//===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements convenience types for working with super-vectorization
// operations, in particular super-vector loads and stores.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/StringSet.h"
#include <numeric>

using namespace mlir;
using namespace mlir::vector;

/// Helper enum to classify mask value.
enum class MaskFormat {
  AllTrue = 0,
  AllFalse = 1,
  Unknown = 2,
};

/// Helper method to classify a 1-D mask value. Currently, the method
/// looks "under the hood" of a constant value with dense attributes
/// and a constant mask operation (since the client may be called at
/// various stages during progressive lowering).
static MaskFormat get1DMaskFormat(Value mask) {
  if (auto c = mask.getDefiningOp<ConstantOp>()) {
    // Inspect constant dense values. We count up for bits that
    // are set, count down for bits that are cleared, and bail
    // when a mix is detected.
    if (auto denseElts = c.value().dyn_cast<DenseIntElementsAttr>()) {
      int64_t val = 0;
      for (bool b : denseElts.getValues<bool>())
        if (b && val >= 0)
          val++;
        else if (!b && val <= 0)
          val--;
        else
          return MaskFormat::Unknown;
      if (val > 0)
        return MaskFormat::AllTrue;
      if (val < 0)
        return MaskFormat::AllFalse;
    }
  } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
    // Inspect constant mask index. If the index exceeds the
    // dimension size, all bits are set. If the index is zero
    // or less, no bits are set.
    ArrayAttr masks = m.mask_dim_sizes();
    assert(masks.size() == 1);
    int64_t i = masks[0].cast<IntegerAttr>().getInt();
    int64_t u = m.getType().cast<VectorType>().getDimSize(0);
    if (i >= u)
      return MaskFormat::AllTrue;
    if (i <= 0)
      return MaskFormat::AllFalse;
  }
  return MaskFormat::Unknown;
}

/// Helper method to cast a 1-D memref<10xf32> "base" into a
/// memref<vector<10xf32>> in the output parameter "newBase",
/// using the 'element' vector type "vt". Returns true on success.
static bool castedToMemRef(Location loc, Value base, MemRefType mt,
                           VectorType vt, PatternRewriter &rewriter,
                           Value &newBase) {
  // The vector.type_cast operation does not accept unknown memref<?xf32>.
  // TODO: generalize the cast and accept this case too
  if (!mt.hasStaticShape())
    return false;
  newBase = rewriter.create<TypeCastOp>(loc, MemRefType::get({}, vt), base);
  return true;
}

//===----------------------------------------------------------------------===//
// VectorDialect
//===----------------------------------------------------------------------===//

void VectorDialect::initialize() {
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Vector/VectorOps.cpp.inc"
      >();
}

/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *VectorDialect::materializeConstant(OpBuilder &builder,
                                              Attribute value, Type type,
                                              Location loc) {
  return builder.create<ConstantOp>(loc, type, value);
}

IntegerType vector::getVectorSubscriptType(Builder &builder) {
  return builder.getIntegerType(64);
}

ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
                                         ArrayRef<int64_t> values) {
  return builder.getI64ArrayAttr(values);
}

//===----------------------------------------------------------------------===//
// ReductionOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(ReductionOp op) {
  // Verify for 1-D vector.
  int64_t rank = op.getVectorType().getRank();
  if (rank != 1)
    return op.emitOpError("unsupported reduction rank: ") << rank;

  // Verify supported reduction kind.
  auto kind = op.kind();
  Type eltType = op.dest().getType();
  if (kind == "add" || kind == "mul" || kind == "min" || kind == "max") {
    if (!eltType.isIntOrIndexOrFloat())
      return op.emitOpError("unsupported reduction type");
  } else if (kind == "and" || kind == "or" || kind == "xor") {
    if (!eltType.isIntOrIndex())
      return op.emitOpError("unsupported reduction type");
  } else {
    return op.emitOpError("unknown reduction kind: ") << kind;
  }

  // Verify optional accumulator.
  if (!op.acc().empty()) {
    if (kind != "add" && kind != "mul")
      return op.emitOpError("no accumulator for reduction kind: ") << kind;
    if (!eltType.isa<FloatType>())
      return op.emitOpError("no accumulator for type: ") << eltType;
  }

  return success();
}

static ParseResult parseReductionOp(OpAsmParser &parser,
                                    OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 2> operandsInfo;
  Type redType;
  Type resType;
  Attribute attr;
  if (parser.parseAttribute(attr, "kind", result.attributes) ||
      parser.parseComma() || parser.parseOperandList(operandsInfo) ||
      parser.parseColonType(redType) ||
      parser.parseKeywordType("into", resType) ||
      (operandsInfo.size() > 0 &&
       parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
      (operandsInfo.size() > 1 &&
       parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
      parser.addTypeToList(resType, result.types))
    return failure();
  if (operandsInfo.size() < 1 || operandsInfo.size() > 2)
    return parser.emitError(parser.getNameLoc(),
                            "unsupported number of operands");
  return success();
}

static void print(OpAsmPrinter &p, ReductionOp op) {
  p << op.getOperationName() << " \"" << op.kind() << "\", " << op.vector();
  if (!op.acc().empty())
    p << ", " << op.acc();
  p << " : " << op.vector().getType() << " into " << op.dest().getType();
}

//===----------------------------------------------------------------------===//
// ContractionOp
//===----------------------------------------------------------------------===//

void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
                                  Value lhs, Value rhs, Value acc,
                                  ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
                                  ArrayRef<StringRef> iteratorTypes) {
  result.addOperands({lhs, rhs, acc});
  result.addTypes(acc.getType());
  result.addAttribute(getIndexingMapsAttrName(),
                      builder.getAffineMapArrayAttr(
                          AffineMap::inferFromExprList(indexingExprs)));
  result.addAttribute(getIteratorTypesAttrName(),
                      builder.getStrArrayAttr(iteratorTypes));
}

void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
                                  Value lhs, Value rhs, Value acc,
                                  ArrayAttr indexingMaps,
                                  ArrayAttr iteratorTypes) {
  result.addOperands({lhs, rhs, acc});
  result.addTypes(acc.getType());
  result.addAttribute(getIndexingMapsAttrName(), indexingMaps);
  result.addAttribute(getIteratorTypesAttrName(), iteratorTypes);
}

static ParseResult parseContractionOp(OpAsmParser &parser,
                                      OperationState &result) {
  OpAsmParser::OperandType lhsInfo;
  OpAsmParser::OperandType rhsInfo;
  OpAsmParser::OperandType accInfo;
  SmallVector<OpAsmParser::OperandType, 2> masksInfo;
  SmallVector<Type, 2> types;
  Type resultType;
  auto loc = parser.getCurrentLocation();
  DictionaryAttr dictAttr;
  // TODO: Unify linalg op attribute parsing.
  if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
      parser.parseOperand(lhsInfo) || parser.parseComma() ||
      parser.parseOperand(rhsInfo) || parser.parseComma() ||
      parser.parseOperand(accInfo) ||
      parser.parseTrailingOperandList(masksInfo) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonTypeList(types) ||
      parser.parseKeywordType("into", resultType) ||
      parser.resolveOperand(lhsInfo, types[0], result.operands) ||
      parser.resolveOperand(rhsInfo, types[1], result.operands) ||
      parser.resolveOperand(accInfo, resultType, result.operands) ||
      parser.addTypeToList(resultType, result.types))
    return failure();
  result.attributes.assign(dictAttr.getValue().begin(),
                           dictAttr.getValue().end());
  if (masksInfo.empty())
    return success();
  if (masksInfo.size() != 2)
    return parser.emitError(parser.getNameLoc(),
                            "expected zero or exactly 2 vector mask operands");
  auto lhsType = types[0].cast<VectorType>();
  auto rhsType = types[1].cast<VectorType>();
  auto maskElementType = parser.getBuilder().getI1Type();
  std::array<Type, 2> maskTypes = {
      VectorType::get(lhsType.getShape(), maskElementType),
      VectorType::get(rhsType.getShape(), maskElementType)};
  if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
    return failure();
  return success();
}

static void print(OpAsmPrinter &p, ContractionOp op) {
  // TODO: Unify printing code with linalg ops.
  auto attrNames = op.getTraitAttrNames();
  llvm::StringSet<> traitAttrsSet;
  traitAttrsSet.insert(attrNames.begin(), attrNames.end());
  SmallVector<NamedAttribute, 8> attrs;
  for (auto attr : op.getAttrs())
    if (traitAttrsSet.count(attr.first.strref()) > 0)
      attrs.push_back(attr);

  auto dictAttr = DictionaryAttr::get(attrs, op.getContext());
  p << op.getOperationName() << " " << dictAttr << " " << op.lhs() << ", ";
  p << op.rhs() << ", " << op.acc();
  if (op.masks().size() == 2)
    p << ", " << op.masks();

  p.printOptionalAttrDict(op.getAttrs(), attrNames);
  p << " : " << op.lhs().getType() << ", " << op.rhs().getType() << " into "
    << op.getResultType();
}

static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
                         const std::vector<std::pair<int64_t, int64_t>> &map) {
  for (auto &dimPair : map) {
    if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
        dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
        lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
      return false;
  }
  return true;
}

static LogicalResult verifyOutputShape(
    ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
    Type resType,
    const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
    const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
  DenseSet<int64_t> lhsContractingDimSet;
  DenseSet<int64_t> rhsContractingDimSet;
  for (auto &dimPair : contractingDimMap) {
    lhsContractingDimSet.insert(dimPair.first);
    rhsContractingDimSet.insert(dimPair.second);
  }
  DenseSet<int64_t> rhsBatchDimSet;
  for (auto &dimPair : batchDimMap)
    rhsBatchDimSet.insert(dimPair.second);

  // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
  SmallVector<int64_t, 4> expectedResultDims;
  for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
    if (lhsContractingDimSet.count(i) > 0)
      continue;
    expectedResultDims.push_back(lhsType.getDimSize(i));
  }

  // Add free dimensions from 'rhsType' to 'expectedResultDims'.
  for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
    if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
      continue;
    expectedResultDims.push_back(rhsType.getDimSize(i));
  }

  // Verify 'expectedResultDims'.
  if (expectedResultDims.size() == 0) {
    // No batch or free dimension implies a scalar result.
    if (resType.isa<VectorType>() || accType.isa<VectorType>())
      return op.emitOpError("invalid accumulator/result vector shape");
  } else {
    // At least one batch or free dimension implies a vector result.
    auto resVectorType = resType.dyn_cast<VectorType>();
    auto accVectorType = accType.dyn_cast<VectorType>();
    if (!resVectorType || !accVectorType)
      return op.emitOpError("invalid accumulator/result vector shape");

    // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
    // types fully define the result vector type. This assumes the affine maps
    // are well-formed, which must have been verified already.
    MLIRContext *ctx = op.getContext();
    AffineMap lhsMap = op.getIndexingMaps()[0];
    AffineMap rhsMap = op.getIndexingMaps()[1];
    SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
    for (auto pair :
         {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
      VectorType v = pair.first;
      auto map = pair.second;
      for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
        unsigned pos = map.getDimPosition(idx);
        if (!extents[pos])
          extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
      }
    }
    assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
           "expected extent along all dimensions.");

    AffineMap resMap = op.getIndexingMaps()[2];
    auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
                                     /*symCount=*/0, extents, ctx);
    // Compose the resMap with the extentsMap, which is a constant map.
    AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
    assert(llvm::all_of(
               expectedMap.getResults(),
               [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
           "expected constant extent along all dimensions.");
    // Extract the expected shape and build the type.
    auto expectedShape = llvm::to_vector<4>(
        llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
          return e.cast<AffineConstantExpr>().getValue();
        }));
    auto expected =
        VectorType::get(expectedShape, resVectorType.getElementType());
    if (resVectorType != expected || accVectorType != expected)
      return op.emitOpError(
                 "invalid accumulator/result vector shape, expected: ")
             << expected;
  }
  return success();
}

static LogicalResult verify(ContractionOp op) {
  auto lhsType = op.getLhsType();
  auto rhsType = op.getRhsType();
  auto accType = op.getAccType();
  auto resType = op.getResultType();

  // Verify that an indexing map was specified for each vector operand.
  if (op.indexing_maps().size() != 3)
    return op.emitOpError("expected an indexing map for each vector operand");

  // Verify that each index map has 'numIterators' inputs, no symbols, and
  // that the number of map outputs equals the rank of its associated
  // vector operand.
  unsigned numIterators = op.iterator_types().getValue().size();
  for (auto it : llvm::enumerate(op.indexing_maps())) {
    auto index = it.index();
    auto map = it.value().cast<AffineMapAttr>().getValue();
    if (map.getNumSymbols() != 0)
      return op.emitOpError("expected indexing map ")
             << index << " to have no symbols";
    auto vectorType = op.getOperand(index).getType().dyn_cast<VectorType>();
    unsigned rank = vectorType ? vectorType.getShape().size() : 0;
    // Verify that the map has the right number of inputs, outputs, and indices.
    // This also correctly accounts for (..) -> () for rank-0 results.
    if (map.getNumDims() != numIterators)
      return op.emitOpError("expected indexing map ")
             << index << " to have " << numIterators << " number of inputs";
    if (map.getNumResults() != rank)
      return op.emitOpError("expected indexing map ")
             << index << " to have " << rank << " number of outputs";
    if (!map.isProjectedPermutation())
      return op.emitOpError("expected indexing map ")
             << index << " to be a projected permutation of its inputs";
  }

  auto contractingDimMap = op.getContractingDimMap();
  auto batchDimMap = op.getBatchDimMap();

  // Verify at least one contracting dimension pair was specified.
  if (contractingDimMap.empty())
    return op.emitOpError("expected at least one contracting dimension pair");

  // Verify contracting dimension map was properly constructed.
  if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
    return op.emitOpError("invalid contracting dimension map");

  // Verify batch dimension map was properly constructed.
  if (!verifyDimMap(lhsType, rhsType, batchDimMap))
    return op.emitOpError("invalid batch dimension map");

  // Verify 'accType' and 'resType' shape.
  if (failed(verifyOutputShape(op, lhsType, rhsType, accType, resType,
                               contractingDimMap, batchDimMap)))
    return failure();

  // Verify that either two vector masks are set or none are set.
  auto lhsMaskType = op.getLHSVectorMaskType();
  auto rhsMaskType = op.getRHSVectorMaskType();
  if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
    return op.emitOpError("invalid number of vector masks specified");
  if (lhsMaskType && rhsMaskType) {
    // Verify mask rank == argument rank.
    if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
        rhsMaskType.getShape().size() != rhsType.getShape().size())
      return op.emitOpError("invalid vector mask rank");
  }
  return success();
}

ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
  static constexpr StringRef names[2] = {getIndexingMapsAttrName(),
                                         getIteratorTypesAttrName()};
  return llvm::makeArrayRef(names);
}

static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
  for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
    if (targetExpr == map.getResult(i))
      return i;
  return -1;
}

static std::vector<std::pair<int64_t, int64_t>>
getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
          StringRef targetIteratorTypeName, MLIRContext *context) {
  std::vector<std::pair<int64_t, int64_t>> dimMap;
  for (auto it : llvm::enumerate(iteratorTypes)) {
    auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
    if (iteratorTypeName != targetIteratorTypeName)
      continue;
    // Search lhs/rhs map results for 'targetExpr'.
    auto targetExpr = getAffineDimExpr(it.index(), context);
    int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
    int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
    if (lhsDim >= 0 && rhsDim >= 0)
      dimMap.push_back({lhsDim, rhsDim});
  }
  return dimMap;
}

void ContractionOp::getIterationBounds(
    SmallVectorImpl<int64_t> &iterationBounds) {
  auto lhsShape = getLhsType().getShape();
  auto resVectorType = getResultType().dyn_cast<VectorType>();
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
  SmallVector<int64_t, 2> iterationShape;
  for (auto it : llvm::enumerate(iterator_types())) {
    // Search lhs/rhs map results for 'targetExpr'.
    auto targetExpr = getAffineDimExpr(it.index(), getContext());
    auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
    if (iteratorTypeName == getReductionIteratorTypeName()) {
      // Get reduction dim size from lhs shape (same size in rhsShape).
      int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
      assert(lhsDimIndex >= 0);
      iterationBounds.push_back(lhsShape[lhsDimIndex]);
      continue;
    }
    // Get parallel dimension size from result shape.
    int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
    assert(resDimIndex >= 0);
    assert(resVectorType != nullptr);
    iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
  }
}

void ContractionOp::getIterationIndexMap(
    std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
  unsigned numMaps = indexing_maps().getValue().size();
  iterationIndexMap.resize(numMaps);
  for (auto it : llvm::enumerate(indexing_maps())) {
    auto index = it.index();
    auto map = it.value().cast<AffineMapAttr>().getValue();
    for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
      auto dim = map.getResult(i).cast<AffineDimExpr>();
      iterationIndexMap[index][dim.getPosition()] = i;
    }
  }
}

std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
  return getDimMap(indexingMaps, iterator_types(),
                   getReductionIteratorTypeName(), getContext());
}

std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
  return getDimMap(indexingMaps, iterator_types(),
                   getParallelIteratorTypeName(), getContext());
}

SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() {
  return llvm::to_vector<4>(
      llvm::map_range(indexing_maps().getValue(), [](Attribute mapAttr) {
        return mapAttr.cast<AffineMapAttr>().getValue();
      }));
}

Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
  SmallVector<int64_t, 4> shape;
  getIterationBounds(shape);
  return shape;
}

//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//

void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
                                     Value source, Value position) {
  result.addOperands({source, position});
  result.addTypes(source.getType().cast<VectorType>().getElementType());
}

void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
                                     Value source, int64_t position) {
  Value pos = builder.create<ConstantIntOp>(result.location, position, 32);
  build(builder, result, source, pos);
}

static LogicalResult verify(vector::ExtractElementOp op) {
  VectorType vectorType = op.getVectorType();
  if (vectorType.getRank() != 1)
    return op.emitOpError("expected 1-D vector");
  return success();
}

//===----------------------------------------------------------------------===//
// ExtractOp
//===----------------------------------------------------------------------===//

static Type inferExtractOpResultType(VectorType vectorType,
                                     ArrayAttr position) {
  if (static_cast<int64_t>(position.size()) == vectorType.getRank())
    return vectorType.getElementType();
  return VectorType::get(vectorType.getShape().drop_front(position.size()),
                         vectorType.getElementType());
}

void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
                              Value source, ArrayRef<int64_t> position) {
  result.addOperands(source);
  auto positionAttr = getVectorSubscriptAttr(builder, position);
  result.addTypes(inferExtractOpResultType(source.getType().cast<VectorType>(),
                                           positionAttr));
  result.addAttribute(getPositionAttrName(), positionAttr);
}

// Convenience builder which assumes the values are constant indices.
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
                              Value source, ValueRange position) {
  SmallVector<int64_t, 4> positionConstants =
      llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
        return pos.getDefiningOp<ConstantIndexOp>().getValue();
      }));
  build(builder, result, source, positionConstants);
}

static void print(OpAsmPrinter &p, vector::ExtractOp op) {
  p << op.getOperationName() << " " << op.vector() << op.position();
  p.printOptionalAttrDict(op.getAttrs(), {"position"});
  p << " : " << op.vector().getType();
}

static ParseResult parseExtractOp(OpAsmParser &parser, OperationState &result) {
  llvm::SMLoc attributeLoc, typeLoc;
  NamedAttrList attrs;
  OpAsmParser::OperandType vector;
  Type type;
  Attribute attr;
  if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
      parser.parseAttribute(attr, "position", attrs) ||
      parser.parseOptionalAttrDict(attrs) ||
      parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
    return failure();

  auto vectorType = type.dyn_cast<VectorType>();
  if (!vectorType)
    return parser.emitError(typeLoc, "expected vector type");

  auto positionAttr = attr.dyn_cast<ArrayAttr>();
  if (!positionAttr ||
      static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
    return parser.emitError(
        attributeLoc,
        "expected position attribute of rank smaller than vector rank");

  Type resType = inferExtractOpResultType(vectorType, positionAttr);
  result.attributes = attrs;
  return failure(parser.resolveOperand(vector, type, result.operands) ||
                 parser.addTypeToList(resType, result.types));
}

static LogicalResult verify(vector::ExtractOp op) {
  auto positionAttr = op.position().getValue();
  if (positionAttr.empty())
    return op.emitOpError("expected non-empty position attribute");
  if (positionAttr.size() > static_cast<unsigned>(op.getVectorType().getRank()))
    return op.emitOpError(
        "expected position attribute of rank smaller than vector rank");
  for (auto en : llvm::enumerate(positionAttr)) {
    auto attr = en.value().dyn_cast<IntegerAttr>();
    if (!attr || attr.getInt() < 0 ||
        attr.getInt() >= op.getVectorType().getDimSize(en.index()))
      return op.emitOpError("expected position attribute #")
             << (en.index() + 1)
             << " to be a non-negative integer smaller than the corresponding "
                "vector dimension";
  }
  return success();
}

template <typename IntType>
static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) {
  return llvm::to_vector<4>(llvm::map_range(
      arrayAttr.getAsRange<IntegerAttr>(),
      [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
}

/// Fold the result of chains of ExtractOp in place by simply concatenating the
/// positions.
static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
  if (!extractOp.vector().getDefiningOp<ExtractOp>())
    return failure();

  SmallVector<int64_t, 4> globalPosition;
  ExtractOp currentOp = extractOp;
  auto extractedPos = extractVector<int64_t>(currentOp.position());
  globalPosition.append(extractedPos.rbegin(), extractedPos.rend());
  while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) {
    currentOp = nextOp;
    auto extractedPos = extractVector<int64_t>(currentOp.position());
    globalPosition.append(extractedPos.rbegin(), extractedPos.rend());
  }
  extractOp.setOperand(currentOp.vector());
  // OpBuilder is only used as a helper to build an I64ArrayAttr.
  OpBuilder b(extractOp.getContext());
  std::reverse(globalPosition.begin(), globalPosition.end());
  extractOp.setAttr(ExtractOp::getPositionAttrName(),
                    b.getI64ArrayAttr(globalPosition));
  return success();
}

/// Fold the result of an ExtractOp in place when it comes from a TransposeOp.
static LogicalResult foldExtractOpFromTranspose(ExtractOp extractOp) {
  auto transposeOp = extractOp.vector().getDefiningOp<vector::TransposeOp>();
  if (!transposeOp)
    return failure();

  auto permutation = extractVector<unsigned>(transposeOp.transp());
  auto extractedPos = extractVector<int64_t>(extractOp.position());

  // If transposition permutation is larger than the ExtractOp, all minor
  // dimensions must be an identity for folding to occur. If not, individual
  // elements within the extracted value are transposed and this is not just a
  // simple folding.
  unsigned minorRank = permutation.size() - extractedPos.size();
  MLIRContext *ctx = extractOp.getContext();
  AffineMap permutationMap = AffineMap::getPermutationMap(permutation, ctx);
  AffineMap minorMap = permutationMap.getMinorSubMap(minorRank);
  if (minorMap && !minorMap.isMinorIdentity())
    return failure();

  //   %1 = transpose %0[x, y, z] : vector<axbxcxf32>
  //   %2 = extract %1[u, v] : vector<..xf32>
  // may turn into:
  //   %2 = extract %0[w, x] : vector<..xf32>
  // iff z == 2 and [w, x] = [x, y]^-1 o [u, v] here o denotes composition and
  // -1 denotes the inverse.
  permutationMap = permutationMap.getMajorSubMap(extractedPos.size());
  // The major submap has fewer results but the same number of dims. To compose
  // cleanly, we need to drop dims to form a "square matrix". This is possible
  // because:
  //   (a) this is a permutation map and
  //   (b) the minor map has already been checked to be identity.
  // Therefore, the major map cannot contain dims of position greater or equal
  // than the number of results.
  assert(llvm::all_of(permutationMap.getResults(),
                      [&](AffineExpr e) {
                        auto dim = e.dyn_cast<AffineDimExpr>();
                        return dim && dim.getPosition() <
                                          permutationMap.getNumResults();
                      }) &&
         "Unexpected map results depend on higher rank positions");
  // Project on the first domain dimensions to allow composition.
  permutationMap = AffineMap::get(permutationMap.getNumResults(), 0,
                                  permutationMap.getResults(), ctx);

  extractOp.setOperand(transposeOp.vector());
  // Compose the inverse permutation map with the extractedPos.
  auto newExtractedPos =
      inversePermutation(permutationMap).compose(extractedPos);
  // OpBuilder is only used as a helper to build an I64ArrayAttr.
  OpBuilder b(extractOp.getContext());
  extractOp.setAttr(ExtractOp::getPositionAttrName(),
                    b.getI64ArrayAttr(newExtractedPos));

  return success();
}

/// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. The
/// result is always the input to some InsertOp.
static Value foldExtractOpFromInsertChainAndTranspose(ExtractOp extractOp) {
  MLIRContext *context = extractOp.getContext();
  AffineMap permutationMap;
  auto extractedPos = extractVector<unsigned>(extractOp.position());
  // Walk back a chain of InsertOp/TransposeOp until we hit a match.
  // Compose TransposeOp permutations as we walk back.
  auto insertOp = extractOp.vector().getDefiningOp<vector::InsertOp>();
  auto transposeOp = extractOp.vector().getDefiningOp<vector::TransposeOp>();
  while (insertOp || transposeOp) {
    if (transposeOp) {
      // If it is transposed, compose the map and iterate.
      auto permutation = extractVector<unsigned>(transposeOp.transp());
      AffineMap newMap = AffineMap::getPermutationMap(permutation, context);
      if (!permutationMap)
        permutationMap = newMap;
      else if (newMap.getNumInputs() != permutationMap.getNumResults())
        return Value();
      else
        permutationMap = newMap.compose(permutationMap);
      // Compute insert/transpose for the next iteration.
      Value transposed = transposeOp.vector();
      insertOp = transposed.getDefiningOp<vector::InsertOp>();
      transposeOp = transposed.getDefiningOp<vector::TransposeOp>();
      continue;
    }

    assert(insertOp);
    Value insertionDest = insertOp.dest();
    // If it is inserted into, either the position matches and we have a
    // successful folding; or we iterate until we run out of
    // InsertOp/TransposeOp. This is because `vector.insert %scalar, %vector`
    // produces a new vector with 1 modified value/slice in exactly the static
    // position we need to match.
    auto insertedPos = extractVector<unsigned>(insertOp.position());
    // Trivial permutations are solved with position equality checks.
    if (!permutationMap || permutationMap.isIdentity()) {
      if (extractedPos == insertedPos)
        return insertOp.source();
      // Fallthrough: if the position does not match, just skip to the next
      // producing `vector.insert` / `vector.transpose`.
      // Compute insert/transpose for the next iteration.
      insertOp = insertionDest.getDefiningOp<vector::InsertOp>();
      transposeOp = insertionDest.getDefiningOp<vector::TransposeOp>();
      continue;
    }

    // More advanced permutations require application of the permutation.
    // However, the rank of `insertedPos` may be different from that of the
    // `permutationMap`. To support such case, we need to:
    //   1. apply on the `insertedPos.size()` major dimensions
    //   2. check the other dimensions of the permutation form a minor identity.
    assert(permutationMap.isPermutation() && "expected a permutation");
    if (insertedPos.size() == extractedPos.size()) {
      bool fold = true;
      for (unsigned idx = 0, sz = extractedPos.size(); idx < sz; ++idx) {
        auto pos = permutationMap.getDimPosition(idx);
        if (pos >= sz || insertedPos[pos] != extractedPos[idx]) {
          fold = false;
          break;
        }
      }
      if (fold) {
        assert(permutationMap.getNumResults() >= insertedPos.size() &&
               "expected map of rank larger than insert indexing");
        unsigned minorRank =
            permutationMap.getNumResults() - insertedPos.size();
        AffineMap minorMap = permutationMap.getMinorSubMap(minorRank);
        if (!minorMap || minorMap.isMinorIdentity())
          return insertOp.source();
      }
    }

    // If we haven't found a match, just continue to the next producing
    // `vector.insert` / `vector.transpose`.
    // Compute insert/transpose for the next iteration.
    insertOp = insertionDest.getDefiningOp<vector::InsertOp>();
    transposeOp = insertionDest.getDefiningOp<vector::TransposeOp>();
  }
  return Value();
}

/// Fold extractOp with scalar result coming from BroadcastOp.
static Value foldExtractFromBroadcast(ExtractOp extractOp) {
  auto broadcastOp = extractOp.vector().getDefiningOp<vector::BroadcastOp>();
  if (!broadcastOp)
    return Value();
  if (extractOp.getType() == broadcastOp.getSourceType())
    return broadcastOp.source();
  auto getRank = [](Type type) {
    return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
  };
  unsigned broadcasrSrcRank = getRank(broadcastOp.getSourceType());
  unsigned extractResultRank = getRank(extractOp.getType());
  if (extractResultRank < broadcasrSrcRank) {
    auto extractPos = extractVector<int64_t>(extractOp.position());
    unsigned rankDiff = broadcasrSrcRank - extractResultRank;
    extractPos.erase(
        extractPos.begin(),
        std::next(extractPos.begin(), extractPos.size() - rankDiff));
    extractOp.setOperand(broadcastOp.source());
    // OpBuilder is only used as a helper to build an I64ArrayAttr.
    OpBuilder b(extractOp.getContext());
    extractOp.setAttr(ExtractOp::getPositionAttrName(),
                      b.getI64ArrayAttr(extractPos));
    return extractOp.getResult();
  }
  // TODO: In case the rank of the broadcast source is greater than the rank of
  // the extract result this can be combined into a new broadcast op. This needs
  // to be added a canonicalization pattern if needed.
  return Value();
}

// Fold extractOp with source coming from ShapeCast op.
static Value foldExtractFromShapeCast(ExtractOp extractOp) {
  auto shapeCastOp = extractOp.vector().getDefiningOp<vector::ShapeCastOp>();
  if (!shapeCastOp)
    return Value();
  // Get the nth dimension size starting from lowest dimension.
  auto getDimReverse = [](VectorType type, int64_t n) {
    return type.getShape().take_back(n+1).front();
  };
  int64_t destinationRank =
      extractOp.getType().isa<VectorType>()
          ? extractOp.getType().cast<VectorType>().getRank()
          : 0;
  if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
    return Value();
  if (destinationRank > 0) {
    auto destinationType = extractOp.getResult().getType().cast<VectorType>();
    for (int64_t i = 0; i < destinationRank; i++) {
      // The lowest dimension of of the destination must match the lowest
      // dimension of the shapecast op source.
      // TODO: This case could be support in a canonicalization pattern.
      if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
          getDimReverse(destinationType, i))
        return Value();
    }
  }
  // Extract the strides associated with the extract op vector source. Then use
  // this to calculate a linearized position for the extract.
  auto extractedPos = extractVector<int64_t>(extractOp.position());
  std::reverse(extractedPos.begin(), extractedPos.end());
  SmallVector<int64_t, 4> strides;
  int64_t stride = 1;
  for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
    strides.push_back(stride);
    stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
  }

  int64_t position = linearize(extractedPos, strides);
  // Then extract the strides associated to the shapeCast op vector source and
  // delinearize the position using those strides.
  SmallVector<int64_t, 4> newStrides;
  int64_t numDimension =
      shapeCastOp.getSourceVectorType().getRank() - destinationRank;
  stride = 1;
  for (int64_t i = 0; i < numDimension; i++) {
    newStrides.push_back(stride);
    stride *=
        getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
  }
  std::reverse(newStrides.begin(), newStrides.end());
  SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
  // OpBuilder is only used as a helper to build an I64ArrayAttr.
  OpBuilder b(extractOp.getContext());
  extractOp.setAttr(ExtractOp::getPositionAttrName(),
                    b.getI64ArrayAttr(newPosition));
  extractOp.setOperand(shapeCastOp.source());
  return extractOp.getResult();
}

OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
  if (succeeded(foldExtractOpFromExtractChain(*this)))
    return getResult();
  if (succeeded(foldExtractOpFromTranspose(*this)))
    return getResult();
  if (auto val = foldExtractOpFromInsertChainAndTranspose(*this))
    return val;
  if (auto val = foldExtractFromBroadcast(*this))
    return val;
  if (auto val = foldExtractFromShapeCast(*this))
    return val;
  return OpFoldResult();
}

//===----------------------------------------------------------------------===//
// ExtractSlicesOp
//===----------------------------------------------------------------------===//

void ExtractSlicesOp::build(OpBuilder &builder, OperationState &result,
                            TupleType tupleType, Value vector,
                            ArrayRef<int64_t> sizes,
                            ArrayRef<int64_t> strides) {
  result.addOperands(vector);
  auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
  auto stridesAttr = getVectorSubscriptAttr(builder, strides);
  result.addTypes(tupleType);
  result.addAttribute(getSizesAttrName(), sizesAttr);
  result.addAttribute(getStridesAttrName(), stridesAttr);
}

static LogicalResult
isValidExtractOrInsertSlicesType(Operation *op, VectorType vectorType,
                                 TupleType tupleType, ArrayRef<int64_t> sizes,
                                 ArrayRef<int64_t> strides) {
  // Check for non-unit strides.
  // TODO: Support non-1 strides.
  if (llvm::any_of(strides, [](int64_t s) { return s != 1; }))
    return op->emitError("requires unit strides");
  // Check that 'vectorType' rank matches rank of tuple element vectors.
  unsigned rank = vectorType.getRank();
  auto is_vector_type_of_rank = [&](Type t) {
    return t.isa<VectorType>() && t.cast<VectorType>().getRank() == rank;
  };
  if (!llvm::all_of(tupleType.getTypes(), is_vector_type_of_rank))
    return op->emitError("requires vector tuple elements of rank ") << rank;
  // Check that 'sizes' and 'strides' are of size == 'rank'.
  if (sizes.size() != rank || strides.size() != rank)
    return op->emitError("requires sizes and strides of rank ") << rank;

  // Generate each slice shape based on 'sizes', 'strides' and 'vectorType',
  // and verify that the same matches the corresponding tuple element 'i'.
  auto shape = vectorType.getShape();
  auto sliceStrides = computeStrides(shape, sizes);
  for (int64_t i = 0, e = tupleType.size(); i < e; ++i) {
    auto vectorOffsets = delinearize(sliceStrides, i);
    auto elementOffsets =
        computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
    auto sliceSizes = computeSliceSizes(shape, sizes, elementOffsets);
    // Create slice VectorType type.
    auto sliceVectorType =
        VectorType::get(sliceSizes, vectorType.getElementType());
    // Verify that 'sliceVectorType' matches tupleType.getTypes(i)
    if (sliceVectorType != tupleType.getType(i))
      return op->emitError("invalid tuple element type ") << sliceVectorType;
  }
  return success();
}

static LogicalResult verify(ExtractSlicesOp op) {
  SmallVector<int64_t, 4> sizes;
  op.getSizes(sizes);
  SmallVector<int64_t, 4> strides;
  op.getStrides(strides);
  return isValidExtractOrInsertSlicesType(
      op.getOperation(), op.getSourceVectorType(), op.getResultTupleType(),
      sizes, strides);
}

static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
                                       SmallVectorImpl<int64_t> &results) {
  for (auto attr : arrayAttr)
    results.push_back(attr.cast<IntegerAttr>().getInt());
}

void ExtractSlicesOp::getSizes(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(sizes(), results);
}

void ExtractSlicesOp::getStrides(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(strides(), results);
}

//===----------------------------------------------------------------------===//
// ExtractMapOp
//===----------------------------------------------------------------------===//

void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
                         Value vector, ValueRange ids,
                         ArrayRef<int64_t> multiplicity,
                         AffineMap permutationMap) {
  assert(ids.size() == multiplicity.size() &&
         ids.size() == permutationMap.getNumResults());
  assert(permutationMap.isProjectedPermutation());
  VectorType type = vector.getType().cast<VectorType>();
  SmallVector<int64_t, 4> newShape(type.getShape().begin(),
                                   type.getShape().end());
  for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
    AffineExpr expr = permutationMap.getResult(i);
    auto dim = expr.cast<AffineDimExpr>();
    newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
  }
  VectorType resultType = VectorType::get(newShape, type.getElementType());
  ExtractMapOp::build(builder, result, resultType, vector, ids);
}

static LogicalResult verify(ExtractMapOp op) {
  if (op.getSourceVectorType().getRank() != op.getResultType().getRank())
    return op.emitOpError(
        "expected source and destination vectors of same rank");
  unsigned numId = 0;
  for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; ++i) {
    if (op.getSourceVectorType().getDimSize(i) %
            op.getResultType().getDimSize(i) !=
        0)
      return op.emitOpError("source vector dimensions must be a multiple of "
                            "destination vector dimensions");
    if (op.getSourceVectorType().getDimSize(i) !=
        op.getResultType().getDimSize(i))
      numId++;
  }
  if (numId != op.ids().size())
    return op.emitOpError("expected number of ids must match the number of "
                          "dimensions distributed");
  return success();
}

OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
  auto insert = vector().getDefiningOp<vector::InsertMapOp>();
  if (insert == nullptr || getType() != insert.vector().getType() ||
      ids() != insert.ids())
    return {};
  return insert.vector();
}

void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
  assert(multiplicity.empty());
  for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
    if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
      multiplicity.push_back(getSourceVectorType().getDimSize(i) /
                             getResultType().getDimSize(i));
  }
}

template <typename MapOp>
AffineMap calculateImplicitMap(MapOp op) {
  SmallVector<AffineExpr, 4> perm;
  // Check which dimension have a multiplicity greater than 1 and associated
  // them to the IDs in order.
  for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
    if (op.getSourceVectorType().getDimSize(i) !=
        op.getResultType().getDimSize(i))
      perm.push_back(getAffineDimExpr(i, op.getContext()));
  }
  auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
                            op.getContext());
  return map;
}

AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }

//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(BroadcastOp op) {
  VectorType srcVectorType = op.getSourceType().dyn_cast<VectorType>();
  VectorType dstVectorType = op.getVectorType();
  // Scalar to vector broadcast is always valid. A vector
  // to vector broadcast needs some additional checking.
  if (srcVectorType) {
    int64_t srcRank = srcVectorType.getRank();
    int64_t dstRank = dstVectorType.getRank();
    if (srcRank > dstRank)
      return op.emitOpError("source rank higher than destination rank");
    // Source has an exact match or singleton value for all trailing dimensions
    // (all leading dimensions are simply duplicated).
    int64_t lead = dstRank - srcRank;
    for (int64_t r = 0; r < srcRank; ++r) {
      int64_t srcDim = srcVectorType.getDimSize(r);
      int64_t dstDim = dstVectorType.getDimSize(lead + r);
      if (srcDim != 1 && srcDim != dstDim)
        return op.emitOpError("dimension mismatch (")
               << srcDim << " vs. " << dstDim << ")";
    }
  }
  return success();
}

OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
  if (!operands[0])
    return {};
  auto vectorType = getVectorType();
  if (operands[0].getType().isIntOrIndexOrFloat())
    return DenseElementsAttr::get(vectorType, operands[0]);
  if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
    return DenseElementsAttr::get(vectorType, attr.getSplatValue());
  return {};
}

//===----------------------------------------------------------------------===//
// ShuffleOp
//===----------------------------------------------------------------------===//

void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
                      Value v2, ArrayRef<int64_t> mask) {
  result.addOperands({v1, v2});
  auto maskAttr = getVectorSubscriptAttr(builder, mask);
  result.addTypes(v1.getType());
  result.addAttribute(getMaskAttrName(), maskAttr);
}

static void print(OpAsmPrinter &p, ShuffleOp op) {
  p << op.getOperationName() << " " << op.v1() << ", " << op.v2() << " "
    << op.mask();
  p.printOptionalAttrDict(op.getAttrs(), {ShuffleOp::getMaskAttrName()});
  p << " : " << op.v1().getType() << ", " << op.v2().getType();
}

static LogicalResult verify(ShuffleOp op) {
  VectorType resultType = op.getVectorType();
  VectorType v1Type = op.getV1VectorType();
  VectorType v2Type = op.getV2VectorType();
  // Verify ranks.
  int64_t resRank = resultType.getRank();
  int64_t v1Rank = v1Type.getRank();
  int64_t v2Rank = v2Type.getRank();
  if (resRank != v1Rank || v1Rank != v2Rank)
    return op.emitOpError("rank mismatch");
  // Verify all but leading dimension sizes.
  for (int64_t r = 1; r < v1Rank; ++r) {
    int64_t resDim = resultType.getDimSize(r);
    int64_t v1Dim = v1Type.getDimSize(r);
    int64_t v2Dim = v2Type.getDimSize(r);
    if (resDim != v1Dim || v1Dim != v2Dim)
      return op.emitOpError("dimension mismatch");
  }
  // Verify mask length.
  auto maskAttr = op.mask().getValue();
  int64_t maskLength = maskAttr.size();
  if (maskLength != resultType.getDimSize(0))
    return op.emitOpError("mask length mismatch");
  // Verify all indices.
  int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
  for (auto en : llvm::enumerate(maskAttr)) {
    auto attr = en.value().dyn_cast<IntegerAttr>();
    if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
      return op.emitOpError("mask index #")
             << (en.index() + 1) << " out of range";
  }
  return success();
}

static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &result) {
  OpAsmParser::OperandType v1, v2;
  Attribute attr;
  VectorType v1Type, v2Type;
  if (parser.parseOperand(v1) || parser.parseComma() ||
      parser.parseOperand(v2) ||
      parser.parseAttribute(attr, ShuffleOp::getMaskAttrName(),
                            result.attributes) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(v1Type) || parser.parseComma() ||
      parser.parseType(v2Type) ||
      parser.resolveOperand(v1, v1Type, result.operands) ||
      parser.resolveOperand(v2, v2Type, result.operands))
    return failure();
  // Construct resulting type: leading dimension matches mask length,
  // all trailing dimensions match the operands.
  auto maskAttr = attr.dyn_cast<ArrayAttr>();
  if (!maskAttr)
    return parser.emitError(parser.getNameLoc(), "missing mask attribute");
  int64_t maskLength = maskAttr.size();
  if (maskLength <= 0)
    return parser.emitError(parser.getNameLoc(), "invalid mask length");
  int64_t v1Rank = v1Type.getRank();
  SmallVector<int64_t, 4> shape;
  shape.reserve(v1Rank);
  shape.push_back(maskLength);
  for (int64_t r = 1; r < v1Rank; ++r)
    shape.push_back(v1Type.getDimSize(r));
  VectorType resType = VectorType::get(shape, v1Type.getElementType());
  parser.addTypeToList(resType, result.types);
  return success();
}

//===----------------------------------------------------------------------===//
// InsertElementOp
//===----------------------------------------------------------------------===//

void InsertElementOp::build(OpBuilder &builder, OperationState &result,
                            Value source, Value dest, Value position) {
  result.addOperands({source, dest, position});
  result.addTypes(dest.getType());
}

void InsertElementOp::build(OpBuilder &builder, OperationState &result,
                            Value source, Value dest, int64_t position) {
  Value pos = builder.create<ConstantIntOp>(result.location, position, 32);
  build(builder, result, source, dest, pos);
}

static LogicalResult verify(InsertElementOp op) {
  auto dstVectorType = op.getDestVectorType();
  if (dstVectorType.getRank() != 1)
    return op.emitOpError("expected 1-D vector");
  return success();
}

//===----------------------------------------------------------------------===//
// InsertOp
//===----------------------------------------------------------------------===//

void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
                     Value dest, ArrayRef<int64_t> position) {
  result.addOperands({source, dest});
  auto positionAttr = getVectorSubscriptAttr(builder, position);
  result.addTypes(dest.getType());
  result.addAttribute(getPositionAttrName(), positionAttr);
}

// Convenience builder which assumes the values are constant indices.
void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
                     Value dest, ValueRange position) {
  SmallVector<int64_t, 4> positionConstants =
      llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
        return pos.getDefiningOp<ConstantIndexOp>().getValue();
      }));
  build(builder, result, source, dest, positionConstants);
}

static LogicalResult verify(InsertOp op) {
  auto positionAttr = op.position().getValue();
  if (positionAttr.empty())
    return op.emitOpError("expected non-empty position attribute");
  auto destVectorType = op.getDestVectorType();
  if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
    return op.emitOpError(
        "expected position attribute of rank smaller than dest vector rank");
  auto srcVectorType = op.getSourceType().dyn_cast<VectorType>();
  if (srcVectorType &&
      (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
       static_cast<unsigned>(destVectorType.getRank())))
    return op.emitOpError("expected position attribute rank + source rank to "
                          "match dest vector rank");
  else if (!srcVectorType && (positionAttr.size() !=
                              static_cast<unsigned>(destVectorType.getRank())))
    return op.emitOpError(
        "expected position attribute rank to match the dest vector rank");
  for (auto en : llvm::enumerate(positionAttr)) {
    auto attr = en.value().dyn_cast<IntegerAttr>();
    if (!attr || attr.getInt() < 0 ||
        attr.getInt() >= destVectorType.getDimSize(en.index()))
      return op.emitOpError("expected position attribute #")
             << (en.index() + 1)
             << " to be a non-negative integer smaller than the corresponding "
                "dest vector dimension";
  }
  return success();
}

//===----------------------------------------------------------------------===//
// InsertSlicesOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(InsertSlicesOp op) {
  SmallVector<int64_t, 4> sizes;
  op.getSizes(sizes);
  SmallVector<int64_t, 4> strides;
  op.getStrides(strides);
  return isValidExtractOrInsertSlicesType(
      op.getOperation(), op.getResultVectorType(), op.getSourceTupleType(),
      sizes, strides);
}

void InsertSlicesOp::getSizes(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(sizes(), results);
}

void InsertSlicesOp::getStrides(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(strides(), results);
}

//===----------------------------------------------------------------------===//
// InsertMapOp
//===----------------------------------------------------------------------===//

void InsertMapOp::build(OpBuilder &builder, OperationState &result,
                        Value vector, Value dest, ValueRange ids) {
  InsertMapOp::build(builder, result, dest.getType(), vector, dest, ids);
}

static LogicalResult verify(InsertMapOp op) {
  if (op.getSourceVectorType().getRank() != op.getResultType().getRank())
    return op.emitOpError(
        "expected source and destination vectors of same rank");
  unsigned numId = 0;
  for (unsigned i = 0, e = op.getResultType().getRank(); i < e; i++) {
    if (op.getResultType().getDimSize(i) %
            op.getSourceVectorType().getDimSize(i) !=
        0)
      return op.emitOpError(
          "destination vector size must be a multiple of source vector size");
    if (op.getResultType().getDimSize(i) !=
        op.getSourceVectorType().getDimSize(i))
      numId++;
  }
  if (numId != op.ids().size())
    return op.emitOpError("expected number of ids must match the number of "
                          "dimensions distributed");
  return success();
}

AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }

//===----------------------------------------------------------------------===//
// InsertStridedSliceOp
//===----------------------------------------------------------------------===//

void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
                                 Value source, Value dest,
                                 ArrayRef<int64_t> offsets,
                                 ArrayRef<int64_t> strides) {
  result.addOperands({source, dest});
  auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
  auto stridesAttr = getVectorSubscriptAttr(builder, strides);
  result.addTypes(dest.getType());
  result.addAttribute(getOffsetsAttrName(), offsetsAttr);
  result.addAttribute(getStridesAttrName(), stridesAttr);
}

// TODO: Should be moved to Tablegen Confined attributes.
template <typename OpType>
static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
                                                        ArrayAttr arrayAttr,
                                                        ArrayRef<int64_t> shape,
                                                        StringRef attrName) {
  if (arrayAttr.size() > shape.size())
    return op.emitOpError("expected ")
           << attrName << " attribute of rank smaller than vector rank";
  return success();
}

// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult
isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
                                  int64_t max, StringRef attrName,
                                  bool halfOpen = true) {
  for (auto attr : arrayAttr) {
    auto val = attr.cast<IntegerAttr>().getInt();
    auto upper = max;
    if (!halfOpen)
      upper += 1;
    if (val < min || val >= upper)
      return op.emitOpError("expected ") << attrName << " to be confined to ["
                                         << min << ", " << upper << ")";
  }
  return success();
}

// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult
isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
                                  ArrayRef<int64_t> shape, StringRef attrName,
                                  bool halfOpen = true, int64_t min = 0) {
  assert(arrayAttr.size() <= shape.size());
  unsigned index = 0;
  for (auto it : llvm::zip(arrayAttr, shape)) {
    auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
    auto max = std::get<1>(it);
    if (!halfOpen)
      max += 1;
    if (val < min || val >= max)
      return op.emitOpError("expected ")
             << attrName << " dimension " << index << " to be confined to ["
             << min << ", " << max << ")";
    ++index;
  }
  return success();
}

// Returns true if all integers in `arrayAttr` are in the interval [min, max}.
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
    OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
    ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
    bool halfOpen = true, int64_t min = 1) {
  assert(arrayAttr1.size() <= shape.size());
  assert(arrayAttr2.size() <= shape.size());
  unsigned index = 0;
  for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
    auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
    auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
    auto max = std::get<2>(it);
    if (!halfOpen)
      max += 1;
    if (val1 + val2 < 0 || val1 + val2 >= max)
      return op.emitOpError("expected sum(")
             << attrName1 << ", " << attrName2 << ") dimension " << index
             << " to be confined to [" << min << ", " << max << ")";
    ++index;
  }
  return success();
}

static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
                                  MLIRContext *context) {
  auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
    return IntegerAttr::get(IntegerType::get(64, context), APInt(64, v));
  });
  return ArrayAttr::get(llvm::to_vector<8>(attrs), context);
}

static LogicalResult verify(InsertStridedSliceOp op) {
  auto sourceVectorType = op.getSourceVectorType();
  auto destVectorType = op.getDestVectorType();
  auto offsets = op.offsets();
  auto strides = op.strides();
  if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
    return op.emitOpError(
        "expected offsets of same size as destination vector rank");
  if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
    return op.emitOpError(
        "expected strides of same size as source vector rank");
  if (sourceVectorType.getRank() > destVectorType.getRank())
    return op.emitOpError(
        "expected source rank to be smaller than destination rank");

  auto sourceShape = sourceVectorType.getShape();
  auto destShape = destVectorType.getShape();
  SmallVector<int64_t, 4> sourceShapeAsDestShape(
      destShape.size() - sourceShape.size(), 0);
  sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
  auto offName = InsertStridedSliceOp::getOffsetsAttrName();
  auto stridesName = InsertStridedSliceOp::getStridesAttrName();
  if (failed(
          isIntegerArrayAttrConfinedToShape(op, offsets, destShape, offName)) ||
      failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
                                               /*halfOpen=*/false)) ||
      failed(isSumOfIntegerArrayAttrConfinedToShape(
          op, offsets,
          makeI64ArrayAttr(sourceShapeAsDestShape, op.getContext()), destShape,
          offName, "source vector shape",
          /*halfOpen=*/false, /*min=*/1)))
    return failure();

  return success();
}

//===----------------------------------------------------------------------===//
// OuterProductOp
//===----------------------------------------------------------------------===//

/// Build an op without mask, use the type of `acc` as the return type.
void OuterProductOp::build(OpBuilder &builder, OperationState &result,
                           Value lhs, Value rhs, Value acc) {
  result.addOperands({lhs, rhs, acc});
  result.addTypes(acc.getType());
}

static void print(OpAsmPrinter &p, OuterProductOp op) {
  p << op.getOperationName() << " " << op.lhs() << ", " << op.rhs();
  if (!op.acc().empty())
    p << ", " << op.acc();
  p << " : " << op.lhs().getType() << ", " << op.rhs().getType();
}

static ParseResult parseOuterProductOp(OpAsmParser &parser,
                                       OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
  Type tLHS, tRHS;
  if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) ||
      parser.parseComma() || parser.parseType(tRHS))
    return failure();
  if (operandsInfo.size() < 2)
    return parser.emitError(parser.getNameLoc(),
                            "expected at least 2 operands");
  VectorType vLHS = tLHS.dyn_cast<VectorType>();
  VectorType vRHS = tRHS.dyn_cast<VectorType>();
  if (!vLHS)
    return parser.emitError(parser.getNameLoc(),
                            "expected vector type for operand #1");
  VectorType resType =
      vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
                             vLHS.getElementType())
           : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
  return failure(
      parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
      parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
      (operandsInfo.size() > 2 &&
       parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
      parser.addTypeToList(resType, result.types));
}

static LogicalResult verify(OuterProductOp op) {
  Type tRHS = op.getOperandTypeRHS();
  VectorType vLHS = op.getOperandVectorTypeLHS(),
             vRHS = tRHS.dyn_cast<VectorType>(),
             vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType();

  if (vLHS.getRank() != 1)
    return op.emitOpError("expected 1-d vector for operand #1");

  if (vRHS) {
    // Proper OUTER operation.
    if (vRHS.getRank() != 1)
      return op.emitOpError("expected 1-d vector for operand #2");
    if (vRES.getRank() != 2)
      return op.emitOpError("expected 2-d vector result");
    if (vLHS.getDimSize(0) != vRES.getDimSize(0))
      return op.emitOpError("expected #1 operand dim to match result dim #1");
    if (vRHS.getDimSize(0) != vRES.getDimSize(1))
      return op.emitOpError("expected #2 operand dim to match result dim #2");
  } else {
    // An AXPY operation.
    if (vRES.getRank() != 1)
      return op.emitOpError("expected 1-d vector result");
    if (vLHS.getDimSize(0) != vRES.getDimSize(0))
      return op.emitOpError("expected #1 operand dim to match result dim #1");
  }

  if (vACC && vACC != vRES)
    return op.emitOpError("expected operand #3 of same type as result type");
  return success();
}

//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(ReshapeOp op) {
  // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
  auto inputVectorType = op.getInputVectorType();
  auto outputVectorType = op.getOutputVectorType();
  int64_t inputShapeRank = op.getNumInputShapeSizes();
  int64_t outputShapeRank = op.getNumOutputShapeSizes();
  SmallVector<int64_t, 4> fixedVectorSizes;
  op.getFixedVectorSizes(fixedVectorSizes);
  int64_t numFixedVectorSizes = fixedVectorSizes.size();

  if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
    return op.emitError("invalid input shape for vector type ")
           << inputVectorType;

  if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
    return op.emitError("invalid output shape for vector type ")
           << outputVectorType;

  // Verify that the 'fixedVectorSizes' match an input/output vector shape
  // suffix.
  unsigned inputVectorRank = inputVectorType.getRank();
  for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
    unsigned index = inputVectorRank - numFixedVectorSizes - i;
    if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
      return op.emitError("fixed vector size must match input vector for dim ")
             << i;
  }

  unsigned outputVectorRank = outputVectorType.getRank();
  for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
    unsigned index = outputVectorRank - numFixedVectorSizes - i;
    if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
      return op.emitError("fixed vector size must match output vector for dim ")
             << i;
  }

  // If all shape operands are produced by constant ops, verify that product
  // of dimensions for input/output shape match.
  auto isDefByConstant = [](Value operand) {
    return isa_and_nonnull<ConstantIndexOp>(operand.getDefiningOp());
  };
  if (llvm::all_of(op.input_shape(), isDefByConstant) &&
      llvm::all_of(op.output_shape(), isDefByConstant)) {
    int64_t numInputElements = 1;
    for (auto operand : op.input_shape())
      numInputElements *=
          cast<ConstantIndexOp>(operand.getDefiningOp()).getValue();
    int64_t numOutputElements = 1;
    for (auto operand : op.output_shape())
      numOutputElements *=
          cast<ConstantIndexOp>(operand.getDefiningOp()).getValue();
    if (numInputElements != numOutputElements)
      return op.emitError("product of input and output shape sizes must match");
  }
  return success();
}

void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(fixed_vector_sizes(), results);
}

//===----------------------------------------------------------------------===//
// ExtractStridedSliceOp
//===----------------------------------------------------------------------===//

// Inference works as follows:
//   1. Add 'sizes' from prefix of dims in 'offsets'.
//   2. Add sizes from 'vectorType' for remaining dims.
static Type inferStridedSliceOpResultType(VectorType vectorType,
                                          ArrayAttr offsets, ArrayAttr sizes,
                                          ArrayAttr strides) {
  assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
  SmallVector<int64_t, 4> shape;
  shape.reserve(vectorType.getRank());
  unsigned idx = 0;
  for (unsigned e = offsets.size(); idx < e; ++idx)
    shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
  for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
    shape.push_back(vectorType.getShape()[idx]);

  return VectorType::get(shape, vectorType.getElementType());
}

void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
                                  Value source, ArrayRef<int64_t> offsets,
                                  ArrayRef<int64_t> sizes,
                                  ArrayRef<int64_t> strides) {
  result.addOperands(source);
  auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
  auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
  auto stridesAttr = getVectorSubscriptAttr(builder, strides);
  result.addTypes(
      inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
                                    offsetsAttr, sizesAttr, stridesAttr));
  result.addAttribute(getOffsetsAttrName(), offsetsAttr);
  result.addAttribute(getSizesAttrName(), sizesAttr);
  result.addAttribute(getStridesAttrName(), stridesAttr);
}

static LogicalResult verify(ExtractStridedSliceOp op) {
  auto type = op.getVectorType();
  auto offsets = op.offsets();
  auto sizes = op.sizes();
  auto strides = op.strides();
  if (offsets.size() != sizes.size() || offsets.size() != strides.size()) {
    op.emitOpError(
        "expected offsets, sizes and strides attributes of same size");
    return failure();
  }

  auto shape = type.getShape();
  auto offName = ExtractStridedSliceOp::getOffsetsAttrName();
  auto sizesName = ExtractStridedSliceOp::getSizesAttrName();
  auto stridesName = ExtractStridedSliceOp::getStridesAttrName();
  if (failed(isIntegerArrayAttrSmallerThanShape(op, offsets, shape, offName)) ||
      failed(isIntegerArrayAttrSmallerThanShape(op, sizes, shape, sizesName)) ||
      failed(isIntegerArrayAttrSmallerThanShape(op, strides, shape,
                                                stridesName)) ||
      failed(isIntegerArrayAttrConfinedToShape(op, offsets, shape, offName)) ||
      failed(isIntegerArrayAttrConfinedToShape(op, sizes, shape, sizesName,
                                               /*halfOpen=*/false,
                                               /*min=*/1)) ||
      failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
                                               /*halfOpen=*/false)) ||
      failed(isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, shape,
                                                    offName, sizesName,
                                                    /*halfOpen=*/false)))
    return failure();

  auto resultType = inferStridedSliceOpResultType(
      op.getVectorType(), op.offsets(), op.sizes(), op.strides());
  if (op.getResult().getType() != resultType) {
    op.emitOpError("expected result type to be ") << resultType;
    return failure();
  }

  return success();
}

// When the source of ExtractStrided comes from a chain of InsertStrided ops try
// to use the source of the InsertStrided ops if we can detect that the
// extracted vector is a subset of one of the vector inserted.
static LogicalResult
foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
  // Helper to extract integer out of ArrayAttr.
  auto getElement = [](ArrayAttr array, int idx) {
    return array[idx].cast<IntegerAttr>().getInt();
  };
  ArrayAttr extractOffsets = op.offsets();
  ArrayAttr extractStrides = op.strides();
  ArrayAttr extractSizes = op.sizes();
  auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>();
  while (insertOp) {
    if (op.getVectorType().getRank() !=
        insertOp.getSourceVectorType().getRank())
      return failure();
    ArrayAttr insertOffsets = insertOp.offsets();
    ArrayAttr insertStrides = insertOp.strides();
    // If the rank of extract is greater than the rank of insert, we are likely
    // extracting a partial chunk of the vector inserted.
    if (extractOffsets.size() > insertOffsets.size())
      return failure();
    bool patialoverlap = false;
    bool disjoint = false;
    SmallVector<int64_t, 4> offsetDiffs;
    for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
      if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
        return failure();
      int64_t start = getElement(insertOffsets, dim);
      int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
      int64_t offset = getElement(extractOffsets, dim);
      int64_t size = getElement(extractSizes, dim);
      // Check if the start of the extract offset is in the interval inserted.
      if (start <= offset && offset < end) {
        // If the extract interval overlaps but is not fully included we may
        // have a partial overlap that will prevent any folding.
        if (offset + size > end)
          patialoverlap = true;
        offsetDiffs.push_back(offset - start);
        continue;
      }
      disjoint = true;
      break;
    }
    // The extract element chunk is a subset of the insert element.
    if (!disjoint && !patialoverlap) {
      op.setOperand(insertOp.source());
      // OpBuilder is only used as a helper to build an I64ArrayAttr.
      OpBuilder b(op.getContext());
      op.setAttr(ExtractStridedSliceOp::getOffsetsAttrName(),
                 b.getI64ArrayAttr(offsetDiffs));
      return success();
    }
    // If the chunk extracted is disjoint from the chunk inserted, keep looking
    // in the insert chain.
    if (disjoint)
      insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>();
    else {
      // The extracted vector partially overlap the inserted vector, we cannot
      // fold.
      return failure();
    }
  }
  return failure();
}

OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
  if (getVectorType() == getResult().getType())
    return vector();
  if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
    return getResult();
  return {};
}

void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(offsets(), results);
}

namespace {

// Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> ConstantMaskOp.
class StridedSliceConstantMaskFolder final
    : public OpRewritePattern<ExtractStridedSliceOp> {
public:
  using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
                                PatternRewriter &rewriter) const override {
    // Return if 'extractStridedSliceOp' operand is not defined by a
    // ConstantMaskOp.
    auto defOp = extractStridedSliceOp.vector().getDefiningOp();
    auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
    if (!constantMaskOp)
      return failure();
    // Return if 'extractStridedSliceOp' has non-unit strides.
    if (llvm::any_of(extractStridedSliceOp.strides(), [](Attribute attr) {
          return attr.cast<IntegerAttr>().getInt() != 1;
        }))
      return failure();
    // Gather constant mask dimension sizes.
    SmallVector<int64_t, 4> maskDimSizes;
    populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes);
    // Gather strided slice offsets and sizes.
    SmallVector<int64_t, 4> sliceOffsets;
    populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets);
    SmallVector<int64_t, 4> sliceSizes;
    populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes);

    // Compute slice of vector mask region.
    SmallVector<int64_t, 4> sliceMaskDimSizes;
    assert(sliceOffsets.size() == maskDimSizes.size());
    for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
      int64_t maskDimSize = std::get<0>(it);
      int64_t sliceOffset = std::get<1>(it);
      int64_t sliceSize = std::get<2>(it);
      int64_t sliceMaskDimSize = std::max(
          static_cast<int64_t>(0),
          std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
      sliceMaskDimSizes.push_back(sliceMaskDimSize);
    }
    // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
    // region is a conjunction of mask dim intervals).
    if (llvm::any_of(sliceMaskDimSizes, [](int64_t sz) { return sz == 0; }))
      sliceMaskDimSizes.assign(maskDimSizes.size(), 0);

    // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
    // region.
    rewriter.replaceOpWithNewOp<ConstantMaskOp>(
        extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
        vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
    return success();
  }
};

// Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
class StridedSliceConstantFolder final
    : public OpRewritePattern<ExtractStridedSliceOp> {
public:
  using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
                                PatternRewriter &rewriter) const override {
    // Return if 'extractStridedSliceOp' operand is not defined by a
    // ConstantOp.
    auto constantOp =
        extractStridedSliceOp.vector().getDefiningOp<ConstantOp>();
    if (!constantOp)
      return failure();
    auto dense = constantOp.value().dyn_cast<SplatElementsAttr>();
    if (!dense)
      return failure();
    auto newAttr = DenseElementsAttr::get(
        extractStridedSliceOp.getType().cast<VectorType>(),
        dense.getSplatValue());
    rewriter.replaceOpWithNewOp<ConstantOp>(extractStridedSliceOp, newAttr);
    return success();
  }
};

} // end anonymous namespace

void ExtractStridedSliceOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
  // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
  results.insert<StridedSliceConstantMaskFolder, StridedSliceConstantFolder>(
      context);
}

//===----------------------------------------------------------------------===//
// TransferReadOp
//===----------------------------------------------------------------------===//

template <typename EmitFun>
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
                                          EmitFun emitOpError) {
  SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
  for (auto expr : permutationMap.getResults()) {
    auto dim = expr.dyn_cast<AffineDimExpr>();
    auto zero = expr.dyn_cast<AffineConstantExpr>();
    if (zero) {
      if (zero.getValue() != 0) {
        return emitOpError(
            "requires a projected permutation_map (at most one dim or the zero "
            "constant can appear in each result)");
      }
      continue;
    }
    if (!dim) {
      return emitOpError("requires a projected permutation_map (at most one "
                         "dim or the zero constant can appear in each result)");
    }
    if (seen[dim.getPosition()]) {
      return emitOpError(
          "requires a permutation_map that is a permutation (found one dim "
          "used more than once)");
    }
    seen[dim.getPosition()] = true;
  }
  return success();
}

static LogicalResult verifyTransferOp(Operation *op, MemRefType memrefType,
                                      VectorType vectorType,
                                      AffineMap permutationMap,
                                      ArrayAttr optionalMasked) {
  auto memrefElementType = memrefType.getElementType();
  if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
    // Memref has vector element type.

    unsigned memrefVecSize = memrefVectorElementType.getElementTypeBitWidth() *
                             memrefVectorElementType.getShape().back();
    unsigned resultVecSize =
        vectorType.getElementTypeBitWidth() * vectorType.getShape().back();
    if (resultVecSize % memrefVecSize != 0)
      return op->emitOpError(
          "requires the bitwidth of the minor 1-D vector to be an integral "
          "multiple of the bitwidth of the minor 1-D vector of the memref");

    unsigned memrefVecEltRank = memrefVectorElementType.getRank();
    unsigned resultVecRank = vectorType.getRank();
    if (memrefVecEltRank > resultVecRank)
      return op->emitOpError(
          "requires memref vector element and vector result ranks to match.");
    unsigned rankOffset = resultVecRank - memrefVecEltRank;
    // Check that permutation map results match 'rankOffset' of vector type.
    if (permutationMap.getNumResults() != rankOffset)
      return op->emitOpError("requires a permutation_map with result dims of "
                             "the same rank as the vector type");
  } else {
    // Memref has scalar element type.
    unsigned resultVecSize =
        vectorType.getElementTypeBitWidth() * vectorType.getShape().back();
    if (resultVecSize % memrefElementType.getIntOrFloatBitWidth() != 0)
      return op->emitOpError(
          "requires the bitwidth of the minor 1-D vector to be an integral "
          "multiple of the bitwidth of the memref element type");

    // Check that permutation map results match rank of vector type.
    if (permutationMap.getNumResults() != vectorType.getRank())
      return op->emitOpError("requires a permutation_map with result dims of "
                             "the same rank as the vector type");
  }

  if (permutationMap.getNumSymbols() != 0)
    return op->emitOpError("requires permutation_map without symbols");
  if (permutationMap.getNumInputs() != memrefType.getRank())
    return op->emitOpError("requires a permutation_map with input dims of the "
                           "same rank as the memref type");

  if (optionalMasked) {
    if (permutationMap.getNumResults() !=
        static_cast<int64_t>(optionalMasked.size()))
      return op->emitOpError("expects the optional masked attr of same rank as "
                             "permutation_map results: ")
             << AffineMapAttr::get(permutationMap);
  }

  return success();
}

/// Builder that sets padding to zero.
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
                           VectorType vector, Value memref, ValueRange indices,
                           AffineMap permutationMap,
                           ArrayRef<bool> maybeMasked) {
  Type elemType = memref.getType().cast<MemRefType>().getElementType();
  Value padding = builder.create<ConstantOp>(result.location, elemType,
                                             builder.getZeroAttr(elemType));
  if (maybeMasked.empty())
    return build(builder, result, vector, memref, indices, permutationMap,
                 padding, ArrayAttr());
  ArrayAttr maskedArrayAttr = builder.getBoolArrayAttr(maybeMasked);
  build(builder, result, vector, memref, indices, permutationMap, padding,
        maskedArrayAttr);
}

/// Builder that sets permutation map (resp. padding) to 'getMinorIdentityMap'
/// (resp. zero).
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
                           VectorType vectorType, Value memref,
                           ValueRange indices, ArrayRef<bool> maybeMasked) {
  auto permMap = getTransferMinorIdentityMap(
      memref.getType().cast<MemRefType>(), vectorType);
  build(builder, result, vectorType, memref, indices, permMap, maybeMasked);
}

static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
  SmallVector<StringRef, 2> elidedAttrs;
  if (op.permutation_map() ==
      getTransferMinorIdentityMap(op.getMemRefType(), op.getVectorType()))
    elidedAttrs.push_back(op.getPermutationMapAttrName());
  bool elideMasked = true;
  if (auto maybeMasked = op.masked()) {
    for (auto attr : *maybeMasked) {
      if (!attr.template cast<BoolAttr>().getValue()) {
        elideMasked = false;
        break;
      }
    }
  }
  if (elideMasked)
    elidedAttrs.push_back(op.getMaskedAttrName());
  p.printOptionalAttrDict(op.getAttrs(), elidedAttrs);
}

static void print(OpAsmPrinter &p, TransferReadOp op) {
  p << op.getOperationName() << " " << op.memref() << "[" << op.indices()
    << "], " << op.padding();
  printTransferAttrs(p, cast<VectorTransferOpInterface>(op.getOperation()));
  p << " : " << op.getMemRefType() << ", " << op.getVectorType();
}

static ParseResult parseTransferReadOp(OpAsmParser &parser,
                                       OperationState &result) {
  llvm::SMLoc typesLoc;
  OpAsmParser::OperandType memrefInfo;
  SmallVector<OpAsmParser::OperandType, 8> indexInfo;
  OpAsmParser::OperandType paddingInfo;
  SmallVector<Type, 2> types;
  // Parsing with support for paddingValue.
  if (parser.parseOperand(memrefInfo) ||
      parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
      parser.parseComma() || parser.parseOperand(paddingInfo) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
    return failure();
  if (types.size() != 2)
    return parser.emitError(typesLoc, "requires two types");
  auto indexType = parser.getBuilder().getIndexType();
  MemRefType memRefType = types[0].dyn_cast<MemRefType>();
  if (!memRefType)
    return parser.emitError(typesLoc, "requires memref type");
  VectorType vectorType = types[1].dyn_cast<VectorType>();
  if (!vectorType)
    return parser.emitError(typesLoc, "requires vector type");
  auto permutationAttrName = TransferReadOp::getPermutationMapAttrName();
  auto attr = result.attributes.get(permutationAttrName);
  if (!attr) {
    auto permMap = getTransferMinorIdentityMap(memRefType, vectorType);
    result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
  }
  return failure(
      parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
      parser.resolveOperands(indexInfo, indexType, result.operands) ||
      parser.resolveOperand(paddingInfo, memRefType.getElementType(),
                            result.operands) ||
      parser.addTypeToList(vectorType, result.types));
}

static LogicalResult verify(TransferReadOp op) {
  // Consistency of elemental types in memref and vector.
  MemRefType memrefType = op.getMemRefType();
  VectorType vectorType = op.getVectorType();
  auto paddingType = op.padding().getType();
  auto permutationMap = op.permutation_map();
  auto memrefElementType = memrefType.getElementType();

  if (static_cast<int64_t>(op.indices().size()) != memrefType.getRank())
    return op.emitOpError("requires ") << memrefType.getRank() << " indices";

  if (failed(verifyTransferOp(op.getOperation(), memrefType, vectorType,
                              permutationMap,
                              op.masked() ? *op.masked() : ArrayAttr())))
    return failure();

  if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
    // Memref has vector element type.
    // Check that 'memrefVectorElementType' and 'paddingType' types match.
    if (memrefVectorElementType != paddingType)
      return op.emitOpError(
          "requires memref element type and padding type to match.");

  } else {
    // Check that 'paddingType' is valid to store in a vector type.
    if (!VectorType::isValidElementType(paddingType))
      return op.emitOpError("requires valid padding vector elemental type");

    // Check that padding type and vector element types match.
    if (paddingType != memrefElementType)
      return op.emitOpError(
          "requires formal padding and memref of the same elemental type");
  }

  return verifyPermutationMap(permutationMap,
                              [&op](Twine t) { return op.emitOpError(t); });
}

/// This is a common class used for patterns of the form
/// ```
///    someop(memrefcast) -> someop
/// ```
/// It folds the source of the memref_cast into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
  bool folded = false;
  for (OpOperand &operand : op->getOpOperands()) {
    auto castOp = operand.get().getDefiningOp<MemRefCastOp>();
    if (castOp && canFoldIntoConsumerOp(castOp)) {
      operand.set(castOp.getOperand());
      folded = true;
    }
  }
  return success(folded);
}

template <typename TransferOp>
static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
  // TODO: support more aggressive createOrFold on:
  // `op.indices()[indicesIdx] + vectorType < dim(op.memref(), indicesIdx)`
  if (op.getMemRefType().isDynamicDim(indicesIdx))
    return false;
  Value index = op.indices()[indicesIdx];
  auto cstOp = index.getDefiningOp<ConstantIndexOp>();
  if (!cstOp)
    return false;

  int64_t memrefSize = op.getMemRefType().getDimSize(indicesIdx);
  int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);

  return cstOp.getValue() + vectorSize <= memrefSize;
}

template <typename TransferOp>
static LogicalResult foldTransferMaskAttribute(TransferOp op) {
  AffineMap permutationMap = op.permutation_map();
  if (!permutationMap.isMinorIdentity())
    return failure();
  bool changed = false;
  SmallVector<bool, 4> isMasked;
  isMasked.reserve(op.getTransferRank());
  op.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
    // Already marked unmasked, nothing to see here.
    if (!op.isMaskedDim(resultIdx)) {
      isMasked.push_back(false);
      return;
    }
    // Currently masked, check whether we can statically determine it is
    // inBounds.
    auto inBounds = isInBounds(op, resultIdx, indicesIdx);
    isMasked.push_back(!inBounds);
    // We commit the pattern if it is "more inbounds".
    changed |= inBounds;
  });
  if (!changed)
    return failure();
  // OpBuilder is only used as a helper to build an I64ArrayAttr.
  OpBuilder b(op.getContext());
  op.setAttr(TransferOp::getMaskedAttrName(), b.getBoolArrayAttr(isMasked));
  return success();
}

OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
  /// transfer_read(memrefcast) -> transfer_read
  if (succeeded(foldTransferMaskAttribute(*this)))
    return getResult();
  if (succeeded(foldMemRefCast(*this)))
    return getResult();
  return OpFoldResult();
}

Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
  auto s = getVectorType().getShape();
  return SmallVector<int64_t, 4>{s.begin(), s.end()};
}

//===----------------------------------------------------------------------===//
// TransferWriteOp
//===----------------------------------------------------------------------===//

/// Builder that sets permutation map to 'getMinorIdentityMap'.
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
                            Value vector, Value memref, ValueRange indices,
                            ArrayRef<bool> maybeMasked) {
  auto vectorType = vector.getType().cast<VectorType>();
  auto permMap = getTransferMinorIdentityMap(
      memref.getType().cast<MemRefType>(), vectorType);
  if (maybeMasked.empty())
    return build(builder, result, vector, memref, indices, permMap,
                 ArrayAttr());
  ArrayAttr maskedArrayAttr = builder.getBoolArrayAttr(maybeMasked);
  build(builder, result, vector, memref, indices, permMap, maskedArrayAttr);
}

void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
                            Value vector, Value memref, ValueRange indices,
                            AffineMap permutationMap) {
  build(builder, result, vector, memref, indices, permutationMap,
        /*maybeMasked=*/ArrayAttr());
}

static ParseResult parseTransferWriteOp(OpAsmParser &parser,
                                        OperationState &result) {
  llvm::SMLoc typesLoc;
  OpAsmParser::OperandType vectorInfo, memrefInfo;
  SmallVector<OpAsmParser::OperandType, 8> indexInfo;
  SmallVector<Type, 2> types;
  if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
      parser.parseOperand(memrefInfo) ||
      parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
    return failure();
  if (types.size() != 2)
    return parser.emitError(typesLoc, "requires two types");
  auto indexType = parser.getBuilder().getIndexType();
  VectorType vectorType = types[0].dyn_cast<VectorType>();
  if (!vectorType)
    return parser.emitError(typesLoc, "requires vector type");
  MemRefType memRefType = types[1].dyn_cast<MemRefType>();
  if (!memRefType)
    return parser.emitError(typesLoc, "requires memref type");
  auto permutationAttrName = TransferWriteOp::getPermutationMapAttrName();
  auto attr = result.attributes.get(permutationAttrName);
  if (!attr) {
    auto permMap = getTransferMinorIdentityMap(memRefType, vectorType);
    result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
  }
  return failure(
      parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
      parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
      parser.resolveOperands(indexInfo, indexType, result.operands));
}

static void print(OpAsmPrinter &p, TransferWriteOp op) {
  p << op.getOperationName() << " " << op.vector() << ", " << op.memref() << "["
    << op.indices() << "]";
  printTransferAttrs(p, cast<VectorTransferOpInterface>(op.getOperation()));
  p << " : " << op.getVectorType() << ", " << op.getMemRefType();
}

static LogicalResult verify(TransferWriteOp op) {
  // Consistency of elemental types in memref and vector.
  MemRefType memrefType = op.getMemRefType();
  VectorType vectorType = op.getVectorType();
  auto permutationMap = op.permutation_map();

  if (llvm::size(op.indices()) != memrefType.getRank())
    return op.emitOpError("requires ") << memrefType.getRank() << " indices";

  if (failed(verifyTransferOp(op.getOperation(), memrefType, vectorType,
                              permutationMap,
                              op.masked() ? *op.masked() : ArrayAttr())))
    return failure();

  return verifyPermutationMap(permutationMap,
                              [&op](Twine t) { return op.emitOpError(t); });
}

LogicalResult TransferWriteOp::fold(ArrayRef<Attribute>,
                                    SmallVectorImpl<OpFoldResult> &) {
  if (succeeded(foldTransferMaskAttribute(*this)))
    return success();
  return foldMemRefCast(*this);
}

Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
  return llvm::to_vector<4>(getVectorType().getShape());
}

//===----------------------------------------------------------------------===//
// MaskedLoadOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(MaskedLoadOp op) {
  VectorType maskVType = op.getMaskVectorType();
  VectorType passVType = op.getPassThruVectorType();
  VectorType resVType = op.getResultVectorType();

  if (resVType.getElementType() != op.getMemRefType().getElementType())
    return op.emitOpError("base and result element type should match");

  if (resVType.getDimSize(0) != maskVType.getDimSize(0))
    return op.emitOpError("expected result dim to match mask dim");
  if (resVType != passVType)
    return op.emitOpError("expected pass_thru of same type as result type");
  return success();
}

namespace {
class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
public:
  using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(MaskedLoadOp load,
                                PatternRewriter &rewriter) const override {
    Value newBase;
    switch (get1DMaskFormat(load.mask())) {
    case MaskFormat::AllTrue:
      if (!castedToMemRef(load.getLoc(), load.base(), load.getMemRefType(),
                          load.getResultVectorType(), rewriter, newBase))
        return failure();
      rewriter.replaceOpWithNewOp<LoadOp>(load, newBase);
      return success();
    case MaskFormat::AllFalse:
      rewriter.replaceOp(load, load.pass_thru());
      return success();
    case MaskFormat::Unknown:
      return failure();
    }
    llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
  }
};
} // namespace

void MaskedLoadOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<MaskedLoadFolder>(context);
}

//===----------------------------------------------------------------------===//
// MaskedStoreOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(MaskedStoreOp op) {
  VectorType maskVType = op.getMaskVectorType();
  VectorType valueVType = op.getValueVectorType();

  if (valueVType.getElementType() != op.getMemRefType().getElementType())
    return op.emitOpError("base and value element type should match");

  if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
    return op.emitOpError("expected value dim to match mask dim");
  return success();
}

namespace {
class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
public:
  using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(MaskedStoreOp store,
                                PatternRewriter &rewriter) const override {
    Value newBase;
    switch (get1DMaskFormat(store.mask())) {
    case MaskFormat::AllTrue:
      if (!castedToMemRef(store.getLoc(), store.base(), store.getMemRefType(),
                          store.getValueVectorType(), rewriter, newBase))
        return failure();
      rewriter.replaceOpWithNewOp<StoreOp>(store, store.value(), newBase);
      return success();
    case MaskFormat::AllFalse:
      rewriter.eraseOp(store);
      return success();
    case MaskFormat::Unknown:
      return failure();
    }
    llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
  }
};
} // namespace

void MaskedStoreOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<MaskedStoreFolder>(context);
}

//===----------------------------------------------------------------------===//
// GatherOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(GatherOp op) {
  VectorType indicesVType = op.getIndicesVectorType();
  VectorType maskVType = op.getMaskVectorType();
  VectorType resVType = op.getResultVectorType();

  if (resVType.getElementType() != op.getMemRefType().getElementType())
    return op.emitOpError("base and result element type should match");

  if (resVType.getDimSize(0) != indicesVType.getDimSize(0))
    return op.emitOpError("expected result dim to match indices dim");
  if (resVType.getDimSize(0) != maskVType.getDimSize(0))
    return op.emitOpError("expected result dim to match mask dim");
  if (llvm::size(op.pass_thru()) != 0) {
    VectorType passVType = op.getPassThruVectorType();
    if (resVType != passVType)
      return op.emitOpError("expected pass_thru of same type as result type");
  }
  return success();
}

namespace {
class GatherFolder final : public OpRewritePattern<GatherOp> {
public:
  using OpRewritePattern<GatherOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GatherOp gather,
                                PatternRewriter &rewriter) const override {
    switch (get1DMaskFormat(gather.mask())) {
    case MaskFormat::AllTrue:
      return failure(); // no unmasked equivalent
    case MaskFormat::AllFalse:
      rewriter.replaceOp(gather, gather.pass_thru());
      return success();
    case MaskFormat::Unknown:
      return failure();
    }
    llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
  }
};
} // namespace

void GatherOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                           MLIRContext *context) {
  results.insert<GatherFolder>(context);
}

//===----------------------------------------------------------------------===//
// ScatterOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(ScatterOp op) {
  VectorType indicesVType = op.getIndicesVectorType();
  VectorType maskVType = op.getMaskVectorType();
  VectorType valueVType = op.getValueVectorType();

  if (valueVType.getElementType() != op.getMemRefType().getElementType())
    return op.emitOpError("base and value element type should match");

  if (valueVType.getDimSize(0) != indicesVType.getDimSize(0))
    return op.emitOpError("expected value dim to match indices dim");
  if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
    return op.emitOpError("expected value dim to match mask dim");
  return success();
}

namespace {
class ScatterFolder final : public OpRewritePattern<ScatterOp> {
public:
  using OpRewritePattern<ScatterOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(ScatterOp scatter,
                                PatternRewriter &rewriter) const override {
    switch (get1DMaskFormat(scatter.mask())) {
    case MaskFormat::AllTrue:
      return failure(); // no unmasked equivalent
    case MaskFormat::AllFalse:
      rewriter.eraseOp(scatter);
      return success();
    case MaskFormat::Unknown:
      return failure();
    }
    llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
  }
};
} // namespace

void ScatterOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                            MLIRContext *context) {
  results.insert<ScatterFolder>(context);
}

//===----------------------------------------------------------------------===//
// ExpandLoadOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(ExpandLoadOp op) {
  VectorType maskVType = op.getMaskVectorType();
  VectorType passVType = op.getPassThruVectorType();
  VectorType resVType = op.getResultVectorType();

  if (resVType.getElementType() != op.getMemRefType().getElementType())
    return op.emitOpError("base and result element type should match");

  if (resVType.getDimSize(0) != maskVType.getDimSize(0))
    return op.emitOpError("expected result dim to match mask dim");
  if (resVType != passVType)
    return op.emitOpError("expected pass_thru of same type as result type");
  return success();
}

namespace {
class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
public:
  using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(ExpandLoadOp expand,
                                PatternRewriter &rewriter) const override {
    Value newBase;
    switch (get1DMaskFormat(expand.mask())) {
    case MaskFormat::AllTrue:
      if (!castedToMemRef(expand.getLoc(), expand.base(),
                          expand.getMemRefType(), expand.getResultVectorType(),
                          rewriter, newBase))
        return failure();
      rewriter.replaceOpWithNewOp<LoadOp>(expand, newBase);
      return success();
    case MaskFormat::AllFalse:
      rewriter.replaceOp(expand, expand.pass_thru());
      return success();
    case MaskFormat::Unknown:
      return failure();
    }
    llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
  }
};
} // namespace

void ExpandLoadOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<ExpandLoadFolder>(context);
}

//===----------------------------------------------------------------------===//
// CompressStoreOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(CompressStoreOp op) {
  VectorType maskVType = op.getMaskVectorType();
  VectorType valueVType = op.getValueVectorType();

  if (valueVType.getElementType() != op.getMemRefType().getElementType())
    return op.emitOpError("base and value element type should match");

  if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
    return op.emitOpError("expected value dim to match mask dim");
  return success();
}

namespace {
class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
public:
  using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(CompressStoreOp compress,
                                PatternRewriter &rewriter) const override {
    Value newBase;
    switch (get1DMaskFormat(compress.mask())) {
    case MaskFormat::AllTrue:
      if (!castedToMemRef(compress.getLoc(), compress.base(),
                          compress.getMemRefType(),
                          compress.getValueVectorType(), rewriter, newBase))
        return failure();
      rewriter.replaceOpWithNewOp<StoreOp>(compress, compress.value(), newBase);
      return success();
    case MaskFormat::AllFalse:
      rewriter.eraseOp(compress);
      return success();
    case MaskFormat::Unknown:
      return failure();
    }
    llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
  }
};
} // namespace

void CompressStoreOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<CompressStoreFolder>(context);
}

//===----------------------------------------------------------------------===//
// ShapeCastOp
//===----------------------------------------------------------------------===//

/// Returns true if each element of 'a' is equal to the product of a contiguous
/// sequence of the elements of 'b'. Returns false otherwise.
static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
  unsigned rankA = a.size();
  unsigned rankB = b.size();
  assert(rankA < rankB);

  unsigned i = 0;
  unsigned j = 0;
  while (i < rankA && j < rankB) {
    int64_t dimA = a[i];
    int64_t dimB = 1;
    while (dimB < dimA && j < rankB)
      dimB *= b[j++];
    if (dimA != dimB)
      break;
    ++i;

    // Handle the case when trailing dimensions are of size 1.
    // Include them into the contiguous sequence.
    auto isOne = [](int64_t v) { return v == 1; };
    if (i < rankA && llvm::all_of(a.slice(i), isOne))
      i = rankA;
    if (j < rankB && llvm::all_of(b.slice(j), isOne))
      j = rankB;
  }

  return i == rankA && j == rankB;
}

static LogicalResult verifyVectorShapeCast(Operation *op,
                                           VectorType sourceVectorType,
                                           VectorType resultVectorType) {
  // Check that element type is the same.
  if (sourceVectorType.getElementType() != resultVectorType.getElementType())
    return op->emitOpError("source/result vectors must have same element type");
  auto sourceShape = sourceVectorType.getShape();
  auto resultShape = resultVectorType.getShape();

  // Check that product of source dim sizes matches product of result dim sizes.
  int64_t sourceDimProduct = std::accumulate(
      sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
  int64_t resultDimProduct = std::accumulate(
      resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
  if (sourceDimProduct != resultDimProduct)
    return op->emitOpError("source/result number of elements must match");

  // Check that expanding/contracting rank cases.
  unsigned sourceRank = sourceVectorType.getRank();
  unsigned resultRank = resultVectorType.getRank();
  if (sourceRank < resultRank) {
    if (!isValidShapeCast(sourceShape, resultShape))
      return op->emitOpError("invalid shape cast");
  } else if (sourceRank > resultRank) {
    if (!isValidShapeCast(resultShape, sourceShape))
      return op->emitOpError("invalid shape cast");
  }
  return success();
}

static LogicalResult verify(ShapeCastOp op) {
  auto sourceVectorType = op.source().getType().dyn_cast_or_null<VectorType>();
  auto resultVectorType = op.result().getType().dyn_cast_or_null<VectorType>();

  // Check if source/result are of vector type.
  if (sourceVectorType && resultVectorType)
    return verifyVectorShapeCast(op, sourceVectorType, resultVectorType);

  // Check if source/result are "tuple of vectors" type.
  auto sourceTupleType = op.source().getType().dyn_cast_or_null<TupleType>();
  auto resultTupleType = op.result().getType().dyn_cast_or_null<TupleType>();
  if (!sourceTupleType || !resultTupleType)
    return op.emitOpError("source/result must be of same type");

  // Check that source/result tuple sizes are the same.
  if (sourceTupleType.size() != resultTupleType.size())
    return op.emitOpError("source/result tuples must be the same size");

  // Check each source/result tuple element pair.
  for (unsigned i = 0, e = sourceTupleType.size(); i < e; ++i)
    if (failed(verifyVectorShapeCast(
            op, sourceTupleType.getType(i).cast<VectorType>(),
            resultTupleType.getType(i).cast<VectorType>())))
      return failure();

  return success();
}

OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
  // Nop shape cast.
  if (source().getType() == result().getType())
    return source();

  // Canceling shape casts.
  if (auto otherOp = source().getDefiningOp<ShapeCastOp>())
    if (result().getType() == otherOp.source().getType())
      return otherOp.source();

  return {};
}

namespace {
// Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
public:
  using OpRewritePattern<ShapeCastOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
                                PatternRewriter &rewriter) const override {
    auto constantOp = shapeCastOp.source().getDefiningOp<ConstantOp>();
    if (!constantOp)
      return failure();
    // Only handle splat for now.
    auto dense = constantOp.value().dyn_cast<SplatElementsAttr>();
    if (!dense)
      return failure();
    auto newAttr = DenseElementsAttr::get(
        shapeCastOp.getType().cast<VectorType>(), dense.getSplatValue());
    rewriter.replaceOpWithNewOp<ConstantOp>(shapeCastOp, newAttr);
    return success();
  }
};

} // namespace

void ShapeCastOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                              MLIRContext *context) {
  // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
  results.insert<ShapeCastConstantFolder>(context);
}

//===----------------------------------------------------------------------===//
// VectorBitCastOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(BitCastOp op) {
  auto sourceVectorType = op.getSourceVectorType();
  auto resultVectorType = op.getResultVectorType();

  for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
    if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
      return op.emitOpError("dimension size mismatch at: ") << i;
  }

  if (sourceVectorType.getElementTypeBitWidth() *
          sourceVectorType.getShape().back() !=
      resultVectorType.getElementTypeBitWidth() *
          resultVectorType.getShape().back())
    return op.emitOpError(
        "source/result bitwidth of the minor 1-D vectors must be equal");

  return success();
}

OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
  // Nop cast.
  if (source().getType() == result().getType())
    return source();

  // Canceling bitcasts.
  if (auto otherOp = source().getDefiningOp<BitCastOp>())
    if (result().getType() == otherOp.source().getType())
      return otherOp.source();

  return {};
}

//===----------------------------------------------------------------------===//
// TypeCastOp
//===----------------------------------------------------------------------===//

static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
  auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
  SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
                              memRefType.getShape().end());
  if (vectorType)
    res.append(vectorType.getShape().begin(), vectorType.getShape().end());
  return res;
}

/// Build the canonical memRefType with a single vector.
/// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
void TypeCastOp::build(OpBuilder &builder, OperationState &result,
                       Value source) {
  result.addOperands(source);
  MemRefType memRefType = source.getType().cast<MemRefType>();
  VectorType vectorType =
      VectorType::get(extractShape(memRefType),
                      getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
  result.addTypes(
      MemRefType::get({}, vectorType, {}, memRefType.getMemorySpace()));
}

static LogicalResult verify(TypeCastOp op) {
  MemRefType canonicalType = canonicalizeStridedLayout(op.getMemRefType());
  if (!canonicalType.getAffineMaps().empty())
    return op.emitOpError("expects operand to be a memref with no layout");
  if (!op.getResultMemRefType().getAffineMaps().empty())
    return op.emitOpError("expects result to be a memref with no layout");
  if (op.getResultMemRefType().getMemorySpace() !=
      op.getMemRefType().getMemorySpace())
    return op.emitOpError("expects result in same memory space");

  auto sourceType = op.getMemRefType();
  auto resultType = op.getResultMemRefType();
  if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
      getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
    return op.emitOpError(
               "expects result and operand with same underlying scalar type: ")
           << resultType;
  if (extractShape(sourceType) != extractShape(resultType))
    return op.emitOpError(
               "expects concatenated result and operand shapes to be equal: ")
           << resultType;
  return success();
}

//===----------------------------------------------------------------------===//
// TupleOp
//===----------------------------------------------------------------------===//

static ParseResult parseTupleOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 4> operandInfos;
  SmallVector<Type, 4> types;
  auto loc = parser.getCurrentLocation();
  auto *ctx = parser.getBuilder().getContext();
  return failure(
      parser.parseOperandList(operandInfos) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonTypeList(types) ||
      parser.resolveOperands(operandInfos, types, loc, result.operands) ||
      parser.addTypeToList(TupleType::get(types, ctx), result.types));
}

static void print(OpAsmPrinter &p, TupleOp op) {
  p << op.getOperationName() << ' ';
  p.printOperands(op.getOperands());
  p.printOptionalAttrDict(op.getAttrs());
  p << " : ";
  llvm::interleaveComma(op->getOperandTypes(), p);
}

static LogicalResult verify(TupleOp op) { return success(); }

//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//

void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
                                Value vector, ArrayRef<int64_t> transp) {
  VectorType vt = vector.getType().cast<VectorType>();
  SmallVector<int64_t, 4> transposedShape(vt.getRank());
  for (unsigned i = 0; i < transp.size(); ++i)
    transposedShape[i] = vt.getShape()[transp[i]];

  result.addOperands(vector);
  result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
  result.addAttribute(getTranspAttrName(), builder.getI64ArrayAttr(transp));
}

// Eliminates transpose operations, which produce values identical to their
// input values. This happens when the dimensions of the input vector remain in
// their original order after the transpose operation.
OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
  SmallVector<int64_t, 4> transp;
  getTransp(transp);

  // Check if the permutation of the dimensions contains sequential values:
  // {0, 1, 2, ...}.
  for (int64_t i = 0, e = transp.size(); i < e; i++) {
    if (transp[i] != i)
      return {};
  }

  return vector();
}

static LogicalResult verify(vector::TransposeOp op) {
  VectorType vectorType = op.getVectorType();
  VectorType resultType = op.getResultType();
  int64_t rank = resultType.getRank();
  if (vectorType.getRank() != rank)
    return op.emitOpError("vector result rank mismatch: ") << rank;
  // Verify transposition array.
  auto transpAttr = op.transp().getValue();
  int64_t size = transpAttr.size();
  if (rank != size)
    return op.emitOpError("transposition length mismatch: ") << size;
  SmallVector<bool, 8> seen(rank, false);
  for (auto ta : llvm::enumerate(transpAttr)) {
    int64_t i = ta.value().cast<IntegerAttr>().getInt();
    if (i < 0 || i >= rank)
      return op.emitOpError("transposition index out of range: ") << i;
    if (seen[i])
      return op.emitOpError("duplicate position index: ") << i;
    seen[i] = true;
    if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
      return op.emitOpError("dimension size mismatch at: ") << i;
  }
  return success();
}

namespace {

// Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
public:
  using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
                                PatternRewriter &rewriter) const override {
    // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
    auto getPermutation = [](vector::TransposeOp transpose) {
      SmallVector<int64_t, 4> permutation;
      transpose.getTransp(permutation);
      return permutation;
    };

    // Composes two permutations: result[i] = permutation1[permutation2[i]].
    auto composePermutations = [](ArrayRef<int64_t> permutation1,
                                  ArrayRef<int64_t> permutation2) {
      SmallVector<int64_t, 4> result;
      for (auto index : permutation2)
        result.push_back(permutation1[index]);
      return result;
    };

    // Return if the input of 'transposeOp' is not defined by another transpose.
    vector::TransposeOp parentTransposeOp =
        transposeOp.vector().getDefiningOp<vector::TransposeOp>();
    if (!parentTransposeOp)
      return failure();

    SmallVector<int64_t, 4> permutation = composePermutations(
        getPermutation(parentTransposeOp), getPermutation(transposeOp));
    // Replace 'transposeOp' with a new transpose operation.
    rewriter.replaceOpWithNewOp<vector::TransposeOp>(
        transposeOp, transposeOp.getResult().getType(),
        parentTransposeOp.vector(),
        vector::getVectorSubscriptAttr(rewriter, permutation));
    return success();
  }
};

} // end anonymous namespace

void vector::TransposeOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<TransposeFolder>(context);
}

void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(transp(), results);
}

//===----------------------------------------------------------------------===//
// TupleGetOp
//===----------------------------------------------------------------------===//

static ParseResult parseTupleGetOp(OpAsmParser &parser,
                                   OperationState &result) {
  OpAsmParser::OperandType operandInfo;
  IntegerAttr indexAttr;
  StringRef indexAttrName = TupleGetOp::getIndexAttrName();
  Type indexType = parser.getBuilder().getIndexType();
  TupleType tupleType;
  if (parser.parseOperand(operandInfo) || parser.parseComma() ||
      parser.parseAttribute(indexAttr, indexType, indexAttrName,
                            result.attributes) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(tupleType) ||
      parser.resolveOperand(operandInfo, tupleType, result.operands))
    return failure();
  if (indexAttr.getInt() < 0 ||
      indexAttr.getInt() >= static_cast<int64_t>(tupleType.size()))
    return failure();
  parser.addTypeToList(tupleType.getType(indexAttr.getInt()), result.types);
  return success();
}

static void print(OpAsmPrinter &p, TupleGetOp op) {
  p << op.getOperationName() << ' ' << op.getOperand() << ", " << op.index();
  p.printOptionalAttrDict(op.getAttrs(),
                          /*elidedAttrs=*/{TupleGetOp::getIndexAttrName()});
  p << " : " << op.getOperand().getType();
}

static LogicalResult verify(TupleGetOp op) {
  auto tupleType = op.getOperand().getType().cast<TupleType>();
  if (op.getIndex() < 0 ||
      op.getIndex() >= static_cast<int64_t>(tupleType.size()))
    return op.emitOpError("tuple get index out of range");
  return success();
}

OpFoldResult TupleGetOp::fold(ArrayRef<Attribute> operands) {
  // Rewrite:
  //    %t = vector.tuple .., %e_i, ..
  //    %x = vector.tuple_get %t, i
  // into:
  //    %t = vector.tuple .., %e_i, ..  // one less use
  //    %x = %e_i
  if (auto tupleOp = getOperand().getDefiningOp<TupleOp>())
    return tupleOp.getOperand(getIndex());
  return {};
}

//===----------------------------------------------------------------------===//
// ConstantMaskOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(ConstantMaskOp &op) {
  // Verify that array attr size matches the rank of the vector result.
  auto resultType = op.getResult().getType().cast<VectorType>();
  if (static_cast<int64_t>(op.mask_dim_sizes().size()) != resultType.getRank())
    return op.emitOpError(
        "must specify array attr of size equal vector result rank");
  // Verify that each array attr element is in bounds of corresponding vector
  // result dimension size.
  auto resultShape = resultType.getShape();
  SmallVector<int64_t, 4> maskDimSizes;
  for (auto it : llvm::enumerate(op.mask_dim_sizes())) {
    int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
    if (attrValue < 0 || attrValue > resultShape[it.index()])
      return op.emitOpError(
          "array attr of size out of bounds of vector result dimension size");
    maskDimSizes.push_back(attrValue);
  }
  // Verify that if one mask dim size is zero, they all should be zero (because
  // the mask region is a conjunction of each mask dimension interval).
  bool any_zeros = llvm::is_contained(maskDimSizes, 0);
  bool all_zeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
  if (any_zeros && !all_zeros)
    return op.emitOpError("expected all mask dim sizes to be zeros, "
                          "as a result of conjunction with zero mask dim");
  return success();
}

//===----------------------------------------------------------------------===//
// CreateMaskOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(CreateMaskOp op) {
  // Verify that an operand was specified for each result vector each dimension.
  if (op.getNumOperands() !=
      op.getResult().getType().cast<VectorType>().getRank())
    return op.emitOpError(
        "must specify an operand for each result vector dimension");
  return success();
}

namespace {

// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
public:
  using OpRewritePattern<CreateMaskOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
                                PatternRewriter &rewriter) const override {
    // Return if any of 'createMaskOp' operands are not defined by a constant.
    auto is_not_def_by_constant = [](Value operand) {
      return !isa_and_nonnull<ConstantIndexOp>(operand.getDefiningOp());
    };
    if (llvm::any_of(createMaskOp.operands(), is_not_def_by_constant))
      return failure();
    // Gather constant mask dimension sizes.
    SmallVector<int64_t, 4> maskDimSizes;
    for (auto operand : createMaskOp.operands()) {
      auto defOp = operand.getDefiningOp();
      maskDimSizes.push_back(cast<ConstantIndexOp>(defOp).getValue());
    }
    // Replace 'createMaskOp' with ConstantMaskOp.
    rewriter.replaceOpWithNewOp<ConstantMaskOp>(
        createMaskOp, createMaskOp.getResult().getType(),
        vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
    return success();
  }
};

} // end anonymous namespace

void CreateMaskOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<CreateMaskFolder>(context);
}

void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
    OwningRewritePatternList &patterns, MLIRContext *context) {
  patterns.insert<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder,
                  GatherFolder, ScatterFolder, ExpandLoadFolder,
                  CompressStoreFolder, StridedSliceConstantMaskFolder,
                  TransposeFolder>(context);
}

#define GET_OP_CLASSES
#include "mlir/Dialect/Vector/VectorOps.cpp.inc"