//===- PatternApplicator.cpp - Pattern Application Engine -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements an applicator that applies pattern rewrites based upon a // user defined cost model. // //===----------------------------------------------------------------------===// #include "mlir/Rewrite/PatternApplicator.h" #include "ByteCode.h" #include "llvm/Support/Debug.h" using namespace mlir; using namespace mlir::detail; PatternApplicator::PatternApplicator( const FrozenRewritePatternList &frozenPatternList) : frozenPatternList(frozenPatternList) { if (const PDLByteCode *bytecode = frozenPatternList.getPDLByteCode()) { mutableByteCodeState = std::make_unique(); bytecode->initializeMutableState(*mutableByteCodeState); } } PatternApplicator::~PatternApplicator() {} #define DEBUG_TYPE "pattern-match" void PatternApplicator::applyCostModel(CostModel model) { // Apply the cost model to the bytecode patterns first, and then the native // patterns. if (const PDLByteCode *bytecode = frozenPatternList.getPDLByteCode()) { for (auto it : llvm::enumerate(bytecode->getPatterns())) mutableByteCodeState->updatePatternBenefit(it.index(), model(it.value())); } // Separate patterns by root kind to simplify lookup later on. patterns.clear(); anyOpPatterns.clear(); for (const auto &pat : frozenPatternList.getNativePatterns()) { // If the pattern is always impossible to match, just ignore it. if (pat.getBenefit().isImpossibleToMatch()) { LLVM_DEBUG({ llvm::dbgs() << "Ignoring pattern '" << pat.getRootKind() << "' because it is impossible to match (by pattern benefit)\n"; }); continue; } if (Optional opName = pat.getRootKind()) patterns[*opName].push_back(&pat); else anyOpPatterns.push_back(&pat); } // Sort the patterns using the provided cost model. llvm::SmallDenseMap benefits; auto cmp = [&benefits](const Pattern *lhs, const Pattern *rhs) { return benefits[lhs] > benefits[rhs]; }; auto processPatternList = [&](SmallVectorImpl &list) { // Special case for one pattern in the list, which is the most common case. if (list.size() == 1) { if (model(*list.front()).isImpossibleToMatch()) { LLVM_DEBUG({ llvm::dbgs() << "Ignoring pattern '" << list.front()->getRootKind() << "' because it is impossible to match or cannot lead " "to legal IR (by cost model)\n"; }); list.clear(); } return; } // Collect the dynamic benefits for the current pattern list. benefits.clear(); for (const Pattern *pat : list) benefits.try_emplace(pat, model(*pat)); // Sort patterns with highest benefit first, and remove those that are // impossible to match. std::stable_sort(list.begin(), list.end(), cmp); while (!list.empty() && benefits[list.back()].isImpossibleToMatch()) { LLVM_DEBUG({ llvm::dbgs() << "Ignoring pattern '" << list.back()->getRootKind() << "' because it is impossible to match or cannot lead to " "legal IR (by cost model)\n"; }); list.pop_back(); } }; for (auto &it : patterns) processPatternList(it.second); processPatternList(anyOpPatterns); } void PatternApplicator::walkAllPatterns( function_ref walk) { for (const Pattern &it : frozenPatternList.getNativePatterns()) walk(it); if (const PDLByteCode *bytecode = frozenPatternList.getPDLByteCode()) { for (const Pattern &it : bytecode->getPatterns()) walk(it); } } LogicalResult PatternApplicator::matchAndRewrite( Operation *op, PatternRewriter &rewriter, function_ref canApply, function_ref onFailure, function_ref onSuccess) { // Before checking native patterns, first match against the bytecode. This // won't automatically perform any rewrites so there is no need to worry about // conflicts. SmallVector pdlMatches; const PDLByteCode *bytecode = frozenPatternList.getPDLByteCode(); if (bytecode) bytecode->match(op, rewriter, pdlMatches, *mutableByteCodeState); // Check to see if there are patterns matching this specific operation type. MutableArrayRef opPatterns; auto patternIt = patterns.find(op->getName()); if (patternIt != patterns.end()) opPatterns = patternIt->second; // Process the patterns for that match the specific operation type, and any // operation type in an interleaved fashion. auto opIt = opPatterns.begin(), opE = opPatterns.end(); auto anyIt = anyOpPatterns.begin(), anyE = anyOpPatterns.end(); auto pdlIt = pdlMatches.begin(), pdlE = pdlMatches.end(); while (true) { // Find the next pattern with the highest benefit. const Pattern *bestPattern = nullptr; const PDLByteCode::MatchResult *pdlMatch = nullptr; /// Operation specific patterns. if (opIt != opE) bestPattern = *(opIt++); /// Operation agnostic patterns. if (anyIt != anyE && (!bestPattern || bestPattern->getBenefit() < (*anyIt)->getBenefit())) bestPattern = *(anyIt++); /// PDL patterns. if (pdlIt != pdlE && (!bestPattern || bestPattern->getBenefit() < pdlIt->benefit)) { pdlMatch = pdlIt; bestPattern = (pdlIt++)->pattern; } if (!bestPattern) break; // Check that the pattern can be applied. if (canApply && !canApply(*bestPattern)) continue; // Try to match and rewrite this pattern. The patterns are sorted by // benefit, so if we match we can immediately rewrite. For PDL patterns, the // match has already been performed, we just need to rewrite. rewriter.setInsertionPoint(op); LogicalResult result = success(); if (pdlMatch) { bytecode->rewrite(rewriter, *pdlMatch, *mutableByteCodeState); } else { result = static_cast(bestPattern) ->matchAndRewrite(op, rewriter); } if (succeeded(result) && (!onSuccess || succeeded(onSuccess(*bestPattern)))) return success(); // Perform any necessary cleanups. if (onFailure) onFailure(*bestPattern); } return failure(); }