq", "shlq", "att">; def : MnemonicAlias<"smovb", "movsb", "att">; def : MnemonicAlias<"smovw", "movsw", "att">; def : MnemonicAlias<"smovl", "movsl", "att">; def : MnemonicAlias<"smovq", "movsq", "att">; def : MnemonicAlias<"ud2a", "ud2", "att">; def : MnemonicAlias<"ud2bw", "ud1w", "att">; def : MnemonicAlias<"ud2bl", "ud1l", "att">; def : MnemonicAlias<"ud2bq", "ud1q", "att">; def : MnemonicAlias<"verrw", "verr", "att">; // MS recognizes 'xacquire'/'xrelease' as 'acquire'/'release' def : MnemonicAlias<"acquire", "xacquire", "intel">; def : MnemonicAlias<"release", "xrelease", "intel">; // System instruction aliases. def : MnemonicAlias<"iret", "iretw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"iret", "iretl", "att">, Requires<[Not16BitMode]>; def : MnemonicAlias<"sysret", "sysretl", "att">; def : MnemonicAlias<"sysexit", "sysexitl", "att">; def : MnemonicAlias<"lgdt", "lgdtw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"lgdt", "lgdtl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"lgdt", "lgdtq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"lidt", "lidtw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"lidt", "lidtl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"lidt", "lidtq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"sgdt", "sgdtw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"sgdt", "sgdtl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"sgdt", "sgdtq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"sidt", "sidtw", "att">, Requires<[In16BitMode]>; def : MnemonicAlias<"sidt", "sidtl", "att">, Requires<[In32BitMode]>; def : MnemonicAlias<"sidt", "sidtq", "att">, Requires<[In64BitMode]>; def : MnemonicAlias<"lgdt", "lgdtw", "intel">, Requires<[In16BitMode]>; def : MnemonicAlias<"lgdt", "lgdtd", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"lidt", "lidtw", "intel">, Requires<[In16BitMode]>; def : MnemonicAlias<"lidt", "lidtd", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"sgdt", "sgdtw", "intel">, Requires<[In16BitMode]>; def : MnemonicAlias<"sgdt", "sgdtd", "intel">, Requires<[In32BitMode]>; def : MnemonicAlias<"sidt", "sidtw", "intel">, Requires<[In16BitMode]>; def : MnemonicAlias<"sidt", "sidtd", "intel">, Requires<[In32BitMode]>; // Floating point stack aliases. def : MnemonicAlias<"fcmovz", "fcmove", "att">; def : MnemonicAlias<"fcmova", "fcmovnbe", "att">; def : MnemonicAlias<"fcmovnae", "fcmovb", "att">; def : MnemonicAlias<"fcmovna", "fcmovbe", "att">; def : MnemonicAlias<"fcmovae", "fcmovnb", "att">; def : MnemonicAlias<"fcomip", "fcompi">; def : MnemonicAlias<"fildq", "fildll", "att">; def : MnemonicAlias<"fistpq", "fistpll", "att">; def : MnemonicAlias<"fisttpq", "fisttpll", "att">; def : MnemonicAlias<"fldcww", "fldcw", "att">; def : MnemonicAlias<"fnstcww", "fnstcw", "att">; def : MnemonicAlias<"fnstsww", "fnstsw", "att">; def : MnemonicAlias<"fucomip", "fucompi">; def : MnemonicAlias<"fwait", "wait">; def : MnemonicAlias<"fxsaveq", "fxsave64", "att">; def : MnemonicAlias<"fxrstorq", "fxrstor64", "att">; def : MnemonicAlias<"xsaveq", "xsave64", "att">; def : MnemonicAlias<"xrstorq", "xrstor64", "att">; def : MnemonicAlias<"xsaveoptq", "xsaveopt64", "att">; def : MnemonicAlias<"xrstorsq", "xrstors64", "att">; def : MnemonicAlias<"xsavecq", "xsavec64", "att">; def : MnemonicAlias<"xsavesq", "xsaves64", "att">; class CondCodeAlias : MnemonicAlias; /// IntegerCondCodeMnemonicAlias - This multiclass defines a bunch of /// MnemonicAlias's that canonicalize the condition code in a mnemonic, for /// example "setz" -> "sete". multiclass IntegerCondCodeMnemonicAlias { def C : CondCodeAlias; // setc -> setb def Z : CondCodeAlias; // setz -> sete def NA : CondCodeAlias; // setna -> setbe def NB : CondCodeAlias; // setnb -> setae def NC : CondCodeAlias; // setnc -> setae def NG : CondCodeAlias; // setng -> setle def NL : CondCodeAlias; // setnl -> setge def NZ : CondCodeAlias; // setnz -> setne def PE : CondCodeAlias; // setpe -> setp def PO : CondCodeAlias; // setpo -> setnp def NAE : CondCodeAlias; // setnae -> setb def NBE : CondCodeAlias; // setnbe -> seta def NGE : CondCodeAlias; // setnge -> setl def NLE : CondCodeAlias; // setnle -> setg } // Aliases for set defm : IntegerCondCodeMnemonicAlias<"set", "">; // Aliases for j defm : IntegerCondCodeMnemonicAlias<"j", "">; // Aliases for cmov{w,l,q} defm : IntegerCondCodeMnemonicAlias<"cmov", "w", "att">; defm : IntegerCondCodeMnemonicAlias<"cmov", "l", "att">; defm : IntegerCondCodeMnemonicAlias<"cmov", "q", "att">; // No size suffix for intel-style asm. defm : IntegerCondCodeMnemonicAlias<"cmov", "", "intel">; //===----------------------------------------------------------------------===// // Assembler Instruction Aliases //===----------------------------------------------------------------------===// // aad/aam default to base 10 if no operand is specified. def : InstAlias<"aad", (AAD8i8 10)>, Requires<[Not64BitMode]>; def : InstAlias<"aam", (AAM8i8 10)>, Requires<[Not64BitMode]>; // Disambiguate the mem/imm form of bt-without-a-suffix as btl. // Likewise for btc/btr/bts. def : InstAlias<"bt\t{$imm, $mem|$mem, $imm}", (BT32mi8 i32mem:$mem, i32u8imm:$imm), 0, "att">; def : InstAlias<"btc\t{$imm, $mem|$mem, $imm}", (BTC32mi8 i32mem:$mem, i32u8imm:$imm), 0, "att">; def : InstAlias<"btr\t{$imm, $mem|$mem, $imm}", (BTR32mi8 i32mem:$mem, i32u8imm:$imm), 0, "att">; def : InstAlias<"bts\t{$imm, $mem|$mem, $imm}", (BTS32mi8 i32mem:$mem, i32u8imm:$imm), 0, "att">; // clr aliases. def : InstAlias<"clr{b}\t$reg", (XOR8rr GR8 :$reg, GR8 :$reg), 0>; def : InstAlias<"clr{w}\t$reg", (XOR16rr GR16:$reg, GR16:$reg), 0>; def : InstAlias<"clr{l}\t$reg", (XOR32rr GR32:$reg, GR32:$reg), 0>; def : InstAlias<"clr{q}\t$reg", (XOR64rr GR64:$reg, GR64:$reg), 0>; // lods aliases. Accept the destination being omitted because it's implicit // in the mnemonic, or the mnemonic suffix being omitted because it's implicit // in the destination. def : InstAlias<"lodsb\t$src", (LODSB srcidx8:$src), 0>; def : InstAlias<"lodsw\t$src", (LODSW srcidx16:$src), 0>; def : InstAlias<"lods{l|d}\t$src", (LODSL srcidx32:$src), 0>; def : InstAlias<"lodsq\t$src", (LODSQ srcidx64:$src), 0>, Requires<[In64BitMode]>; def : InstAlias<"lods\t{$src, %al|al, $src}", (LODSB srcidx8:$src), 0>; def : InstAlias<"lods\t{$src, %ax|ax, $src}", (LODSW srcidx16:$src), 0>; def : InstAlias<"lods\t{$src, %eax|eax, $src}", (LODSL srcidx32:$src), 0>; def : InstAlias<"lods\t{$src, %rax|rax, $src}", (LODSQ srcidx64:$src), 0>, Requires<[In64BitMode]>; def : InstAlias<"lods\t$src", (LODSB srcidx8:$src), 0, "intel">; def : InstAlias<"lods\t$src", (LODSW srcidx16:$src), 0, "intel">; def : InstAlias<"lods\t$src", (LODSL srcidx32:$src), 0, "intel">; def : InstAlias<"lods\t$src", (LODSQ srcidx64:$src), 0, "intel">, Requires<[In64BitMode]>; // stos aliases. Accept the source being omitted because it's implicit in // the mnemonic, or the mnemonic suffix being omitted because it's implicit // in the source. def : InstAlias<"stosb\t$dst", (STOSB dstidx8:$dst), 0>; def : InstAlias<"stosw\t$dst", (STOSW dstidx16:$dst), 0>; def : InstAlias<"stos{l|d}\t$dst", (STOSL dstidx32:$dst), 0>; def : InstAlias<"stosq\t$dst", (STOSQ dstidx64:$dst), 0>, Requires<[In64BitMode]>; def : InstAlias<"stos\t{%al, $dst|$dst, al}", (STOSB dstidx8:$dst), 0>; def : InstAlias<"stos\t{%ax, $dst|$dst, ax}", (STOSW dstidx16:$dst), 0>; def : InstAlias<"stos\t{%eax, $dst|$dst, eax}", (STOSL dstidx32:$dst), 0>; def : InstAlias<"stos\t{%rax, $dst|$dst, rax}", (STOSQ dstidx64:$dst), 0>, Requires<[In64BitMode]>; def : InstAlias<"stos\t$dst", (STOSB dstidx8:$dst), 0, "intel">; def : InstAlias<"stos\t$dst", (STOSW dstidx16:$dst), 0, "intel">; def : InstAlias<"stos\t$dst", (STOSL dstidx32:$dst), 0, "intel">; def : InstAlias<"stos\t$dst", (STOSQ dstidx64:$dst), 0, "intel">, Requires<[In64BitMode]>; // scas aliases. Accept the destination being omitted because it's implicit // in the mnemonic, or the mnemonic suffix being omitted because it's implicit // in the destination. def : InstAlias<"scasb\t$dst", (SCASB dstidx8:$dst), 0>; def : InstAlias<"scasw\t$dst", (SCASW dstidx16:$dst), 0>; def : InstAlias<"scas{l|d}\t$dst", (SCASL dstidx32:$dst), 0>; def : InstAlias<"scasq\t$dst", (SCASQ dstidx64:$dst), 0>, Requires<[In64BitMode]>; def : InstAlias<"scas\t{$dst, %al|al, $dst}", (SCASB dstidx8:$dst), 0>; def : InstAlias<"scas\t{$dst, %ax|ax, $dst}", (SCASW dstidx16:$dst), 0>; def : InstAlias<"scas\t{$dst, %eax|eax, $dst}", (SCASL dstidx32:$dst), 0>; def : InstAlias<"scas\t{$dst, %rax|rax, $dst}", (SCASQ dstidx64:$dst), 0>, Requires<[In64BitMode]>; def : InstAlias<"scas\t$dst", (SCASB dstidx8:$dst), 0, "intel">; def : InstAlias<"scas\t$dst", (SCASW dstidx16:$dst), 0, "intel">; def : InstAlias<"scas\t$dst", (SCASL dstidx32:$dst), 0, "intel">; def : InstAlias<"scas\t$dst", (SCASQ dstidx64:$dst), 0, "intel">, Requires<[In64BitMode]>; // cmps aliases. Mnemonic suffix being omitted because it's implicit // in the destination. def : InstAlias<"cmps\t{$dst, $src|$src, $dst}", (CMPSB dstidx8:$dst, srcidx8:$src), 0, "intel">; def : InstAlias<"cmps\t{$dst, $src|$src, $dst}", (CMPSW dstidx16:$dst, srcidx16:$src), 0, "intel">; def : InstAlias<"cmps\t{$dst, $src|$src, $dst}", (CMPSL dstidx32:$dst, srcidx32:$src), 0, "intel">; def : InstAlias<"cmps\t{$dst, $src|$src, $dst}", (CMPSQ dstidx64:$dst, srcidx64:$src), 0, "intel">, Requires<[In64BitMode]>; // movs aliases. Mnemonic suffix being omitted because it's implicit // in the destination. def : InstAlias<"movs\t{$src, $dst|$dst, $src}", (MOVSB dstidx8:$dst, srcidx8:$src), 0, "intel">; def : InstAlias<"movs\t{$src, $dst|$dst, $src}", (MOVSW dstidx16:$dst, srcidx16:$src), 0, "intel">; def : InstAlias<"movs\t{$src, $dst|$dst, $src}", (MOVSL dstidx32:$dst, srcidx32:$src), 0, "intel">; def : InstAlias<"movs\t{$src, $dst|$dst, $src}", (MOVSQ dstidx64:$dst, srcidx64:$src), 0, "intel">, Requires<[In64BitMode]>; // div and idiv aliases for explicit A register. def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8r GR8 :$src)>; def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16r GR16:$src)>; def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32r GR32:$src)>; def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64r GR64:$src)>; def : InstAlias<"div{b}\t{$src, %al|al, $src}", (DIV8m i8mem :$src)>; def : InstAlias<"div{w}\t{$src, %ax|ax, $src}", (DIV16m i16mem:$src)>; def : InstAlias<"div{l}\t{$src, %eax|eax, $src}", (DIV32m i32mem:$src)>; def : InstAlias<"div{q}\t{$src, %rax|rax, $src}", (DIV64m i64mem:$src)>; def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8r GR8 :$src)>; def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16r GR16:$src)>; def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32r GR32:$src)>; def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64r GR64:$src)>; def : InstAlias<"idiv{b}\t{$src, %al|al, $src}", (IDIV8m i8mem :$src)>; def : InstAlias<"idiv{w}\t{$src, %ax|ax, $src}", (IDIV16m i16mem:$src)>; def : InstAlias<"idiv{l}\t{$src, %eax|eax, $src}", (IDIV32m i32mem:$src)>; def : InstAlias<"idiv{q}\t{$src, %rax|rax, $src}", (IDIV64m i64mem:$src)>; // Various unary fpstack operations default to operating on ST1. // For example, "fxch" -> "fxch %st(1)" def : InstAlias<"faddp", (ADD_FPrST0 ST1), 0>; def: InstAlias<"fadd", (ADD_FPrST0 ST1), 0>; def : InstAlias<"fsub{|r}p", (SUBR_FPrST0 ST1), 0>; def : InstAlias<"fsub{r|}p", (SUB_FPrST0 ST1), 0>; def : InstAlias<"fmul", (MUL_FPrST0 ST1), 0>; def : InstAlias<"fmulp", (MUL_FPrST0 ST1), 0>; def : InstAlias<"fdiv{|r}p", (DIVR_FPrST0 ST1), 0>; def : InstAlias<"fdiv{r|}p", (DIV_FPrST0 ST1), 0>; def : InstAlias<"fxch", (XCH_F ST1), 0>; def : InstAlias<"fcom", (COM_FST0r ST1), 0>; def : InstAlias<"fcomp", (COMP_FST0r ST1), 0>; def : InstAlias<"fcomi", (COM_FIr ST1), 0>; def : InstAlias<"fcompi", (COM_FIPr ST1), 0>; def : InstAlias<"fucom", (UCOM_Fr ST1), 0>; def : InstAlias<"fucomp", (UCOM_FPr ST1), 0>; def : InstAlias<"fucomi", (UCOM_FIr ST1), 0>; def : InstAlias<"fucompi", (UCOM_FIPr ST1), 0>; // Handle fmul/fadd/fsub/fdiv instructions with explicitly written st(0) op. // For example, "fadd %st(4), %st(0)" -> "fadd %st(4)". We also disambiguate // instructions like "fadd %st(0), %st(0)" as "fadd %st(0)" for consistency with // gas. multiclass FpUnaryAlias { def : InstAlias; def : InstAlias; } defm : FpUnaryAlias<"fadd", ADD_FST0r, 0>; defm : FpUnaryAlias<"faddp", ADD_FPrST0, 0>; defm : FpUnaryAlias<"fsub", SUB_FST0r, 0>; defm : FpUnaryAlias<"fsub{|r}p", SUBR_FPrST0, 0>; defm : FpUnaryAlias<"fsubr", SUBR_FST0r, 0>; defm : FpUnaryAlias<"fsub{r|}p", SUB_FPrST0, 0>; defm : FpUnaryAlias<"fmul", MUL_FST0r, 0>; defm : FpUnaryAlias<"fmulp", MUL_FPrST0, 0>; defm : FpUnaryAlias<"fdiv", DIV_FST0r, 0>; defm : FpUnaryAlias<"fdiv{|r}p", DIVR_FPrST0, 0>; defm : FpUnaryAlias<"fdivr", DIVR_FST0r, 0>; defm : FpUnaryAlias<"fdiv{r|}p", DIV_FPrST0, 0>; defm : FpUnaryAlias<"fcomi", COM_FIr, 0>; defm : FpUnaryAlias<"fucomi", UCOM_FIr, 0>; defm : FpUnaryAlias<"fcompi", COM_FIPr, 0>; defm : FpUnaryAlias<"fucompi", UCOM_FIPr, 0>; // Handle "f{mulp,addp} $op, %st(0)" the same as "f{mulp,addp} $op", since they // commute. We also allow fdiv[r]p/fsubrp even though they don't commute, // solely because gas supports it. def : InstAlias<"faddp\t{$op, %st|st, $op}", (ADD_FPrST0 RSTi:$op), 0>; def : InstAlias<"fmulp\t{$op, %st|st, $op}", (MUL_FPrST0 RSTi:$op), 0>; def : InstAlias<"fsub{|r}p\t{$op, %st|st, $op}", (SUBR_FPrST0 RSTi:$op), 0>; def : InstAlias<"fsub{r|}p\t{$op, %st|st, $op}", (SUB_FPrST0 RSTi:$op), 0>; def : InstAlias<"fdiv{|r}p\t{$op, %st|st, $op}", (DIVR_FPrST0 RSTi:$op), 0>; def : InstAlias<"fdiv{r|}p\t{$op, %st|st, $op}", (DIV_FPrST0 RSTi:$op), 0>; def : InstAlias<"fnstsw" , (FNSTSW16r), 0>; // lcall and ljmp aliases. This seems to be an odd mapping in 64-bit mode, but // this is compatible with what GAS does. def : InstAlias<"lcall\t$seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg), 0>, Requires<[In32BitMode]>; def : InstAlias<"ljmp\t$seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg), 0>, Requires<[In32BitMode]>; def : InstAlias<"lcall\t{*}$dst", (FARCALL32m opaquemem:$dst), 0>, Requires<[Not16BitMode]>; def : InstAlias<"ljmp\t{*}$dst", (FARJMP32m opaquemem:$dst), 0>, Requires<[Not16BitMode]>; def : InstAlias<"lcall\t$seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg), 0>, Requires<[In16BitMode]>; def : InstAlias<"ljmp\t$seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg), 0>, Requires<[In16BitMode]>; def : InstAlias<"lcall\t{*}$dst", (FARCALL16m opaquemem:$dst), 0>, Requires<[In16BitMode]>; def : InstAlias<"ljmp\t{*}$dst", (FARJMP16m opaquemem:$dst), 0>, Requires<[In16BitMode]>; def : InstAlias<"jmp\t{*}$dst", (JMP64m i64mem:$dst), 0, "att">, Requires<[In64BitMode]>; def : InstAlias<"jmp\t{*}$dst", (JMP32m i32mem:$dst), 0, "att">, Requires<[In32BitMode]>; def : InstAlias<"jmp\t{*}$dst", (JMP16m i16mem:$dst), 0, "att">, Requires<[In16BitMode]>; // "imul , B" is an alias for "imul , B, B". def : InstAlias<"imul{w}\t{$imm, $r|$r, $imm}", (IMUL16rri GR16:$r, GR16:$r, i16imm:$imm), 0>; def : InstAlias<"imul{w}\t{$imm, $r|$r, $imm}", (IMUL16rri8 GR16:$r, GR16:$r, i16i8imm:$imm), 0>; def : InstAlias<"imul{l}\t{$imm, $r|$r, $imm}", (IMUL32rri GR32:$r, GR32:$r, i32imm:$imm), 0>; def : InstAlias<"imul{l}\t{$imm, $r|$r, $imm}", (IMUL32rri8 GR32:$r, GR32:$r, i32i8imm:$imm), 0>; def : InstAlias<"imul{q}\t{$imm, $r|$r, $imm}", (IMUL64rri32 GR64:$r, GR64:$r, i64i32imm:$imm), 0>; def : InstAlias<"imul{q}\t{$imm, $r|$r, $imm}", (IMUL64rri8 GR64:$r, GR64:$r, i64i8imm:$imm), 0>; // ins aliases. Accept the mnemonic suffix being omitted because it's implicit // in the destination. def : InstAlias<"ins\t{%dx, $dst|$dst, dx}", (INSB dstidx8:$dst), 0, "intel">; def : InstAlias<"ins\t{%dx, $dst|$dst, dx}", (INSW dstidx16:$dst), 0, "intel">; def : InstAlias<"ins\t{%dx, $dst|$dst, dx}", (INSL dstidx32:$dst), 0, "intel">; // outs aliases. Accept the mnemonic suffix being omitted because it's implicit // in the source. def : InstAlias<"outs\t{$src, %dx|dx, $src}", (OUTSB srcidx8:$src), 0, "intel">; def : InstAlias<"outs\t{$src, %dx|dx, $src}", (OUTSW srcidx16:$src), 0, "intel">; def : InstAlias<"outs\t{$src, %dx|dx, $src}", (OUTSL srcidx32:$src), 0, "intel">; // inb %dx -> inb %al, %dx def : InstAlias<"inb\t{%dx|dx}", (IN8rr), 0>; def : InstAlias<"inw\t{%dx|dx}", (IN16rr), 0>; def : InstAlias<"inl\t{%dx|dx}", (IN32rr), 0>; def : InstAlias<"inb\t$port", (IN8ri u8imm:$port), 0>; def : InstAlias<"inw\t$port", (IN16ri u8imm:$port), 0>; def : InstAlias<"inl\t$port", (IN32ri u8imm:$port), 0>; // jmp and call aliases for lcall and ljmp. jmp $42,$5 -> ljmp def : InstAlias<"call\t$seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg)>, Requires<[In16BitMode]>; def : InstAlias<"jmp\t$seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg)>, Requires<[In16BitMode]>; def : InstAlias<"call\t$seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>, Requires<[In32BitMode]>; def : InstAlias<"jmp\t$seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>, Requires<[In32BitMode]>; def : InstAlias<"callw\t$seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg)>, Requires<[Not64BitMode]>; def : InstAlias<"jmpw\t$seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg)>, Requires<[Not64BitMode]>; def : InstAlias<"calll\t$seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>, Requires<[Not64BitMode]>; def : InstAlias<"jmpl\t$seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>, Requires<[Not64BitMode]>; // Match 'movq , ' as an alias for movabsq. def : InstAlias<"mov{q}\t{$imm, $reg|$reg, $imm}", (MOV64ri GR64:$reg, i64imm:$imm), 0>; // Match 'movd GR64, MMX' as an alias for movq to be compatible with gas, // which supports this due to an old AMD documentation bug when 64-bit mode was // created. def : InstAlias<"movd\t{$src, $dst|$dst, $src}", (MMX_MOVD64to64rr VR64:$dst, GR64:$src), 0>; def : InstAlias<"movd\t{$src, $dst|$dst, $src}", (MMX_MOVD64from64rr GR64:$dst, VR64:$src), 0>; // movsx aliases def : InstAlias<"movsx\t{$src, $dst|$dst, $src}", (MOVSX16rr8 GR16:$dst, GR8:$src), 0, "att">; def : InstAlias<"movsx\t{$src, $dst|$dst, $src}", (MOVSX16rm8 GR16:$dst, i8mem:$src), 0, "att">; def : InstAlias<"movsx\t{$src, $dst|$dst, $src}", (MOVSX32rr8 GR32:$dst, GR8:$src), 0, "att">; def : InstAlias<"movsx\t{$src, $dst|$dst, $src}", (MOVSX32rr16 GR32:$dst, GR16:$src), 0, "att">; def : InstAlias<"movsx\t{$src, $dst|$dst, $src}", (MOVSX64rr8 GR64:$dst, GR8:$src), 0, "att">; def : InstAlias<"movsx\t{$src, $dst|$dst, $src}", (MOVSX64rr16 GR64:$dst, GR16:$src), 0, "att">; def : InstAlias<"movsx\t{$src, $dst|$dst, $src}", (MOVSX64rr32 GR64:$dst, GR32:$src), 0, "att">; // movzx aliases def : InstAlias<"movzx\t{$src, $dst|$dst, $src}", (MOVZX16rr8 GR16:$dst, GR8:$src), 0, "att">; def : InstAlias<"movzx\t{$src, $dst|$dst, $src}", (MOVZX16rm8 GR16:$dst, i8mem:$src), 0, "att">; def : InstAlias<"movzx\t{$src, $dst|$dst, $src}", (MOVZX32rr8 GR32:$dst, GR8:$src), 0, "att">; def : InstAlias<"movzx\t{$src, $dst|$dst, $src}", (MOVZX32rr16 GR32:$dst, GR16:$src), 0, "att">; def : InstAlias<"movzx\t{$src, $dst|$dst, $src}", (MOVZX64rr8 GR64:$dst, GR8:$src), 0, "att">; def : InstAlias<"movzx\t{$src, $dst|$dst, $src}", (MOVZX64rr16 GR64:$dst, GR16:$src), 0, "att">; // Note: No GR32->GR64 movzx form. // outb %dx -> outb %al, %dx def : InstAlias<"outb\t{%dx|dx}", (OUT8rr), 0>; def : InstAlias<"outw\t{%dx|dx}", (OUT16rr), 0>; def : InstAlias<"outl\t{%dx|dx}", (OUT32rr), 0>; def : InstAlias<"outb\t$port", (OUT8ir u8imm:$port), 0>; def : InstAlias<"outw\t$port", (OUT16ir u8imm:$port), 0>; def : InstAlias<"outl\t$port", (OUT32ir u8imm:$port), 0>; // 'sldt ' can be encoded with either sldtw or sldtq with the same // effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity // errors, since its encoding is the most compact. def : InstAlias<"sldt $mem", (SLDT16m i16mem:$mem), 0>; // shld/shrd op,op -> shld op, op, CL def : InstAlias<"shld{w}\t{$r2, $r1|$r1, $r2}", (SHLD16rrCL GR16:$r1, GR16:$r2), 0>; def : InstAlias<"shld{l}\t{$r2, $r1|$r1, $r2}", (SHLD32rrCL GR32:$r1, GR32:$r2), 0>; def : InstAlias<"shld{q}\t{$r2, $r1|$r1, $r2}", (SHLD64rrCL GR64:$r1, GR64:$r2), 0>; def : InstAlias<"shrd{w}\t{$r2, $r1|$r1, $r2}", (SHRD16rrCL GR16:$r1, GR16:$r2), 0>; def : InstAlias<"shrd{l}\t{$r2, $r1|$r1, $r2}", (SHRD32rrCL GR32:$r1, GR32:$r2), 0>; def : InstAlias<"shrd{q}\t{$r2, $r1|$r1, $r2}", (SHRD64rrCL GR64:$r1, GR64:$r2), 0>; def : InstAlias<"shld{w}\t{$reg, $mem|$mem, $reg}", (SHLD16mrCL i16mem:$mem, GR16:$reg), 0>; def : InstAlias<"shld{l}\t{$reg, $mem|$mem, $reg}", (SHLD32mrCL i32mem:$mem, GR32:$reg), 0>; def : InstAlias<"shld{q}\t{$reg, $mem|$mem, $reg}", (SHLD64mrCL i64mem:$mem, GR64:$reg), 0>; def : InstAlias<"shrd{w}\t{$reg, $mem|$mem, $reg}", (SHRD16mrCL i16mem:$mem, GR16:$reg), 0>; def : InstAlias<"shrd{l}\t{$reg, $mem|$mem, $reg}", (SHRD32mrCL i32mem:$mem, GR32:$reg), 0>; def : InstAlias<"shrd{q}\t{$reg, $mem|$mem, $reg}", (SHRD64mrCL i64mem:$mem, GR64:$reg), 0>; /* FIXME: This is disabled because the asm matcher is currently incapable of * matching a fixed immediate like $1. // "shl X, $1" is an alias for "shl X". multiclass ShiftRotateByOneAlias { def : InstAlias(!strconcat(Opc, "8r1")) GR8:$op)>; def : InstAlias(!strconcat(Opc, "16r1")) GR16:$op)>; def : InstAlias(!strconcat(Opc, "32r1")) GR32:$op)>; def : InstAlias(!strconcat(Opc, "64r1")) GR64:$op)>; def : InstAlias(!strconcat(Opc, "8m1")) i8mem:$op)>; def : InstAlias(!strconcat(Opc, "16m1")) i16mem:$op)>; def : InstAlias(!strconcat(Opc, "32m1")) i32mem:$op)>; def : InstAlias(!strconcat(Opc, "64m1")) i64mem:$op)>; } defm : ShiftRotateByOneAlias<"rcl", "RCL">; defm : ShiftRotateByOneAlias<"rcr", "RCR">; defm : ShiftRotateByOneAlias<"rol", "ROL">; defm : ShiftRotateByOneAlias<"ror", "ROR">; FIXME */ // test: We accept "testX , " and "testX , " as synonyms. def : InstAlias<"test{b}\t{$mem, $val|$val, $mem}", (TEST8mr i8mem :$mem, GR8 :$val), 0>; def : InstAlias<"test{w}\t{$mem, $val|$val, $mem}", (TEST16mr i16mem:$mem, GR16:$val), 0>; def : InstAlias<"test{l}\t{$mem, $val|$val, $mem}", (TEST32mr i32mem:$mem, GR32:$val), 0>; def : InstAlias<"test{q}\t{$mem, $val|$val, $mem}", (TEST64mr i64mem:$mem, GR64:$val), 0>; // xchg: We accept "xchgX , " and "xchgX , " as synonyms. def : InstAlias<"xchg{b}\t{$mem, $val|$val, $mem}", (XCHG8rm GR8 :$val, i8mem :$mem), 0>; def : InstAlias<"xchg{w}\t{$mem, $val|$val, $mem}", (XCHG16rm GR16:$val, i16mem:$mem), 0>; def : InstAlias<"xchg{l}\t{$mem, $val|$val, $mem}", (XCHG32rm GR32:$val, i32mem:$mem), 0>; def : InstAlias<"xchg{q}\t{$mem, $val|$val, $mem}", (XCHG64rm GR64:$val, i64mem:$mem), 0>; // xchg: We accept "xchgX , %eax" and "xchgX %eax, " as synonyms. def : InstAlias<"xchg{w}\t{%ax, $src|$src, ax}", (XCHG16ar GR16:$src), 0>; def : InstAlias<"xchg{l}\t{%eax, $src|$src, eax}", (XCHG32ar GR32:$src), 0>; def : InstAlias<"xchg{q}\t{%rax, $src|$src, rax}", (XCHG64ar GR64:$src), 0>; // In 64-bit mode, xchg %eax, %eax can't be encoded with the 0x90 opcode we // would get by default because it's defined as NOP. But xchg %eax, %eax implies // implicit zeroing of the upper 32 bits. So alias to the longer encoding. def : InstAlias<"xchg{l}\t{%eax, %eax|eax, eax}", (XCHG32rr EAX, EAX), 0>, Requires<[In64BitMode]>; // xchg %rax, %rax is a nop in x86-64 and can be encoded as such. Without this // we emit an unneeded REX.w prefix. def : InstAlias<"xchg{q}\t{%rax, %rax|rax, rax}", (NOOP), 0>; // These aliases exist to get the parser to prioritize matching 8-bit // immediate encodings over matching the implicit ax/eax/rax encodings. By // explicitly mentioning the A register here, these entries will be ordered // first due to the more explicit immediate type. def : InstAlias<"adc{w}\t{$imm, %ax|ax, $imm}", (ADC16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"add{w}\t{$imm, %ax|ax, $imm}", (ADD16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"and{w}\t{$imm, %ax|ax, $imm}", (AND16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"cmp{w}\t{$imm, %ax|ax, $imm}", (CMP16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"or{w}\t{$imm, %ax|ax, $imm}", (OR16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"sbb{w}\t{$imm, %ax|ax, $imm}", (SBB16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"sub{w}\t{$imm, %ax|ax, $imm}", (SUB16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"xor{w}\t{$imm, %ax|ax, $imm}", (XOR16ri8 AX, i16i8imm:$imm), 0>; def : InstAlias<"adc{l}\t{$imm, %eax|eax, $imm}", (ADC32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"add{l}\t{$imm, %eax|eax, $imm}", (ADD32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"and{l}\t{$imm, %eax|eax, $imm}", (AND32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"cmp{l}\t{$imm, %eax|eax, $imm}", (CMP32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"or{l}\t{$imm, %eax|eax, $imm}", (OR32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"sbb{l}\t{$imm, %eax|eax, $imm}", (SBB32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"sub{l}\t{$imm, %eax|eax, $imm}", (SUB32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"xor{l}\t{$imm, %eax|eax, $imm}", (XOR32ri8 EAX, i32i8imm:$imm), 0>; def : InstAlias<"adc{q}\t{$imm, %rax|rax, $imm}", (ADC64ri8 RAX, i64i8imm:$imm), 0>; def : InstAlias<"add{q}\t{$imm, %rax|rax, $imm}", (ADD64ri8 RAX, i64i8imm:$imm), 0>; def : InstAlias<"and{q}\t{$imm, %rax|rax, $imm}", (AND64ri8 RAX, i64i8imm:$imm), 0>; def : InstAlias<"cmp{q}\t{$imm, %rax|rax, $imm}", (CMP64ri8 RAX, i64i8imm:$imm), 0>; def : InstAlias<"or{q}\t{$imm, %rax|rax, $imm}", (OR64ri8 RAX, i64i8imm:$imm), 0>; def : InstAlias<"sbb{q}\t{$imm, %rax|rax, $imm}", (SBB64ri8 RAX, i64i8imm:$imm), 0>; def : InstAlias<"sub{q}\t{$imm, %rax|rax, $imm}", (SUB64ri8 RAX, i64i8imm:$imm), 0>; def : InstAlias<"xor{q}\t{$imm, %rax|rax, $imm}", (XOR64ri8 RAX, i64i8imm:$imm), 0>;