//===- RegionUtils.cpp - Region-related transformation utilities ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Transforms/RegionUtils.h" #include "mlir/IR/Block.h" #include "mlir/IR/Operation.h" #include "mlir/IR/RegionGraphTraits.h" #include "mlir/IR/Value.h" #include "mlir/Interfaces/ControlFlowInterfaces.h" #include "mlir/Interfaces/SideEffectInterfaces.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallSet.h" using namespace mlir; void mlir::replaceAllUsesInRegionWith(Value orig, Value replacement, Region ®ion) { for (auto &use : llvm::make_early_inc_range(orig.getUses())) { if (region.isAncestor(use.getOwner()->getParentRegion())) use.set(replacement); } } void mlir::visitUsedValuesDefinedAbove( Region ®ion, Region &limit, function_ref callback) { assert(limit.isAncestor(®ion) && "expected isolation limit to be an ancestor of the given region"); // Collect proper ancestors of `limit` upfront to avoid traversing the region // tree for every value. SmallPtrSet properAncestors; for (auto *reg = limit.getParentRegion(); reg != nullptr; reg = reg->getParentRegion()) { properAncestors.insert(reg); } region.walk([callback, &properAncestors](Operation *op) { for (OpOperand &operand : op->getOpOperands()) // Callback on values defined in a proper ancestor of region. if (properAncestors.count(operand.get().getParentRegion())) callback(&operand); }); } void mlir::visitUsedValuesDefinedAbove( MutableArrayRef regions, function_ref callback) { for (Region ®ion : regions) visitUsedValuesDefinedAbove(region, region, callback); } void mlir::getUsedValuesDefinedAbove(Region ®ion, Region &limit, llvm::SetVector &values) { visitUsedValuesDefinedAbove(region, limit, [&](OpOperand *operand) { values.insert(operand->get()); }); } void mlir::getUsedValuesDefinedAbove(MutableArrayRef regions, llvm::SetVector &values) { for (Region ®ion : regions) getUsedValuesDefinedAbove(region, region, values); } //===----------------------------------------------------------------------===// // Unreachable Block Elimination //===----------------------------------------------------------------------===// /// Erase the unreachable blocks within the provided regions. Returns success /// if any blocks were erased, failure otherwise. // TODO: We could likely merge this with the DCE algorithm below. static LogicalResult eraseUnreachableBlocks(MutableArrayRef regions) { // Set of blocks found to be reachable within a given region. llvm::df_iterator_default_set reachable; // If any blocks were found to be dead. bool erasedDeadBlocks = false; SmallVector worklist; worklist.reserve(regions.size()); for (Region ®ion : regions) worklist.push_back(®ion); while (!worklist.empty()) { Region *region = worklist.pop_back_val(); if (region->empty()) continue; // If this is a single block region, just collect the nested regions. if (std::next(region->begin()) == region->end()) { for (Operation &op : region->front()) for (Region ®ion : op.getRegions()) worklist.push_back(®ion); continue; } // Mark all reachable blocks. reachable.clear(); for (Block *block : depth_first_ext(®ion->front(), reachable)) (void)block /* Mark all reachable blocks */; // Collect all of the dead blocks and push the live regions onto the // worklist. for (Block &block : llvm::make_early_inc_range(*region)) { if (!reachable.count(&block)) { block.dropAllDefinedValueUses(); block.erase(); erasedDeadBlocks = true; continue; } // Walk any regions within this block. for (Operation &op : block) for (Region ®ion : op.getRegions()) worklist.push_back(®ion); } } return success(erasedDeadBlocks); } //===----------------------------------------------------------------------===// // Dead Code Elimination //===----------------------------------------------------------------------===// namespace { /// Data structure used to track which values have already been proved live. /// /// Because Operation's can have multiple results, this data structure tracks /// liveness for both Value's and Operation's to avoid having to look through /// all Operation results when analyzing a use. /// /// This data structure essentially tracks the dataflow lattice. /// The set of values/ops proved live increases monotonically to a fixed-point. class LiveMap { public: /// Value methods. bool wasProvenLive(Value value) { return liveValues.count(value); } void setProvedLive(Value value) { changed |= liveValues.insert(value).second; } /// Operation methods. bool wasProvenLive(Operation *op) { return liveOps.count(op); } void setProvedLive(Operation *op) { changed |= liveOps.insert(op).second; } /// Methods for tracking if we have reached a fixed-point. void resetChanged() { changed = false; } bool hasChanged() { return changed; } private: bool changed = false; DenseSet liveValues; DenseSet liveOps; }; } // namespace static bool isUseSpeciallyKnownDead(OpOperand &use, LiveMap &liveMap) { Operation *owner = use.getOwner(); unsigned operandIndex = use.getOperandNumber(); // This pass generally treats all uses of an op as live if the op itself is // considered live. However, for successor operands to terminators we need a // finer-grained notion where we deduce liveness for operands individually. // The reason for this is easiest to think about in terms of a classical phi // node based SSA IR, where each successor operand is really an operand to a // *separate* phi node, rather than all operands to the branch itself as with // the block argument representation that MLIR uses. // // And similarly, because each successor operand is really an operand to a phi // node, rather than to the terminator op itself, a terminator op can't e.g. // "print" the value of a successor operand. if (owner->isKnownTerminator()) { if (BranchOpInterface branchInterface = dyn_cast(owner)) if (auto arg = branchInterface.getSuccessorBlockArgument(operandIndex)) return !liveMap.wasProvenLive(*arg); return false; } return false; } static void processValue(Value value, LiveMap &liveMap) { bool provedLive = llvm::any_of(value.getUses(), [&](OpOperand &use) { if (isUseSpeciallyKnownDead(use, liveMap)) return false; return liveMap.wasProvenLive(use.getOwner()); }); if (provedLive) liveMap.setProvedLive(value); } static bool isOpIntrinsicallyLive(Operation *op) { // This pass doesn't modify the CFG, so terminators are never deleted. if (!op->isKnownNonTerminator()) return true; // If the op has a side effect, we treat it as live. // TODO: Properly handle region side effects. return !MemoryEffectOpInterface::hasNoEffect(op) || op->getNumRegions() != 0; } static void propagateLiveness(Region ®ion, LiveMap &liveMap); static void propagateTerminatorLiveness(Operation *op, LiveMap &liveMap) { // Terminators are always live. liveMap.setProvedLive(op); // Check to see if we can reason about the successor operands and mutate them. BranchOpInterface branchInterface = dyn_cast(op); if (!branchInterface) { for (Block *successor : op->getSuccessors()) for (BlockArgument arg : successor->getArguments()) liveMap.setProvedLive(arg); return; } // If we can't reason about the operands to a successor, conservatively mark // all arguments as live. for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) { if (!branchInterface.getMutableSuccessorOperands(i)) for (BlockArgument arg : op->getSuccessor(i)->getArguments()) liveMap.setProvedLive(arg); } } static void propagateLiveness(Operation *op, LiveMap &liveMap) { // All Value's are either a block argument or an op result. // We call processValue on those cases. // Recurse on any regions the op has. for (Region ®ion : op->getRegions()) propagateLiveness(region, liveMap); // Process terminator operations. if (op->isKnownTerminator()) return propagateTerminatorLiveness(op, liveMap); // Process the op itself. if (isOpIntrinsicallyLive(op)) { liveMap.setProvedLive(op); return; } for (Value value : op->getResults()) processValue(value, liveMap); bool provedLive = llvm::any_of(op->getResults(), [&](Value value) { return liveMap.wasProvenLive(value); }); if (provedLive) liveMap.setProvedLive(op); } static void propagateLiveness(Region ®ion, LiveMap &liveMap) { if (region.empty()) return; for (Block *block : llvm::post_order(®ion.front())) { // We process block arguments after the ops in the block, to promote // faster convergence to a fixed point (we try to visit uses before defs). for (Operation &op : llvm::reverse(block->getOperations())) propagateLiveness(&op, liveMap); for (Value value : block->getArguments()) processValue(value, liveMap); } } static void eraseTerminatorSuccessorOperands(Operation *terminator, LiveMap &liveMap) { BranchOpInterface branchOp = dyn_cast(terminator); if (!branchOp) return; for (unsigned succI = 0, succE = terminator->getNumSuccessors(); succI < succE; succI++) { // Iterating successors in reverse is not strictly needed, since we // aren't erasing any successors. But it is slightly more efficient // since it will promote later operands of the terminator being erased // first, reducing the quadratic-ness. unsigned succ = succE - succI - 1; Optional succOperands = branchOp.getMutableSuccessorOperands(succ); if (!succOperands) continue; Block *successor = terminator->getSuccessor(succ); for (unsigned argI = 0, argE = succOperands->size(); argI < argE; ++argI) { // Iterating args in reverse is needed for correctness, to avoid // shifting later args when earlier args are erased. unsigned arg = argE - argI - 1; if (!liveMap.wasProvenLive(successor->getArgument(arg))) succOperands->erase(arg); } } } static LogicalResult deleteDeadness(MutableArrayRef regions, LiveMap &liveMap) { bool erasedAnything = false; for (Region ®ion : regions) { if (region.empty()) continue; // We do the deletion in an order that deletes all uses before deleting // defs. // MLIR's SSA structural invariants guarantee that except for block // arguments, the use-def graph is acyclic, so this is possible with a // single walk of ops and then a final pass to clean up block arguments. // // To do this, we visit ops in an order that visits domtree children // before domtree parents. A CFG post-order (with reverse iteration with a // block) satisfies that without needing an explicit domtree calculation. for (Block *block : llvm::post_order(®ion.front())) { eraseTerminatorSuccessorOperands(block->getTerminator(), liveMap); for (Operation &childOp : llvm::make_early_inc_range(llvm::reverse(block->getOperations()))) { erasedAnything |= succeeded(deleteDeadness(childOp.getRegions(), liveMap)); if (!liveMap.wasProvenLive(&childOp)) { erasedAnything = true; childOp.erase(); } } } // Delete block arguments. // The entry block has an unknown contract with their enclosing block, so // skip it. for (Block &block : llvm::drop_begin(region.getBlocks(), 1)) { // Iterate in reverse to avoid shifting later arguments when deleting // earlier arguments. for (unsigned i = 0, e = block.getNumArguments(); i < e; i++) if (!liveMap.wasProvenLive(block.getArgument(e - i - 1))) { block.eraseArgument(e - i - 1); erasedAnything = true; } } } return success(erasedAnything); } // This function performs a simple dead code elimination algorithm over the // given regions. // // The overall goal is to prove that Values are dead, which allows deleting ops // and block arguments. // // This uses an optimistic algorithm that assumes everything is dead until // proved otherwise, allowing it to delete recursively dead cycles. // // This is a simple fixed-point dataflow analysis algorithm on a lattice // {Dead,Alive}. Because liveness flows backward, we generally try to // iterate everything backward to speed up convergence to the fixed-point. This // allows for being able to delete recursively dead cycles of the use-def graph, // including block arguments. // // This function returns success if any operations or arguments were deleted, // failure otherwise. static LogicalResult runRegionDCE(MutableArrayRef regions) { LiveMap liveMap; do { liveMap.resetChanged(); for (Region ®ion : regions) propagateLiveness(region, liveMap); } while (liveMap.hasChanged()); return deleteDeadness(regions, liveMap); } //===----------------------------------------------------------------------===// // Block Merging //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // BlockEquivalenceData namespace { /// This class contains the information for comparing the equivalencies of two /// blocks. Blocks are considered equivalent if they contain the same operations /// in the same order. The only allowed divergence is for operands that come /// from sources outside of the parent block, i.e. the uses of values produced /// within the block must be equivalent. /// e.g., /// Equivalent: /// ^bb1(%arg0: i32) /// return %arg0, %foo : i32, i32 /// ^bb2(%arg1: i32) /// return %arg1, %bar : i32, i32 /// Not Equivalent: /// ^bb1(%arg0: i32) /// return %foo, %arg0 : i32, i32 /// ^bb2(%arg1: i32) /// return %arg1, %bar : i32, i32 struct BlockEquivalenceData { BlockEquivalenceData(Block *block); /// Return the order index for the given value that is within the block of /// this data. unsigned getOrderOf(Value value) const; /// The block this data refers to. Block *block; /// A hash value for this block. llvm::hash_code hash; /// A map of result producing operations to their relative orders within this /// block. The order of an operation is the number of defined values that are /// produced within the block before this operation. DenseMap opOrderIndex; }; } // end anonymous namespace BlockEquivalenceData::BlockEquivalenceData(Block *block) : block(block), hash(0) { unsigned orderIt = block->getNumArguments(); for (Operation &op : *block) { if (unsigned numResults = op.getNumResults()) { opOrderIndex.try_emplace(&op, orderIt); orderIt += numResults; } auto opHash = OperationEquivalence::computeHash( &op, OperationEquivalence::Flags::IgnoreOperands); hash = llvm::hash_combine(hash, opHash); } } unsigned BlockEquivalenceData::getOrderOf(Value value) const { assert(value.getParentBlock() == block && "expected value of this block"); // Arguments use the argument number as the order index. if (BlockArgument arg = value.dyn_cast()) return arg.getArgNumber(); // Otherwise, the result order is offset from the parent op's order. OpResult result = value.cast(); auto opOrderIt = opOrderIndex.find(result.getDefiningOp()); assert(opOrderIt != opOrderIndex.end() && "expected op to have an order"); return opOrderIt->second + result.getResultNumber(); } //===----------------------------------------------------------------------===// // BlockMergeCluster namespace { /// This class represents a cluster of blocks to be merged together. class BlockMergeCluster { public: BlockMergeCluster(BlockEquivalenceData &&leaderData) : leaderData(std::move(leaderData)) {} /// Attempt to add the given block to this cluster. Returns success if the /// block was merged, failure otherwise. LogicalResult addToCluster(BlockEquivalenceData &blockData); /// Try to merge all of the blocks within this cluster into the leader block. LogicalResult merge(); private: /// The equivalence data for the leader of the cluster. BlockEquivalenceData leaderData; /// The set of blocks that can be merged into the leader. llvm::SmallSetVector blocksToMerge; /// A set of operand+index pairs that correspond to operands that need to be /// replaced by arguments when the cluster gets merged. std::set> operandsToMerge; }; } // end anonymous namespace LogicalResult BlockMergeCluster::addToCluster(BlockEquivalenceData &blockData) { if (leaderData.hash != blockData.hash) return failure(); Block *leaderBlock = leaderData.block, *mergeBlock = blockData.block; if (leaderBlock->getArgumentTypes() != mergeBlock->getArgumentTypes()) return failure(); // A set of operands that mismatch between the leader and the new block. SmallVector, 8> mismatchedOperands; auto lhsIt = leaderBlock->begin(), lhsE = leaderBlock->end(); auto rhsIt = blockData.block->begin(), rhsE = blockData.block->end(); for (int opI = 0; lhsIt != lhsE && rhsIt != rhsE; ++lhsIt, ++rhsIt, ++opI) { // Check that the operations are equivalent. if (!OperationEquivalence::isEquivalentTo( &*lhsIt, &*rhsIt, OperationEquivalence::Flags::IgnoreOperands)) return failure(); // Compare the operands of the two operations. If the operand is within // the block, it must refer to the same operation. auto lhsOperands = lhsIt->getOperands(), rhsOperands = rhsIt->getOperands(); for (int operand : llvm::seq(0, lhsIt->getNumOperands())) { Value lhsOperand = lhsOperands[operand]; Value rhsOperand = rhsOperands[operand]; if (lhsOperand == rhsOperand) continue; // Check that the types of the operands match. if (lhsOperand.getType() != rhsOperand.getType()) return failure(); // Check that these uses are both external, or both internal. bool lhsIsInBlock = lhsOperand.getParentBlock() == leaderBlock; bool rhsIsInBlock = rhsOperand.getParentBlock() == mergeBlock; if (lhsIsInBlock != rhsIsInBlock) return failure(); // Let the operands differ if they are defined in a different block. These // will become new arguments if the blocks get merged. if (!lhsIsInBlock) { mismatchedOperands.emplace_back(opI, operand); continue; } // Otherwise, these operands must have the same logical order within the // parent block. if (leaderData.getOrderOf(lhsOperand) != blockData.getOrderOf(rhsOperand)) return failure(); } // If the lhs or rhs has external uses, the blocks cannot be merged as the // merged version of this operation will not be either the lhs or rhs // alone (thus semantically incorrect), but some mix dependening on which // block preceeded this. // TODO allow merging of operations when one block does not dominate the // other if (rhsIt->isUsedOutsideOfBlock(mergeBlock) || lhsIt->isUsedOutsideOfBlock(leaderBlock)) { return failure(); } } // Make sure that the block sizes are equivalent. if (lhsIt != lhsE || rhsIt != rhsE) return failure(); // If we get here, the blocks are equivalent and can be merged. operandsToMerge.insert(mismatchedOperands.begin(), mismatchedOperands.end()); blocksToMerge.insert(blockData.block); return success(); } /// Returns true if the predecessor terminators of the given block can not have /// their operands updated. static bool ableToUpdatePredOperands(Block *block) { for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) { auto branch = dyn_cast((*it)->getTerminator()); if (!branch || !branch.getMutableSuccessorOperands(it.getSuccessorIndex())) return false; } return true; } LogicalResult BlockMergeCluster::merge() { // Don't consider clusters that don't have blocks to merge. if (blocksToMerge.empty()) return failure(); Block *leaderBlock = leaderData.block; if (!operandsToMerge.empty()) { // If the cluster has operands to merge, verify that the predecessor // terminators of each of the blocks can have their successor operands // updated. // TODO: We could try and sub-partition this cluster if only some blocks // cause the mismatch. if (!ableToUpdatePredOperands(leaderBlock) || !llvm::all_of(blocksToMerge, ableToUpdatePredOperands)) return failure(); // Collect the iterators for each of the blocks to merge. We will walk all // of the iterators at once to avoid operand index invalidation. SmallVector blockIterators; blockIterators.reserve(blocksToMerge.size() + 1); blockIterators.push_back(leaderBlock->begin()); for (Block *mergeBlock : blocksToMerge) blockIterators.push_back(mergeBlock->begin()); // Update each of the predecessor terminators with the new arguments. SmallVector, 2> newArguments( 1 + blocksToMerge.size(), SmallVector(operandsToMerge.size())); unsigned curOpIndex = 0; for (auto it : llvm::enumerate(operandsToMerge)) { unsigned nextOpOffset = it.value().first - curOpIndex; curOpIndex = it.value().first; // Process the operand for each of the block iterators. for (unsigned i = 0, e = blockIterators.size(); i != e; ++i) { Block::iterator &blockIter = blockIterators[i]; std::advance(blockIter, nextOpOffset); auto &operand = blockIter->getOpOperand(it.value().second); newArguments[i][it.index()] = operand.get(); // Update the operand and insert an argument if this is the leader. if (i == 0) operand.set(leaderBlock->addArgument(operand.get().getType())); } } // Update the predecessors for each of the blocks. auto updatePredecessors = [&](Block *block, unsigned clusterIndex) { for (auto predIt = block->pred_begin(), predE = block->pred_end(); predIt != predE; ++predIt) { auto branch = cast((*predIt)->getTerminator()); unsigned succIndex = predIt.getSuccessorIndex(); branch.getMutableSuccessorOperands(succIndex)->append( newArguments[clusterIndex]); } }; updatePredecessors(leaderBlock, /*clusterIndex=*/0); for (unsigned i = 0, e = blocksToMerge.size(); i != e; ++i) updatePredecessors(blocksToMerge[i], /*clusterIndex=*/i + 1); } // Replace all uses of the merged blocks with the leader and erase them. for (Block *block : blocksToMerge) { block->replaceAllUsesWith(leaderBlock); block->erase(); } return success(); } /// Identify identical blocks within the given region and merge them, inserting /// new block arguments as necessary. Returns success if any blocks were merged, /// failure otherwise. static LogicalResult mergeIdenticalBlocks(Region ®ion) { if (region.empty() || llvm::hasSingleElement(region)) return failure(); // Identify sets of blocks, other than the entry block, that branch to the // same successors. We will use these groups to create clusters of equivalent // blocks. DenseMap> matchingSuccessors; for (Block &block : llvm::drop_begin(region, 1)) matchingSuccessors[block.getSuccessors()].push_back(&block); bool mergedAnyBlocks = false; for (ArrayRef blocks : llvm::make_second_range(matchingSuccessors)) { if (blocks.size() == 1) continue; SmallVector clusters; for (Block *block : blocks) { BlockEquivalenceData data(block); // Don't allow merging if this block has any regions. // TODO: Add support for regions if necessary. bool hasNonEmptyRegion = llvm::any_of(*block, [](Operation &op) { return llvm::any_of(op.getRegions(), [](Region ®ion) { return !region.empty(); }); }); if (hasNonEmptyRegion) continue; // Try to add this block to an existing cluster. bool addedToCluster = false; for (auto &cluster : clusters) if ((addedToCluster = succeeded(cluster.addToCluster(data)))) break; if (!addedToCluster) clusters.emplace_back(std::move(data)); } for (auto &cluster : clusters) mergedAnyBlocks |= succeeded(cluster.merge()); } return success(mergedAnyBlocks); } /// Identify identical blocks within the given regions and merge them, inserting /// new block arguments as necessary. static LogicalResult mergeIdenticalBlocks(MutableArrayRef regions) { llvm::SmallSetVector worklist; for (auto ®ion : regions) worklist.insert(®ion); bool anyChanged = false; while (!worklist.empty()) { Region *region = worklist.pop_back_val(); if (succeeded(mergeIdenticalBlocks(*region))) { worklist.insert(region); anyChanged = true; } // Add any nested regions to the worklist. for (Block &block : *region) for (auto &op : block) for (auto &nestedRegion : op.getRegions()) worklist.insert(&nestedRegion); } return success(anyChanged); } //===----------------------------------------------------------------------===// // Region Simplification //===----------------------------------------------------------------------===// /// Run a set of structural simplifications over the given regions. This /// includes transformations like unreachable block elimination, dead argument /// elimination, as well as some other DCE. This function returns success if any /// of the regions were simplified, failure otherwise. LogicalResult mlir::simplifyRegions(MutableArrayRef regions) { bool eliminatedBlocks = succeeded(eraseUnreachableBlocks(regions)); bool eliminatedOpsOrArgs = succeeded(runRegionDCE(regions)); bool mergedIdenticalBlocks = succeeded(mergeIdenticalBlocks(regions)); return success(eliminatedBlocks || eliminatedOpsOrArgs || mergedIdenticalBlocks); }