//===- LLVMDialect.cpp - LLVM IR Ops and Dialect registration -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the types and operation details for the LLVM IR dialect in // MLIR, and the LLVM IR dialect. It also registers the dialect. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/LLVMIR/LLVMTypes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/FunctionImplementation.h" #include "mlir/IR/MLIRContext.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/AsmParser/Parser.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/SourceMgr.h" using namespace mlir; using namespace mlir::LLVM; static constexpr const char kVolatileAttrName[] = "volatile_"; static constexpr const char kNonTemporalAttrName[] = "nontemporal"; #include "mlir/Dialect/LLVMIR/LLVMOpsEnums.cpp.inc" //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::CmpOp. //===----------------------------------------------------------------------===// static void printICmpOp(OpAsmPrinter &p, ICmpOp &op) { p << op.getOperationName() << " \"" << stringifyICmpPredicate(op.predicate()) << "\" " << op.getOperand(0) << ", " << op.getOperand(1); p.printOptionalAttrDict(op.getAttrs(), {"predicate"}); p << " : " << op.lhs().getType(); } static void printFCmpOp(OpAsmPrinter &p, FCmpOp &op) { p << op.getOperationName() << " \"" << stringifyFCmpPredicate(op.predicate()) << "\" " << op.getOperand(0) << ", " << op.getOperand(1); p.printOptionalAttrDict(op.getAttrs(), {"predicate"}); p << " : " << op.lhs().getType(); } // ::= `llvm.icmp` string-literal ssa-use `,` ssa-use // attribute-dict? `:` type // ::= `llvm.fcmp` string-literal ssa-use `,` ssa-use // attribute-dict? `:` type template static ParseResult parseCmpOp(OpAsmParser &parser, OperationState &result) { Builder &builder = parser.getBuilder(); StringAttr predicateAttr; OpAsmParser::OperandType lhs, rhs; Type type; llvm::SMLoc predicateLoc, trailingTypeLoc; if (parser.getCurrentLocation(&predicateLoc) || parser.parseAttribute(predicateAttr, "predicate", result.attributes) || parser.parseOperand(lhs) || parser.parseComma() || parser.parseOperand(rhs) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) || parser.resolveOperand(lhs, type, result.operands) || parser.resolveOperand(rhs, type, result.operands)) return failure(); // Replace the string attribute `predicate` with an integer attribute. int64_t predicateValue = 0; if (std::is_same()) { Optional predicate = symbolizeICmpPredicate(predicateAttr.getValue()); if (!predicate) return parser.emitError(predicateLoc) << "'" << predicateAttr.getValue() << "' is an incorrect value of the 'predicate' attribute"; predicateValue = static_cast(predicate.getValue()); } else { Optional predicate = symbolizeFCmpPredicate(predicateAttr.getValue()); if (!predicate) return parser.emitError(predicateLoc) << "'" << predicateAttr.getValue() << "' is an incorrect value of the 'predicate' attribute"; predicateValue = static_cast(predicate.getValue()); } result.attributes.set("predicate", parser.getBuilder().getI64IntegerAttr(predicateValue)); // The result type is either i1 or a vector type if the inputs are // vectors. auto resultType = LLVMType::getInt1Ty(builder.getContext()); auto argType = type.dyn_cast(); if (!argType) return parser.emitError(trailingTypeLoc, "expected LLVM IR dialect type"); if (argType.isVectorTy()) resultType = LLVMType::getVectorTy(resultType, argType.getVectorNumElements()); result.addTypes({resultType}); return success(); } //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::AllocaOp. //===----------------------------------------------------------------------===// static void printAllocaOp(OpAsmPrinter &p, AllocaOp &op) { auto elemTy = op.getType().cast().getPointerElementTy(); auto funcTy = FunctionType::get({op.arraySize().getType()}, {op.getType()}, op.getContext()); p << op.getOperationName() << ' ' << op.arraySize() << " x " << elemTy; if (op.alignment().hasValue() && *op.alignment() != 0) p.printOptionalAttrDict(op.getAttrs()); else p.printOptionalAttrDict(op.getAttrs(), {"alignment"}); p << " : " << funcTy; } // ::= `llvm.alloca` ssa-use `x` type attribute-dict? // `:` type `,` type static ParseResult parseAllocaOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType arraySize; Type type, elemType; llvm::SMLoc trailingTypeLoc; if (parser.parseOperand(arraySize) || parser.parseKeyword("x") || parser.parseType(elemType) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type)) return failure(); Optional alignmentAttr = result.attributes.getNamed("alignment"); if (alignmentAttr.hasValue()) { auto alignmentInt = alignmentAttr.getValue().second.dyn_cast(); if (!alignmentInt) return parser.emitError(parser.getNameLoc(), "expected integer alignment"); if (alignmentInt.getValue().isNullValue()) result.attributes.erase("alignment"); } // Extract the result type from the trailing function type. auto funcType = type.dyn_cast(); if (!funcType || funcType.getNumInputs() != 1 || funcType.getNumResults() != 1) return parser.emitError( trailingTypeLoc, "expected trailing function type with one argument and one result"); if (parser.resolveOperand(arraySize, funcType.getInput(0), result.operands)) return failure(); result.addTypes({funcType.getResult(0)}); return success(); } //===----------------------------------------------------------------------===// // LLVM::BrOp //===----------------------------------------------------------------------===// Optional BrOp::getMutableSuccessorOperands(unsigned index) { assert(index == 0 && "invalid successor index"); return destOperandsMutable(); } //===----------------------------------------------------------------------===// // LLVM::CondBrOp //===----------------------------------------------------------------------===// Optional CondBrOp::getMutableSuccessorOperands(unsigned index) { assert(index < getNumSuccessors() && "invalid successor index"); return index == 0 ? trueDestOperandsMutable() : falseDestOperandsMutable(); } //===----------------------------------------------------------------------===// // Builder, printer and parser for for LLVM::LoadOp. //===----------------------------------------------------------------------===// void LoadOp::build(OpBuilder &builder, OperationState &result, Type t, Value addr, unsigned alignment, bool isVolatile, bool isNonTemporal) { result.addOperands(addr); result.addTypes(t); if (isVolatile) result.addAttribute(kVolatileAttrName, builder.getUnitAttr()); if (isNonTemporal) result.addAttribute(kNonTemporalAttrName, builder.getUnitAttr()); if (alignment != 0) result.addAttribute("alignment", builder.getI64IntegerAttr(alignment)); } static void printLoadOp(OpAsmPrinter &p, LoadOp &op) { p << op.getOperationName() << ' '; if (op.volatile_()) p << "volatile "; p << op.addr(); p.printOptionalAttrDict(op.getAttrs(), {kVolatileAttrName}); p << " : " << op.addr().getType(); } // Extract the pointee type from the LLVM pointer type wrapped in MLIR. Return // the resulting type wrapped in MLIR, or nullptr on error. static Type getLoadStoreElementType(OpAsmParser &parser, Type type, llvm::SMLoc trailingTypeLoc) { auto llvmTy = type.dyn_cast(); if (!llvmTy) return parser.emitError(trailingTypeLoc, "expected LLVM IR dialect type"), nullptr; if (!llvmTy.isPointerTy()) return parser.emitError(trailingTypeLoc, "expected LLVM pointer type"), nullptr; return llvmTy.getPointerElementTy(); } // ::= `llvm.load` `volatile` ssa-use attribute-dict? `:` type static ParseResult parseLoadOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType addr; Type type; llvm::SMLoc trailingTypeLoc; if (succeeded(parser.parseOptionalKeyword("volatile"))) result.addAttribute(kVolatileAttrName, parser.getBuilder().getUnitAttr()); if (parser.parseOperand(addr) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) || parser.resolveOperand(addr, type, result.operands)) return failure(); Type elemTy = getLoadStoreElementType(parser, type, trailingTypeLoc); result.addTypes(elemTy); return success(); } //===----------------------------------------------------------------------===// // Builder, printer and parser for LLVM::StoreOp. //===----------------------------------------------------------------------===// void StoreOp::build(OpBuilder &builder, OperationState &result, Value value, Value addr, unsigned alignment, bool isVolatile, bool isNonTemporal) { result.addOperands({value, addr}); result.addTypes({}); if (isVolatile) result.addAttribute(kVolatileAttrName, builder.getUnitAttr()); if (isNonTemporal) result.addAttribute(kNonTemporalAttrName, builder.getUnitAttr()); if (alignment != 0) result.addAttribute("alignment", builder.getI64IntegerAttr(alignment)); } static void printStoreOp(OpAsmPrinter &p, StoreOp &op) { p << op.getOperationName() << ' '; if (op.volatile_()) p << "volatile "; p << op.value() << ", " << op.addr(); p.printOptionalAttrDict(op.getAttrs(), {kVolatileAttrName}); p << " : " << op.addr().getType(); } // ::= `llvm.store` `volatile` ssa-use `,` ssa-use // attribute-dict? `:` type static ParseResult parseStoreOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType addr, value; Type type; llvm::SMLoc trailingTypeLoc; if (succeeded(parser.parseOptionalKeyword("volatile"))) result.addAttribute(kVolatileAttrName, parser.getBuilder().getUnitAttr()); if (parser.parseOperand(value) || parser.parseComma() || parser.parseOperand(addr) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type)) return failure(); Type elemTy = getLoadStoreElementType(parser, type, trailingTypeLoc); if (!elemTy) return failure(); if (parser.resolveOperand(value, elemTy, result.operands) || parser.resolveOperand(addr, type, result.operands)) return failure(); return success(); } ///===---------------------------------------------------------------------===// /// LLVM::InvokeOp ///===---------------------------------------------------------------------===// Optional InvokeOp::getMutableSuccessorOperands(unsigned index) { assert(index < getNumSuccessors() && "invalid successor index"); return index == 0 ? normalDestOperandsMutable() : unwindDestOperandsMutable(); } static LogicalResult verify(InvokeOp op) { if (op.getNumResults() > 1) return op.emitOpError("must have 0 or 1 result"); Block *unwindDest = op.unwindDest(); if (unwindDest->empty()) return op.emitError( "must have at least one operation in unwind destination"); // In unwind destination, first operation must be LandingpadOp if (!isa(unwindDest->front())) return op.emitError("first operation in unwind destination should be a " "llvm.landingpad operation"); return success(); } static void printInvokeOp(OpAsmPrinter &p, InvokeOp op) { auto callee = op.callee(); bool isDirect = callee.hasValue(); p << op.getOperationName() << ' '; // Either function name or pointer if (isDirect) p.printSymbolName(callee.getValue()); else p << op.getOperand(0); p << '(' << op.getOperands().drop_front(isDirect ? 0 : 1) << ')'; p << " to "; p.printSuccessorAndUseList(op.normalDest(), op.normalDestOperands()); p << " unwind "; p.printSuccessorAndUseList(op.unwindDest(), op.unwindDestOperands()); p.printOptionalAttrDict(op.getAttrs(), {InvokeOp::getOperandSegmentSizeAttr(), "callee"}); p << " : "; p.printFunctionalType( llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1), op.getResultTypes()); } /// ::= `llvm.invoke` (function-id | ssa-use) `(` ssa-use-list `)` /// `to` bb-id (`[` ssa-use-and-type-list `]`)? /// `unwind` bb-id (`[` ssa-use-and-type-list `]`)? /// attribute-dict? `:` function-type static ParseResult parseInvokeOp(OpAsmParser &parser, OperationState &result) { SmallVector operands; FunctionType funcType; SymbolRefAttr funcAttr; llvm::SMLoc trailingTypeLoc; Block *normalDest, *unwindDest; SmallVector normalOperands, unwindOperands; Builder &builder = parser.getBuilder(); // Parse an operand list that will, in practice, contain 0 or 1 operand. In // case of an indirect call, there will be 1 operand before `(`. In case of a // direct call, there will be no operands and the parser will stop at the // function identifier without complaining. if (parser.parseOperandList(operands)) return failure(); bool isDirect = operands.empty(); // Optionally parse a function identifier. if (isDirect && parser.parseAttribute(funcAttr, "callee", result.attributes)) return failure(); if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) || parser.parseKeyword("to") || parser.parseSuccessorAndUseList(normalDest, normalOperands) || parser.parseKeyword("unwind") || parser.parseSuccessorAndUseList(unwindDest, unwindOperands) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(funcType)) return failure(); if (isDirect) { // Make sure types match. if (parser.resolveOperands(operands, funcType.getInputs(), parser.getNameLoc(), result.operands)) return failure(); result.addTypes(funcType.getResults()); } else { // Construct the LLVM IR Dialect function type that the first operand // should match. if (funcType.getNumResults() > 1) return parser.emitError(trailingTypeLoc, "expected function with 0 or 1 result"); LLVM::LLVMType llvmResultType; if (funcType.getNumResults() == 0) { llvmResultType = LLVM::LLVMType::getVoidTy(builder.getContext()); } else { llvmResultType = funcType.getResult(0).dyn_cast(); if (!llvmResultType) return parser.emitError(trailingTypeLoc, "expected result to have LLVM type"); } SmallVector argTypes; argTypes.reserve(funcType.getNumInputs()); for (Type ty : funcType.getInputs()) { if (auto argType = ty.dyn_cast()) argTypes.push_back(argType); else return parser.emitError(trailingTypeLoc, "expected LLVM types as inputs"); } auto llvmFuncType = LLVM::LLVMType::getFunctionTy(llvmResultType, argTypes, /*isVarArg=*/false); auto wrappedFuncType = llvmFuncType.getPointerTo(); auto funcArguments = llvm::makeArrayRef(operands).drop_front(); // Make sure that the first operand (indirect callee) matches the wrapped // LLVM IR function type, and that the types of the other call operands // match the types of the function arguments. if (parser.resolveOperand(operands[0], wrappedFuncType, result.operands) || parser.resolveOperands(funcArguments, funcType.getInputs(), parser.getNameLoc(), result.operands)) return failure(); result.addTypes(llvmResultType); } result.addSuccessors({normalDest, unwindDest}); result.addOperands(normalOperands); result.addOperands(unwindOperands); result.addAttribute( InvokeOp::getOperandSegmentSizeAttr(), builder.getI32VectorAttr({static_cast(operands.size()), static_cast(normalOperands.size()), static_cast(unwindOperands.size())})); return success(); } ///===----------------------------------------------------------------------===// /// Verifying/Printing/Parsing for LLVM::LandingpadOp. ///===----------------------------------------------------------------------===// static LogicalResult verify(LandingpadOp op) { Value value; if (LLVMFuncOp func = op->getParentOfType()) { if (!func.personality().hasValue()) return op.emitError( "llvm.landingpad needs to be in a function with a personality"); } if (!op.cleanup() && op.getOperands().empty()) return op.emitError("landingpad instruction expects at least one clause or " "cleanup attribute"); for (unsigned idx = 0, ie = op.getNumOperands(); idx < ie; idx++) { value = op.getOperand(idx); bool isFilter = value.getType().cast().isArrayTy(); if (isFilter) { // FIXME: Verify filter clauses when arrays are appropriately handled } else { // catch - global addresses only. // Bitcast ops should have global addresses as their args. if (auto bcOp = value.getDefiningOp()) { if (auto addrOp = bcOp.arg().getDefiningOp()) continue; return op.emitError("constant clauses expected") .attachNote(bcOp.getLoc()) << "global addresses expected as operand to " "bitcast used in clauses for landingpad"; } // NullOp and AddressOfOp allowed if (value.getDefiningOp()) continue; if (value.getDefiningOp()) continue; return op.emitError("clause #") << idx << " is not a known constant - null, addressof, bitcast"; } } return success(); } static void printLandingpadOp(OpAsmPrinter &p, LandingpadOp &op) { p << op.getOperationName() << (op.cleanup() ? " cleanup " : " "); // Clauses for (auto value : op.getOperands()) { // Similar to llvm - if clause is an array type then it is filter // clause else catch clause bool isArrayTy = value.getType().cast().isArrayTy(); p << '(' << (isArrayTy ? "filter " : "catch ") << value << " : " << value.getType() << ") "; } p.printOptionalAttrDict(op.getAttrs(), {"cleanup"}); p << ": " << op.getType(); } /// ::= `llvm.landingpad` `cleanup`? /// ((`catch` | `filter`) operand-type ssa-use)* attribute-dict? static ParseResult parseLandingpadOp(OpAsmParser &parser, OperationState &result) { // Check for cleanup if (succeeded(parser.parseOptionalKeyword("cleanup"))) result.addAttribute("cleanup", parser.getBuilder().getUnitAttr()); // Parse clauses with types while (succeeded(parser.parseOptionalLParen()) && (succeeded(parser.parseOptionalKeyword("filter")) || succeeded(parser.parseOptionalKeyword("catch")))) { OpAsmParser::OperandType operand; Type ty; if (parser.parseOperand(operand) || parser.parseColon() || parser.parseType(ty) || parser.resolveOperand(operand, ty, result.operands) || parser.parseRParen()) return failure(); } Type type; if (parser.parseColon() || parser.parseType(type)) return failure(); result.addTypes(type); return success(); } //===----------------------------------------------------------------------===// // Verifying/Printing/parsing for LLVM::CallOp. //===----------------------------------------------------------------------===// static LogicalResult verify(CallOp &op) { if (op.getNumResults() > 1) return op.emitOpError("must have 0 or 1 result"); // Type for the callee, we'll get it differently depending if it is a direct // or indirect call. LLVMType fnType; bool isIndirect = false; // If this is an indirect call, the callee attribute is missing. Optional calleeName = op.callee(); if (!calleeName) { isIndirect = true; if (!op.getNumOperands()) return op.emitOpError( "must have either a `callee` attribute or at least an operand"); fnType = op.getOperand(0).getType().dyn_cast(); if (!fnType) return op.emitOpError("indirect call to a non-llvm type: ") << op.getOperand(0).getType(); auto ptrType = fnType.dyn_cast(); if (!ptrType) return op.emitOpError("indirect call expects a pointer as callee: ") << fnType; fnType = ptrType.getElementType(); } else { Operation *callee = SymbolTable::lookupNearestSymbolFrom(op, *calleeName); if (!callee) return op.emitOpError() << "'" << *calleeName << "' does not reference a symbol in the current scope"; auto fn = dyn_cast(callee); if (!fn) return op.emitOpError() << "'" << *calleeName << "' does not reference a valid LLVM function"; fnType = fn.getType(); } if (!fnType.isFunctionTy()) return op.emitOpError("callee does not have a functional type: ") << fnType; // Verify that the operand and result types match the callee. if (!fnType.isFunctionVarArg() && fnType.getFunctionNumParams() != (op.getNumOperands() - isIndirect)) return op.emitOpError() << "incorrect number of operands (" << (op.getNumOperands() - isIndirect) << ") for callee (expecting: " << fnType.getFunctionNumParams() << ")"; if (fnType.getFunctionNumParams() > (op.getNumOperands() - isIndirect)) return op.emitOpError() << "incorrect number of operands (" << (op.getNumOperands() - isIndirect) << ") for varargs callee (expecting at least: " << fnType.getFunctionNumParams() << ")"; for (unsigned i = 0, e = fnType.getFunctionNumParams(); i != e; ++i) if (op.getOperand(i + isIndirect).getType() != fnType.getFunctionParamType(i)) return op.emitOpError() << "operand type mismatch for operand " << i << ": " << op.getOperand(i + isIndirect).getType() << " != " << fnType.getFunctionParamType(i); if (op.getNumResults() && op.getResult(0).getType() != fnType.getFunctionResultType()) return op.emitOpError() << "result type mismatch: " << op.getResult(0).getType() << " != " << fnType.getFunctionResultType(); return success(); } static void printCallOp(OpAsmPrinter &p, CallOp &op) { auto callee = op.callee(); bool isDirect = callee.hasValue(); // Print the direct callee if present as a function attribute, or an indirect // callee (first operand) otherwise. p << op.getOperationName() << ' '; if (isDirect) p.printSymbolName(callee.getValue()); else p << op.getOperand(0); auto args = op.getOperands().drop_front(isDirect ? 0 : 1); p << '(' << args << ')'; p.printOptionalAttrDict(op.getAttrs(), {"callee"}); // Reconstruct the function MLIR function type from operand and result types. p << " : " << FunctionType::get(args.getTypes(), op.getResultTypes(), op.getContext()); } // ::= `llvm.call` (function-id | ssa-use) `(` ssa-use-list `)` // attribute-dict? `:` function-type static ParseResult parseCallOp(OpAsmParser &parser, OperationState &result) { SmallVector operands; Type type; SymbolRefAttr funcAttr; llvm::SMLoc trailingTypeLoc; // Parse an operand list that will, in practice, contain 0 or 1 operand. In // case of an indirect call, there will be 1 operand before `(`. In case of a // direct call, there will be no operands and the parser will stop at the // function identifier without complaining. if (parser.parseOperandList(operands)) return failure(); bool isDirect = operands.empty(); // Optionally parse a function identifier. if (isDirect) if (parser.parseAttribute(funcAttr, "callee", result.attributes)) return failure(); if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type)) return failure(); auto funcType = type.dyn_cast(); if (!funcType) return parser.emitError(trailingTypeLoc, "expected function type"); if (isDirect) { // Make sure types match. if (parser.resolveOperands(operands, funcType.getInputs(), parser.getNameLoc(), result.operands)) return failure(); result.addTypes(funcType.getResults()); } else { // Construct the LLVM IR Dialect function type that the first operand // should match. if (funcType.getNumResults() > 1) return parser.emitError(trailingTypeLoc, "expected function with 0 or 1 result"); Builder &builder = parser.getBuilder(); LLVM::LLVMType llvmResultType; if (funcType.getNumResults() == 0) { llvmResultType = LLVM::LLVMType::getVoidTy(builder.getContext()); } else { llvmResultType = funcType.getResult(0).dyn_cast(); if (!llvmResultType) return parser.emitError(trailingTypeLoc, "expected result to have LLVM type"); } SmallVector argTypes; argTypes.reserve(funcType.getNumInputs()); for (int i = 0, e = funcType.getNumInputs(); i < e; ++i) { auto argType = funcType.getInput(i).dyn_cast(); if (!argType) return parser.emitError(trailingTypeLoc, "expected LLVM types as inputs"); argTypes.push_back(argType); } auto llvmFuncType = LLVM::LLVMType::getFunctionTy(llvmResultType, argTypes, /*isVarArg=*/false); auto wrappedFuncType = llvmFuncType.getPointerTo(); auto funcArguments = ArrayRef(operands).drop_front(); // Make sure that the first operand (indirect callee) matches the wrapped // LLVM IR function type, and that the types of the other call operands // match the types of the function arguments. if (parser.resolveOperand(operands[0], wrappedFuncType, result.operands) || parser.resolveOperands(funcArguments, funcType.getInputs(), parser.getNameLoc(), result.operands)) return failure(); result.addTypes(llvmResultType); } return success(); } //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::ExtractElementOp. //===----------------------------------------------------------------------===// // Expects vector to be of wrapped LLVM vector type and position to be of // wrapped LLVM i32 type. void LLVM::ExtractElementOp::build(OpBuilder &b, OperationState &result, Value vector, Value position, ArrayRef attrs) { auto wrappedVectorType = vector.getType().cast(); auto llvmType = wrappedVectorType.getVectorElementType(); build(b, result, llvmType, vector, position); result.addAttributes(attrs); } static void printExtractElementOp(OpAsmPrinter &p, ExtractElementOp &op) { p << op.getOperationName() << ' ' << op.vector() << "[" << op.position() << " : " << op.position().getType() << "]"; p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.vector().getType(); } // ::= `llvm.extractelement` ssa-use `, ` ssa-use // attribute-dict? `:` type static ParseResult parseExtractElementOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc loc; OpAsmParser::OperandType vector, position; Type type, positionType; if (parser.getCurrentLocation(&loc) || parser.parseOperand(vector) || parser.parseLSquare() || parser.parseOperand(position) || parser.parseColonType(positionType) || parser.parseRSquare() || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(type) || parser.resolveOperand(vector, type, result.operands) || parser.resolveOperand(position, positionType, result.operands)) return failure(); auto wrappedVectorType = type.dyn_cast(); if (!wrappedVectorType || !wrappedVectorType.isVectorTy()) return parser.emitError( loc, "expected LLVM IR dialect vector type for operand #1"); result.addTypes(wrappedVectorType.getVectorElementType()); return success(); } //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::ExtractValueOp. //===----------------------------------------------------------------------===// static void printExtractValueOp(OpAsmPrinter &p, ExtractValueOp &op) { p << op.getOperationName() << ' ' << op.container() << op.position(); p.printOptionalAttrDict(op.getAttrs(), {"position"}); p << " : " << op.container().getType(); } // Extract the type at `position` in the wrapped LLVM IR aggregate type // `containerType`. Position is an integer array attribute where each value // is a zero-based position of the element in the aggregate type. Return the // resulting type wrapped in MLIR, or nullptr on error. static LLVM::LLVMType getInsertExtractValueElementType(OpAsmParser &parser, Type containerType, ArrayAttr positionAttr, llvm::SMLoc attributeLoc, llvm::SMLoc typeLoc) { auto wrappedContainerType = containerType.dyn_cast(); if (!wrappedContainerType) return parser.emitError(typeLoc, "expected LLVM IR Dialect type"), nullptr; // Infer the element type from the structure type: iteratively step inside the // type by taking the element type, indexed by the position attribute for // structures. Check the position index before accessing, it is supposed to // be in bounds. for (Attribute subAttr : positionAttr) { auto positionElementAttr = subAttr.dyn_cast(); if (!positionElementAttr) return parser.emitError(attributeLoc, "expected an array of integer literals"), nullptr; int position = positionElementAttr.getInt(); if (wrappedContainerType.isArrayTy()) { if (position < 0 || static_cast(position) >= wrappedContainerType.getArrayNumElements()) return parser.emitError(attributeLoc, "position out of bounds"), nullptr; wrappedContainerType = wrappedContainerType.getArrayElementType(); } else if (wrappedContainerType.isStructTy()) { if (position < 0 || static_cast(position) >= wrappedContainerType.getStructNumElements()) return parser.emitError(attributeLoc, "position out of bounds"), nullptr; wrappedContainerType = wrappedContainerType.getStructElementType(position); } else { return parser.emitError(typeLoc, "expected wrapped LLVM IR structure/array type"), nullptr; } } return wrappedContainerType; } // ::= `llvm.extractvalue` ssa-use // `[` integer-literal (`,` integer-literal)* `]` // attribute-dict? `:` type static ParseResult parseExtractValueOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType container; Type containerType; ArrayAttr positionAttr; llvm::SMLoc attributeLoc, trailingTypeLoc; if (parser.parseOperand(container) || parser.getCurrentLocation(&attributeLoc) || parser.parseAttribute(positionAttr, "position", result.attributes) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(containerType) || parser.resolveOperand(container, containerType, result.operands)) return failure(); auto elementType = getInsertExtractValueElementType( parser, containerType, positionAttr, attributeLoc, trailingTypeLoc); if (!elementType) return failure(); result.addTypes(elementType); return success(); } //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::InsertElementOp. //===----------------------------------------------------------------------===// static void printInsertElementOp(OpAsmPrinter &p, InsertElementOp &op) { p << op.getOperationName() << ' ' << op.value() << ", " << op.vector() << "[" << op.position() << " : " << op.position().getType() << "]"; p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.vector().getType(); } // ::= `llvm.insertelement` ssa-use `,` ssa-use `,` ssa-use // attribute-dict? `:` type static ParseResult parseInsertElementOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc loc; OpAsmParser::OperandType vector, value, position; Type vectorType, positionType; if (parser.getCurrentLocation(&loc) || parser.parseOperand(value) || parser.parseComma() || parser.parseOperand(vector) || parser.parseLSquare() || parser.parseOperand(position) || parser.parseColonType(positionType) || parser.parseRSquare() || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(vectorType)) return failure(); auto wrappedVectorType = vectorType.dyn_cast(); if (!wrappedVectorType || !wrappedVectorType.isVectorTy()) return parser.emitError( loc, "expected LLVM IR dialect vector type for operand #1"); auto valueType = wrappedVectorType.getVectorElementType(); if (!valueType) return failure(); if (parser.resolveOperand(vector, vectorType, result.operands) || parser.resolveOperand(value, valueType, result.operands) || parser.resolveOperand(position, positionType, result.operands)) return failure(); result.addTypes(vectorType); return success(); } //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::InsertValueOp. //===----------------------------------------------------------------------===// static void printInsertValueOp(OpAsmPrinter &p, InsertValueOp &op) { p << op.getOperationName() << ' ' << op.value() << ", " << op.container() << op.position(); p.printOptionalAttrDict(op.getAttrs(), {"position"}); p << " : " << op.container().getType(); } // ::= `llvm.insertvaluevalue` ssa-use `,` ssa-use // `[` integer-literal (`,` integer-literal)* `]` // attribute-dict? `:` type static ParseResult parseInsertValueOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType container, value; Type containerType; ArrayAttr positionAttr; llvm::SMLoc attributeLoc, trailingTypeLoc; if (parser.parseOperand(value) || parser.parseComma() || parser.parseOperand(container) || parser.getCurrentLocation(&attributeLoc) || parser.parseAttribute(positionAttr, "position", result.attributes) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(containerType)) return failure(); auto valueType = getInsertExtractValueElementType( parser, containerType, positionAttr, attributeLoc, trailingTypeLoc); if (!valueType) return failure(); if (parser.resolveOperand(container, containerType, result.operands) || parser.resolveOperand(value, valueType, result.operands)) return failure(); result.addTypes(containerType); return success(); } //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::ReturnOp. //===----------------------------------------------------------------------===// static void printReturnOp(OpAsmPrinter &p, ReturnOp &op) { p << op.getOperationName(); p.printOptionalAttrDict(op.getAttrs()); assert(op.getNumOperands() <= 1); if (op.getNumOperands() == 0) return; p << ' ' << op.getOperand(0) << " : " << op.getOperand(0).getType(); } // ::= `llvm.return` ssa-use-list attribute-dict? `:` // type-list-no-parens static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) { SmallVector operands; Type type; if (parser.parseOperandList(operands) || parser.parseOptionalAttrDict(result.attributes)) return failure(); if (operands.empty()) return success(); if (parser.parseColonType(type) || parser.resolveOperand(operands[0], type, result.operands)) return failure(); return success(); } //===----------------------------------------------------------------------===// // Verifier for LLVM::AddressOfOp. //===----------------------------------------------------------------------===// template static OpTy lookupSymbolInModule(Operation *parent, StringRef name) { Operation *module = parent; while (module && !satisfiesLLVMModule(module)) module = module->getParentOp(); assert(module && "unexpected operation outside of a module"); return dyn_cast_or_null( mlir::SymbolTable::lookupSymbolIn(module, name)); } GlobalOp AddressOfOp::getGlobal() { return lookupSymbolInModule((*this)->getParentOp(), global_name()); } LLVMFuncOp AddressOfOp::getFunction() { return lookupSymbolInModule((*this)->getParentOp(), global_name()); } static LogicalResult verify(AddressOfOp op) { auto global = op.getGlobal(); auto function = op.getFunction(); if (!global && !function) return op.emitOpError( "must reference a global defined by 'llvm.mlir.global' or 'llvm.func'"); if (global && global.getType().getPointerTo(global.addr_space()) != op.getResult().getType()) return op.emitOpError( "the type must be a pointer to the type of the referenced global"); if (function && function.getType().getPointerTo() != op.getResult().getType()) return op.emitOpError( "the type must be a pointer to the type of the referenced function"); return success(); } //===----------------------------------------------------------------------===// // Builder, printer and verifier for LLVM::GlobalOp. //===----------------------------------------------------------------------===// /// Returns the name used for the linkage attribute. This *must* correspond to /// the name of the attribute in ODS. static StringRef getLinkageAttrName() { return "linkage"; } void GlobalOp::build(OpBuilder &builder, OperationState &result, LLVMType type, bool isConstant, Linkage linkage, StringRef name, Attribute value, unsigned addrSpace, ArrayRef attrs) { result.addAttribute(SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)); result.addAttribute("type", TypeAttr::get(type)); if (isConstant) result.addAttribute("constant", builder.getUnitAttr()); if (value) result.addAttribute("value", value); result.addAttribute(getLinkageAttrName(), builder.getI64IntegerAttr(static_cast(linkage))); if (addrSpace != 0) result.addAttribute("addr_space", builder.getI32IntegerAttr(addrSpace)); result.attributes.append(attrs.begin(), attrs.end()); result.addRegion(); } static void printGlobalOp(OpAsmPrinter &p, GlobalOp op) { p << op.getOperationName() << ' ' << stringifyLinkage(op.linkage()) << ' '; if (op.constant()) p << "constant "; p.printSymbolName(op.sym_name()); p << '('; if (auto value = op.getValueOrNull()) p.printAttribute(value); p << ')'; p.printOptionalAttrDict(op.getAttrs(), {SymbolTable::getSymbolAttrName(), "type", "constant", "value", getLinkageAttrName()}); // Print the trailing type unless it's a string global. if (op.getValueOrNull().dyn_cast_or_null()) return; p << " : " << op.type(); Region &initializer = op.getInitializerRegion(); if (!initializer.empty()) p.printRegion(initializer, /*printEntryBlockArgs=*/false); } //===----------------------------------------------------------------------===// // Verifier for LLVM::DialectCastOp. //===----------------------------------------------------------------------===// static LogicalResult verify(DialectCastOp op) { auto verifyMLIRCastType = [&op](Type type) -> LogicalResult { if (auto llvmType = type.dyn_cast()) { if (llvmType.isVectorTy()) llvmType = llvmType.getVectorElementType(); if (llvmType.isIntegerTy() || llvmType.isBFloatTy() || llvmType.isHalfTy() || llvmType.isFloatTy() || llvmType.isDoubleTy()) { return success(); } return op.emitOpError("type must be non-index integer types, float " "types, or vector of mentioned types."); } if (auto vectorType = type.dyn_cast()) { if (vectorType.getShape().size() > 1) return op.emitOpError("only 1-d vector is allowed"); type = vectorType.getElementType(); } if (type.isSignlessIntOrFloat()) return success(); // Note that memrefs are not supported. We currently don't have a use case // for it, but even if we do, there are challenges: // * if we allow memrefs to cast from/to memref descriptors, then the // semantics of the cast op depends on the implementation detail of the // descriptor. // * if we allow memrefs to cast from/to bare pointers, some users might // alternatively want metadata that only present in the descriptor. // // TODO: re-evaluate the memref cast design when it's needed. return op.emitOpError("type must be non-index integer types, float types, " "or vector of mentioned types."); }; return failure(failed(verifyMLIRCastType(op.in().getType())) || failed(verifyMLIRCastType(op.getType()))); } // Parses one of the keywords provided in the list `keywords` and returns the // position of the parsed keyword in the list. If none of the keywords from the // list is parsed, returns -1. static int parseOptionalKeywordAlternative(OpAsmParser &parser, ArrayRef keywords) { for (auto en : llvm::enumerate(keywords)) { if (succeeded(parser.parseOptionalKeyword(en.value()))) return en.index(); } return -1; } namespace { template struct EnumTraits {}; #define REGISTER_ENUM_TYPE(Ty) \ template <> struct EnumTraits { \ static StringRef stringify(Ty value) { return stringify##Ty(value); } \ static unsigned getMaxEnumVal() { return getMaxEnumValFor##Ty(); } \ } REGISTER_ENUM_TYPE(Linkage); } // end namespace template static ParseResult parseOptionalLLVMKeyword(OpAsmParser &parser, OperationState &result, StringRef name) { SmallVector names; for (unsigned i = 0, e = getMaxEnumValForLinkage(); i <= e; ++i) names.push_back(EnumTraits::stringify(static_cast(i))); int index = parseOptionalKeywordAlternative(parser, names); if (index == -1) return failure(); result.addAttribute(name, parser.getBuilder().getI64IntegerAttr(index)); return success(); } // operation ::= `llvm.mlir.global` linkage? `constant`? `@` identifier // `(` attribute? `)` attribute-list? (`:` type)? region? // // The type can be omitted for string attributes, in which case it will be // inferred from the value of the string as [strlen(value) x i8]. static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) { if (failed(parseOptionalLLVMKeyword(parser, result, getLinkageAttrName()))) result.addAttribute(getLinkageAttrName(), parser.getBuilder().getI64IntegerAttr( static_cast(LLVM::Linkage::External))); if (succeeded(parser.parseOptionalKeyword("constant"))) result.addAttribute("constant", parser.getBuilder().getUnitAttr()); StringAttr name; if (parser.parseSymbolName(name, SymbolTable::getSymbolAttrName(), result.attributes) || parser.parseLParen()) return failure(); Attribute value; if (parser.parseOptionalRParen()) { if (parser.parseAttribute(value, "value", result.attributes) || parser.parseRParen()) return failure(); } SmallVector types; if (parser.parseOptionalAttrDict(result.attributes) || parser.parseOptionalColonTypeList(types)) return failure(); if (types.size() > 1) return parser.emitError(parser.getNameLoc(), "expected zero or one type"); Region &initRegion = *result.addRegion(); if (types.empty()) { if (auto strAttr = value.dyn_cast_or_null()) { MLIRContext *context = parser.getBuilder().getContext(); auto arrayType = LLVM::LLVMType::getArrayTy( LLVM::LLVMType::getInt8Ty(context), strAttr.getValue().size()); types.push_back(arrayType); } else { return parser.emitError(parser.getNameLoc(), "type can only be omitted for string globals"); } } else { OptionalParseResult parseResult = parser.parseOptionalRegion(initRegion, /*arguments=*/{}, /*argTypes=*/{}); if (parseResult.hasValue() && failed(*parseResult)) return failure(); } result.addAttribute("type", TypeAttr::get(types[0])); return success(); } static LogicalResult verify(GlobalOp op) { if (!LLVMPointerType::isValidElementType(op.getType())) return op.emitOpError( "expects type to be a valid element type for an LLVM pointer"); if (op->getParentOp() && !satisfiesLLVMModule(op->getParentOp())) return op.emitOpError("must appear at the module level"); if (auto strAttr = op.getValueOrNull().dyn_cast_or_null()) { auto type = op.getType(); if (!type.isArrayTy() || !type.getArrayElementType().isIntegerTy(8) || type.getArrayNumElements() != strAttr.getValue().size()) return op.emitOpError( "requires an i8 array type of the length equal to that of the string " "attribute"); } if (Block *b = op.getInitializerBlock()) { ReturnOp ret = cast(b->getTerminator()); if (ret.operand_type_begin() == ret.operand_type_end()) return op.emitOpError("initializer region cannot return void"); if (*ret.operand_type_begin() != op.getType()) return op.emitOpError("initializer region type ") << *ret.operand_type_begin() << " does not match global type " << op.getType(); if (op.getValueOrNull()) return op.emitOpError("cannot have both initializer value and region"); } return success(); } //===----------------------------------------------------------------------===// // Printing/parsing for LLVM::ShuffleVectorOp. //===----------------------------------------------------------------------===// // Expects vector to be of wrapped LLVM vector type and position to be of // wrapped LLVM i32 type. void LLVM::ShuffleVectorOp::build(OpBuilder &b, OperationState &result, Value v1, Value v2, ArrayAttr mask, ArrayRef attrs) { auto wrappedContainerType1 = v1.getType().cast(); auto vType = LLVMType::getVectorTy( wrappedContainerType1.getVectorElementType(), mask.size()); build(b, result, vType, v1, v2, mask); result.addAttributes(attrs); } static void printShuffleVectorOp(OpAsmPrinter &p, ShuffleVectorOp &op) { p << op.getOperationName() << ' ' << op.v1() << ", " << op.v2() << " " << op.mask(); p.printOptionalAttrDict(op.getAttrs(), {"mask"}); p << " : " << op.v1().getType() << ", " << op.v2().getType(); } // ::= `llvm.shufflevector` ssa-use `, ` ssa-use // `[` integer-literal (`,` integer-literal)* `]` // attribute-dict? `:` type static ParseResult parseShuffleVectorOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc loc; OpAsmParser::OperandType v1, v2; ArrayAttr maskAttr; Type typeV1, typeV2; if (parser.getCurrentLocation(&loc) || parser.parseOperand(v1) || parser.parseComma() || parser.parseOperand(v2) || parser.parseAttribute(maskAttr, "mask", result.attributes) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(typeV1) || parser.parseComma() || parser.parseType(typeV2) || parser.resolveOperand(v1, typeV1, result.operands) || parser.resolveOperand(v2, typeV2, result.operands)) return failure(); auto wrappedContainerType1 = typeV1.dyn_cast(); if (!wrappedContainerType1 || !wrappedContainerType1.isVectorTy()) return parser.emitError( loc, "expected LLVM IR dialect vector type for operand #1"); auto vType = LLVMType::getVectorTy( wrappedContainerType1.getVectorElementType(), maskAttr.size()); result.addTypes(vType); return success(); } //===----------------------------------------------------------------------===// // Implementations for LLVM::LLVMFuncOp. //===----------------------------------------------------------------------===// // Add the entry block to the function. Block *LLVMFuncOp::addEntryBlock() { assert(empty() && "function already has an entry block"); assert(!isVarArg() && "unimplemented: non-external variadic functions"); auto *entry = new Block; push_back(entry); LLVMType type = getType(); for (unsigned i = 0, e = type.getFunctionNumParams(); i < e; ++i) entry->addArgument(type.getFunctionParamType(i)); return entry; } void LLVMFuncOp::build(OpBuilder &builder, OperationState &result, StringRef name, LLVMType type, LLVM::Linkage linkage, ArrayRef attrs, ArrayRef argAttrs) { result.addRegion(); result.addAttribute(SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)); result.addAttribute("type", TypeAttr::get(type)); result.addAttribute(getLinkageAttrName(), builder.getI64IntegerAttr(static_cast(linkage))); result.attributes.append(attrs.begin(), attrs.end()); if (argAttrs.empty()) return; unsigned numInputs = type.getFunctionNumParams(); assert(numInputs == argAttrs.size() && "expected as many argument attribute lists as arguments"); SmallString<8> argAttrName; for (unsigned i = 0; i < numInputs; ++i) if (auto argDict = argAttrs[i].getDictionary(builder.getContext())) result.addAttribute(getArgAttrName(i, argAttrName), argDict); } // Builds an LLVM function type from the given lists of input and output types. // Returns a null type if any of the types provided are non-LLVM types, or if // there is more than one output type. static Type buildLLVMFunctionType(OpAsmParser &parser, llvm::SMLoc loc, ArrayRef inputs, ArrayRef outputs, impl::VariadicFlag variadicFlag) { Builder &b = parser.getBuilder(); if (outputs.size() > 1) { parser.emitError(loc, "failed to construct function type: expected zero or " "one function result"); return {}; } // Convert inputs to LLVM types, exit early on error. SmallVector llvmInputs; for (auto t : inputs) { auto llvmTy = t.dyn_cast(); if (!llvmTy) { parser.emitError(loc, "failed to construct function type: expected LLVM " "type for function arguments"); return {}; } llvmInputs.push_back(llvmTy); } // No output is denoted as "void" in LLVM type system. LLVMType llvmOutput = outputs.empty() ? LLVMType::getVoidTy(b.getContext()) : outputs.front().dyn_cast(); if (!llvmOutput) { parser.emitError(loc, "failed to construct function type: expected LLVM " "type for function results"); return {}; } return LLVMType::getFunctionTy(llvmOutput, llvmInputs, variadicFlag.isVariadic()); } // Parses an LLVM function. // // operation ::= `llvm.func` linkage? function-signature function-attributes? // function-body // static ParseResult parseLLVMFuncOp(OpAsmParser &parser, OperationState &result) { // Default to external linkage if no keyword is provided. if (failed(parseOptionalLLVMKeyword(parser, result, getLinkageAttrName()))) result.addAttribute(getLinkageAttrName(), parser.getBuilder().getI64IntegerAttr( static_cast(LLVM::Linkage::External))); StringAttr nameAttr; SmallVector entryArgs; SmallVector argAttrs; SmallVector resultAttrs; SmallVector argTypes; SmallVector resultTypes; bool isVariadic; auto signatureLocation = parser.getCurrentLocation(); if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), result.attributes) || impl::parseFunctionSignature(parser, /*allowVariadic=*/true, entryArgs, argTypes, argAttrs, isVariadic, resultTypes, resultAttrs)) return failure(); auto type = buildLLVMFunctionType(parser, signatureLocation, argTypes, resultTypes, impl::VariadicFlag(isVariadic)); if (!type) return failure(); result.addAttribute(impl::getTypeAttrName(), TypeAttr::get(type)); if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) return failure(); impl::addArgAndResultAttrs(parser.getBuilder(), result, argAttrs, resultAttrs); auto *body = result.addRegion(); OptionalParseResult parseResult = parser.parseOptionalRegion( *body, entryArgs, entryArgs.empty() ? ArrayRef() : argTypes); return failure(parseResult.hasValue() && failed(*parseResult)); } // Print the LLVMFuncOp. Collects argument and result types and passes them to // helper functions. Drops "void" result since it cannot be parsed back. Skips // the external linkage since it is the default value. static void printLLVMFuncOp(OpAsmPrinter &p, LLVMFuncOp op) { p << op.getOperationName() << ' '; if (op.linkage() != LLVM::Linkage::External) p << stringifyLinkage(op.linkage()) << ' '; p.printSymbolName(op.getName()); LLVMType fnType = op.getType(); SmallVector argTypes; SmallVector resTypes; argTypes.reserve(fnType.getFunctionNumParams()); for (unsigned i = 0, e = fnType.getFunctionNumParams(); i < e; ++i) argTypes.push_back(fnType.getFunctionParamType(i)); LLVMType returnType = fnType.getFunctionResultType(); if (!returnType.isVoidTy()) resTypes.push_back(returnType); impl::printFunctionSignature(p, op, argTypes, op.isVarArg(), resTypes); impl::printFunctionAttributes(p, op, argTypes.size(), resTypes.size(), {getLinkageAttrName()}); // Print the body if this is not an external function. Region &body = op.body(); if (!body.empty()) p.printRegion(body, /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/true); } // Hook for OpTrait::FunctionLike, called after verifying that the 'type' // attribute is present. This can check for preconditions of the // getNumArguments hook not failing. LogicalResult LLVMFuncOp::verifyType() { auto llvmType = getTypeAttr().getValue().dyn_cast_or_null(); if (!llvmType || !llvmType.isFunctionTy()) return emitOpError("requires '" + getTypeAttrName() + "' attribute of wrapped LLVM function type"); return success(); } // Hook for OpTrait::FunctionLike, returns the number of function arguments. // Depends on the type attribute being correct as checked by verifyType unsigned LLVMFuncOp::getNumFuncArguments() { return getType().getFunctionNumParams(); } // Hook for OpTrait::FunctionLike, returns the number of function results. // Depends on the type attribute being correct as checked by verifyType unsigned LLVMFuncOp::getNumFuncResults() { // We model LLVM functions that return void as having zero results, // and all others as having one result. // If we modeled a void return as one result, then it would be possible to // attach an MLIR result attribute to it, and it isn't clear what semantics we // would assign to that. if (getType().getFunctionResultType().isVoidTy()) return 0; return 1; } // Verifies LLVM- and implementation-specific properties of the LLVM func Op: // - functions don't have 'common' linkage // - external functions have 'external' or 'extern_weak' linkage; // - vararg is (currently) only supported for external functions; // - entry block arguments are of LLVM types and match the function signature. static LogicalResult verify(LLVMFuncOp op) { if (op.linkage() == LLVM::Linkage::Common) return op.emitOpError() << "functions cannot have '" << stringifyLinkage(LLVM::Linkage::Common) << "' linkage"; if (op.isExternal()) { if (op.linkage() != LLVM::Linkage::External && op.linkage() != LLVM::Linkage::ExternWeak) return op.emitOpError() << "external functions must have '" << stringifyLinkage(LLVM::Linkage::External) << "' or '" << stringifyLinkage(LLVM::Linkage::ExternWeak) << "' linkage"; return success(); } if (op.isVarArg()) return op.emitOpError("only external functions can be variadic"); unsigned numArguments = op.getType().getFunctionNumParams(); Block &entryBlock = op.front(); for (unsigned i = 0; i < numArguments; ++i) { Type argType = entryBlock.getArgument(i).getType(); auto argLLVMType = argType.dyn_cast(); if (!argLLVMType) return op.emitOpError("entry block argument #") << i << " is not of LLVM type"; if (op.getType().getFunctionParamType(i) != argLLVMType) return op.emitOpError("the type of entry block argument #") << i << " does not match the function signature"; } return success(); } //===----------------------------------------------------------------------===// // Verification for LLVM::NullOp. //===----------------------------------------------------------------------===// // Only LLVM pointer types are supported. static LogicalResult verify(LLVM::NullOp op) { auto llvmType = op.getType().dyn_cast(); if (!llvmType || !llvmType.isPointerTy()) return op.emitOpError("expected LLVM IR pointer type"); return success(); } //===----------------------------------------------------------------------===// // Verification for LLVM::ConstantOp. //===----------------------------------------------------------------------===// static LogicalResult verify(LLVM::ConstantOp op) { if (!(op.value().isa() || op.value().isa() || op.value().isa() || op.value().isa())) return op.emitOpError() << "only supports integer, float, string or elements attributes"; return success(); } //===----------------------------------------------------------------------===// // Utility functions for parsing atomic ops //===----------------------------------------------------------------------===// // Helper function to parse a keyword into the specified attribute named by // `attrName`. The keyword must match one of the string values defined by the // AtomicBinOp enum. The resulting I64 attribute is added to the `result` // state. static ParseResult parseAtomicBinOp(OpAsmParser &parser, OperationState &result, StringRef attrName) { llvm::SMLoc loc; StringRef keyword; if (parser.getCurrentLocation(&loc) || parser.parseKeyword(&keyword)) return failure(); // Replace the keyword `keyword` with an integer attribute. auto kind = symbolizeAtomicBinOp(keyword); if (!kind) { return parser.emitError(loc) << "'" << keyword << "' is an incorrect value of the '" << attrName << "' attribute"; } auto value = static_cast(kind.getValue()); auto attr = parser.getBuilder().getI64IntegerAttr(value); result.addAttribute(attrName, attr); return success(); } // Helper function to parse a keyword into the specified attribute named by // `attrName`. The keyword must match one of the string values defined by the // AtomicOrdering enum. The resulting I64 attribute is added to the `result` // state. static ParseResult parseAtomicOrdering(OpAsmParser &parser, OperationState &result, StringRef attrName) { llvm::SMLoc loc; StringRef ordering; if (parser.getCurrentLocation(&loc) || parser.parseKeyword(&ordering)) return failure(); // Replace the keyword `ordering` with an integer attribute. auto kind = symbolizeAtomicOrdering(ordering); if (!kind) { return parser.emitError(loc) << "'" << ordering << "' is an incorrect value of the '" << attrName << "' attribute"; } auto value = static_cast(kind.getValue()); auto attr = parser.getBuilder().getI64IntegerAttr(value); result.addAttribute(attrName, attr); return success(); } //===----------------------------------------------------------------------===// // Printer, parser and verifier for LLVM::AtomicRMWOp. //===----------------------------------------------------------------------===// static void printAtomicRMWOp(OpAsmPrinter &p, AtomicRMWOp &op) { p << op.getOperationName() << ' ' << stringifyAtomicBinOp(op.bin_op()) << ' ' << op.ptr() << ", " << op.val() << ' ' << stringifyAtomicOrdering(op.ordering()) << ' '; p.printOptionalAttrDict(op.getAttrs(), {"bin_op", "ordering"}); p << " : " << op.res().getType(); } // ::= `llvm.atomicrmw` keyword ssa-use `,` ssa-use keyword // attribute-dict? `:` type static ParseResult parseAtomicRMWOp(OpAsmParser &parser, OperationState &result) { LLVMType type; OpAsmParser::OperandType ptr, val; if (parseAtomicBinOp(parser, result, "bin_op") || parser.parseOperand(ptr) || parser.parseComma() || parser.parseOperand(val) || parseAtomicOrdering(parser, result, "ordering") || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(type) || parser.resolveOperand(ptr, type.getPointerTo(), result.operands) || parser.resolveOperand(val, type, result.operands)) return failure(); result.addTypes(type); return success(); } static LogicalResult verify(AtomicRMWOp op) { auto ptrType = op.ptr().getType().cast(); auto valType = op.val().getType().cast(); if (valType != ptrType.getPointerElementTy()) return op.emitOpError("expected LLVM IR element type for operand #0 to " "match type for operand #1"); auto resType = op.res().getType().cast(); if (resType != valType) return op.emitOpError( "expected LLVM IR result type to match type for operand #1"); if (op.bin_op() == AtomicBinOp::fadd || op.bin_op() == AtomicBinOp::fsub) { if (!valType.isFloatingPointTy()) return op.emitOpError("expected LLVM IR floating point type"); } else if (op.bin_op() == AtomicBinOp::xchg) { if (!valType.isIntegerTy(8) && !valType.isIntegerTy(16) && !valType.isIntegerTy(32) && !valType.isIntegerTy(64) && !valType.isBFloatTy() && !valType.isHalfTy() && !valType.isFloatTy() && !valType.isDoubleTy()) return op.emitOpError("unexpected LLVM IR type for 'xchg' bin_op"); } else { if (!valType.isIntegerTy(8) && !valType.isIntegerTy(16) && !valType.isIntegerTy(32) && !valType.isIntegerTy(64)) return op.emitOpError("expected LLVM IR integer type"); } return success(); } //===----------------------------------------------------------------------===// // Printer, parser and verifier for LLVM::AtomicCmpXchgOp. //===----------------------------------------------------------------------===// static void printAtomicCmpXchgOp(OpAsmPrinter &p, AtomicCmpXchgOp &op) { p << op.getOperationName() << ' ' << op.ptr() << ", " << op.cmp() << ", " << op.val() << ' ' << stringifyAtomicOrdering(op.success_ordering()) << ' ' << stringifyAtomicOrdering(op.failure_ordering()); p.printOptionalAttrDict(op.getAttrs(), {"success_ordering", "failure_ordering"}); p << " : " << op.val().getType(); } // ::= `llvm.cmpxchg` ssa-use `,` ssa-use `,` ssa-use // keyword keyword attribute-dict? `:` type static ParseResult parseAtomicCmpXchgOp(OpAsmParser &parser, OperationState &result) { auto &builder = parser.getBuilder(); LLVMType type; OpAsmParser::OperandType ptr, cmp, val; if (parser.parseOperand(ptr) || parser.parseComma() || parser.parseOperand(cmp) || parser.parseComma() || parser.parseOperand(val) || parseAtomicOrdering(parser, result, "success_ordering") || parseAtomicOrdering(parser, result, "failure_ordering") || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(type) || parser.resolveOperand(ptr, type.getPointerTo(), result.operands) || parser.resolveOperand(cmp, type, result.operands) || parser.resolveOperand(val, type, result.operands)) return failure(); auto boolType = LLVMType::getInt1Ty(builder.getContext()); auto resultType = LLVMType::getStructTy(type, boolType); result.addTypes(resultType); return success(); } static LogicalResult verify(AtomicCmpXchgOp op) { auto ptrType = op.ptr().getType().cast(); if (!ptrType.isPointerTy()) return op.emitOpError("expected LLVM IR pointer type for operand #0"); auto cmpType = op.cmp().getType().cast(); auto valType = op.val().getType().cast(); if (cmpType != ptrType.getPointerElementTy() || cmpType != valType) return op.emitOpError("expected LLVM IR element type for operand #0 to " "match type for all other operands"); if (!valType.isPointerTy() && !valType.isIntegerTy(8) && !valType.isIntegerTy(16) && !valType.isIntegerTy(32) && !valType.isIntegerTy(64) && !valType.isBFloatTy() && !valType.isHalfTy() && !valType.isFloatTy() && !valType.isDoubleTy()) return op.emitOpError("unexpected LLVM IR type"); if (op.success_ordering() < AtomicOrdering::monotonic || op.failure_ordering() < AtomicOrdering::monotonic) return op.emitOpError("ordering must be at least 'monotonic'"); if (op.failure_ordering() == AtomicOrdering::release || op.failure_ordering() == AtomicOrdering::acq_rel) return op.emitOpError("failure ordering cannot be 'release' or 'acq_rel'"); return success(); } //===----------------------------------------------------------------------===// // Printer, parser and verifier for LLVM::FenceOp. //===----------------------------------------------------------------------===// // ::= `llvm.fence` (`syncscope(`strAttr`)`)? keyword // attribute-dict? static ParseResult parseFenceOp(OpAsmParser &parser, OperationState &result) { StringAttr sScope; StringRef syncscopeKeyword = "syncscope"; if (!failed(parser.parseOptionalKeyword(syncscopeKeyword))) { if (parser.parseLParen() || parser.parseAttribute(sScope, syncscopeKeyword, result.attributes) || parser.parseRParen()) return failure(); } else { result.addAttribute(syncscopeKeyword, parser.getBuilder().getStringAttr("")); } if (parseAtomicOrdering(parser, result, "ordering") || parser.parseOptionalAttrDict(result.attributes)) return failure(); return success(); } static void printFenceOp(OpAsmPrinter &p, FenceOp &op) { StringRef syncscopeKeyword = "syncscope"; p << op.getOperationName() << ' '; if (!op.getAttr(syncscopeKeyword).cast().getValue().empty()) p << "syncscope(" << op.getAttr(syncscopeKeyword) << ") "; p << stringifyAtomicOrdering(op.ordering()); } static LogicalResult verify(FenceOp &op) { if (op.ordering() == AtomicOrdering::not_atomic || op.ordering() == AtomicOrdering::unordered || op.ordering() == AtomicOrdering::monotonic) return op.emitOpError("can be given only acquire, release, acq_rel, " "and seq_cst orderings"); return success(); } //===----------------------------------------------------------------------===// // LLVMDialect initialization, type parsing, and registration. //===----------------------------------------------------------------------===// void LLVMDialect::initialize() { // clang-format off addTypes(); // clang-format on addOperations< #define GET_OP_LIST #include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc" >(); // Support unknown operations because not all LLVM operations are registered. allowUnknownOperations(); } #define GET_OP_CLASSES #include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc" /// Parse a type registered to this dialect. Type LLVMDialect::parseType(DialectAsmParser &parser) const { return detail::parseType(parser); } /// Print a type registered to this dialect. void LLVMDialect::printType(Type type, DialectAsmPrinter &os) const { return detail::printType(type.cast(), os); } LogicalResult LLVMDialect::verifyDataLayoutString( StringRef descr, llvm::function_ref reportError) { llvm::Expected maybeDataLayout = llvm::DataLayout::parse(descr); if (maybeDataLayout) return success(); std::string message; llvm::raw_string_ostream messageStream(message); llvm::logAllUnhandledErrors(maybeDataLayout.takeError(), messageStream); reportError("invalid data layout descriptor: " + messageStream.str()); return failure(); } /// Verify LLVM dialect attributes. LogicalResult LLVMDialect::verifyOperationAttribute(Operation *op, NamedAttribute attr) { // If the data layout attribute is present, it must use the LLVM data layout // syntax. Try parsing it and report errors in case of failure. Users of this // attribute may assume it is well-formed and can pass it to the (asserting) // llvm::DataLayout constructor. if (attr.first.strref() != LLVM::LLVMDialect::getDataLayoutAttrName()) return success(); if (auto stringAttr = attr.second.dyn_cast()) return verifyDataLayoutString( stringAttr.getValue(), [op](const Twine &message) { op->emitOpError() << message.str(); }); return op->emitOpError() << "expected '" << LLVM::LLVMDialect::getDataLayoutAttrName() << "' to be a string attribute"; } /// Verify LLVMIR function argument attributes. LogicalResult LLVMDialect::verifyRegionArgAttribute(Operation *op, unsigned regionIdx, unsigned argIdx, NamedAttribute argAttr) { // Check that llvm.noalias is a boolean attribute. if (argAttr.first == LLVMDialect::getNoAliasAttrName() && !argAttr.second.isa()) return op->emitError() << "llvm.noalias argument attribute of non boolean type"; // Check that llvm.align is an integer attribute. if (argAttr.first == LLVMDialect::getAlignAttrName() && !argAttr.second.isa()) return op->emitError() << "llvm.align argument attribute of non integer type"; return success(); } //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// Value mlir::LLVM::createGlobalString(Location loc, OpBuilder &builder, StringRef name, StringRef value, LLVM::Linkage linkage) { assert(builder.getInsertionBlock() && builder.getInsertionBlock()->getParentOp() && "expected builder to point to a block constrained in an op"); auto module = builder.getInsertionBlock()->getParentOp()->getParentOfType(); assert(module && "builder points to an op outside of a module"); // Create the global at the entry of the module. OpBuilder moduleBuilder(module.getBodyRegion()); MLIRContext *ctx = builder.getContext(); auto type = LLVM::LLVMType::getArrayTy(LLVM::LLVMType::getInt8Ty(ctx), value.size()); auto global = moduleBuilder.create( loc, type, /*isConstant=*/true, linkage, name, builder.getStringAttr(value)); // Get the pointer to the first character in the global string. Value globalPtr = builder.create(loc, global); Value cst0 = builder.create( loc, LLVM::LLVMType::getInt64Ty(ctx), builder.getIntegerAttr(builder.getIndexType(), 0)); return builder.create(loc, LLVM::LLVMType::getInt8PtrTy(ctx), globalPtr, ValueRange{cst0, cst0}); } bool mlir::LLVM::satisfiesLLVMModule(Operation *op) { return op->hasTrait() && op->hasTrait(); }