// RUN: mlir-opt %s -test-memref-bound-check -split-input-file -verify-diagnostics | FileCheck %s // ----- // CHECK-LABEL: func @test() { func @test() { %zero = constant 0 : index %minusone = constant -1 : index %sym = constant 111 : index %A = alloc() : memref<9 x 9 x i32> %B = alloc() : memref<111 x i32> affine.for %i = -1 to 10 { affine.for %j = -1 to 10 { %idx0 = affine.apply affine_map<(d0, d1) -> (d0)>(%i, %j) %idx1 = affine.apply affine_map<(d0, d1) -> (d1)>(%i, %j) // Out of bound access. %x = affine.load %A[%idx0, %idx1] : memref<9 x 9 x i32> // expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}} // expected-error@-2 {{'affine.load' op memref out of lower bound access along dimension #1}} // expected-error@-3 {{'affine.load' op memref out of upper bound access along dimension #2}} // expected-error@-4 {{'affine.load' op memref out of lower bound access along dimension #2}} // This will access 0 to 110 - hence an overflow. %idy = affine.apply affine_map<(d0, d1) -> (10*d0 - d1 + 19)>(%i, %j) %y = affine.load %B[%idy] : memref<111 x i32> } } affine.for %k = 0 to 10 { // In bound. %u = affine.load %B[%zero] : memref<111 x i32> // Out of bounds. %v = affine.load %B[%sym] : memref<111 x i32> // expected-error {{'affine.load' op memref out of upper bound access along dimension #1}} // Out of bounds. affine.store %v, %B[%minusone] : memref<111 x i32> // expected-error {{'affine.store' op memref out of lower bound access along dimension #1}} } return } // CHECK-LABEL: func @test_mod_floordiv_ceildiv func @test_mod_floordiv_ceildiv() { %zero = constant 0 : index %A = alloc() : memref<128 x 64 x 64 x i32> affine.for %i = 0 to 256 { affine.for %j = 0 to 256 { %idx0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128 + 1)>(%i, %j, %j) %idx1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4 + 1)>(%i, %j, %j) %idx2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4)>(%i, %j, %j) %x = affine.load %A[%idx0, %idx1, %idx2] : memref<128 x 64 x 64 x i32> // expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}} // expected-error@-2 {{'affine.load' op memref out of upper bound access along dimension #2}} // expected-error@-3 {{'affine.load' op memref out of upper bound access along dimension #3}} %idy0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128)>(%i, %j, %j) %idy1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4)>(%i, %j, %j) %idy2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4 - 1)>(%i, %j, %j) affine.store %x, %A[%idy0, %idy1, %idy2] : memref<128 x 64 x 64 x i32> // expected-error {{'affine.store' op memref out of lower bound access along dimension #3}} } // CHECK: } } // CHECK: } return } // CHECK-LABEL: func @test_no_out_of_bounds() func @test_no_out_of_bounds() { %zero = constant 0 : index %A = alloc() : memref<257 x 256 x i32> %C = alloc() : memref<257 x i32> %B = alloc() : memref<1 x i32> affine.for %i = 0 to 256 { affine.for %j = 0 to 256 { // All of these accesses are in bound; check that no errors are emitted. // CHECK: %{{.*}} = affine.apply {{#map.*}}(%{{.*}}, %{{.*}}) // CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<257x256xi32> // CHECK-NEXT: %{{.*}} = affine.apply {{#map.*}}(%{{.*}}, %{{.*}}) // CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}] : memref<1xi32> %idx0 = affine.apply affine_map<(d0, d1) -> ( 64 * (d0 ceildiv 64))>(%i, %j) // Without GCDTightenInequalities(), the upper bound on the region // accessed along first memref dimension would have come out as d0 <= 318 // (instead of d0 <= 256), and led to a false positive out of bounds. %x = affine.load %A[%idx0, %zero] : memref<257 x 256 x i32> %idy = affine.apply affine_map<(d0, d1) -> (d0 floordiv 256)>(%i, %i) %y = affine.load %B[%idy] : memref<1 x i32> } // CHECK-NEXT: } } return } // CHECK-LABEL: func @mod_div func @mod_div() { %zero = constant 0 : index %A = alloc() : memref<128 x 64 x 64 x i32> affine.for %i = 0 to 256 { affine.for %j = 0 to 256 { %idx0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128 + 1)>(%i, %j, %j) %idx1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4 + 1)>(%i, %j, %j) %idx2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4)>(%i, %j, %j) %x = affine.load %A[%idx0, %idx1, %idx2] : memref<128 x 64 x 64 x i32> // expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}} // expected-error@-2 {{'affine.load' op memref out of upper bound access along dimension #2}} // expected-error@-3 {{'affine.load' op memref out of upper bound access along dimension #3}} %idy0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128)>(%i, %j, %j) %idy1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4)>(%i, %j, %j) %idy2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4 - 1)>(%i, %j, %j) affine.store %x, %A[%idy0, %idy1, %idy2] : memref<128 x 64 x 64 x i32> // expected-error {{'affine.store' op memref out of lower bound access along dimension #3}} } } return } // Tests with nested mod's and floordiv's. // CHECK-LABEL: func @mod_floordiv_nested() { func @mod_floordiv_nested() { %A = alloc() : memref<256 x 256 x i32> affine.for %i = 0 to 256 { affine.for %j = 0 to 256 { %idx0 = affine.apply affine_map<(d0, d1) -> ((d0 mod 1024) floordiv 4)>(%i, %j) %idx1 = affine.apply affine_map<(d0, d1) -> ((((d1 mod 128) mod 32) ceildiv 4) * 32)>(%i, %j) affine.load %A[%idx0, %idx1] : memref<256 x 256 x i32> // expected-error {{'affine.load' op memref out of upper bound access along dimension #2}} } } return } // CHECK-LABEL: func @test_semi_affine_bailout func @test_semi_affine_bailout(%N : index) { %B = alloc() : memref<10 x i32> affine.for %i = 0 to 10 { %idx = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%i)[%N] %y = affine.load %B[%idx] : memref<10 x i32> // expected-error@-1 {{getMemRefRegion: compose affine map failed}} } return } // CHECK-LABEL: func @multi_mod_floordiv func @multi_mod_floordiv() { %A = alloc() : memref<2x2xi32> affine.for %ii = 0 to 64 { %idx0 = affine.apply affine_map<(d0) -> ((d0 mod 147456) floordiv 1152)> (%ii) %idx1 = affine.apply affine_map<(d0) -> (((d0 mod 147456) mod 1152) floordiv 384)> (%ii) %v = affine.load %A[%idx0, %idx1] : memref<2x2xi32> } return } // CHECK-LABEL: func @delinearize_mod_floordiv func @delinearize_mod_floordiv() { %c0 = constant 0 : index %in = alloc() : memref<2x2x3x3x16x1xi32> %out = alloc() : memref<64x9xi32> // Reshape '%in' into '%out'. affine.for %ii = 0 to 64 { affine.for %jj = 0 to 9 { %a0 = affine.apply affine_map<(d0, d1) -> (d0 * (9 * 1024) + d1 * 128)> (%ii, %jj) %a10 = affine.apply affine_map<(d0) -> (d0 floordiv (2 * 3 * 3 * 128 * 128))> (%a0) %a11 = affine.apply affine_map<(d0) -> ((d0 mod 294912) floordiv (3 * 3 * 128 * 128))> (%a0) %a12 = affine.apply affine_map<(d0) -> ((((d0 mod 294912) mod 147456) floordiv 1152) floordiv 8)> (%a0) %a13 = affine.apply affine_map<(d0) -> ((((d0 mod 294912) mod 147456) mod 1152) floordiv 384)> (%a0) %a14 = affine.apply affine_map<(d0) -> (((((d0 mod 294912) mod 147456) mod 1152) mod 384) floordiv 128)> (%a0) %a15 = affine.apply affine_map<(d0) -> ((((((d0 mod 294912) mod 147456) mod 1152) mod 384) mod 128) floordiv 128)> (%a0) %v0 = affine.load %in[%a10, %a11, %a13, %a14, %a12, %a15] : memref<2x2x3x3x16x1xi32> } } return } // CHECK-LABEL: func @zero_d_memref func @zero_d_memref(%arg0: memref) { %c0 = constant 0 : i32 // A 0-d memref always has in-bound accesses! affine.store %c0, %arg0[] : memref return } // CHECK-LABEL: func @out_of_bounds func @out_of_bounds() { %in = alloc() : memref<1xi32> %c9 = constant 9 : i32 affine.for %i0 = 10 to 11 { %idy = affine.apply affine_map<(d0) -> (100 * d0 floordiv 1000)> (%i0) affine.store %c9, %in[%idy] : memref<1xi32> // expected-error {{'affine.store' op memref out of upper bound access along dimension #1}} } return } // ----- // This test case accesses within bounds. Without removal of a certain type of // trivially redundant constraints (those differing only in their constant // term), the number of constraints here explodes, and this would return out of // bounds errors conservatively due to FlatAffineConstraints::kExplosionFactor. #map3 = affine_map<(d0, d1) -> ((d0 * 72 + d1) floordiv 2304 + ((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) floordiv 3)> #map4 = affine_map<(d0, d1) -> ((d0 * 72 + d1) mod 2304 - (((d0 * 72 + d1) mod 2304) floordiv 1152) * 1151 - ((((d0 * 72 + d1) mod 2304) mod 1152) floordiv 9) * 9 - (((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) floordiv 3) * 3)> #map5 = affine_map<(d0, d1) -> (((((d0 * 72 + d1) mod 2304) mod 1152) floordiv 9) floordiv 8)> // CHECK-LABEL: func @test_complex_mod_floordiv func @test_complex_mod_floordiv(%arg0: memref<4x4x16x1xf32>) { %c0 = constant 0 : index %0 = alloc() : memref<1x2x3x3x16x1xf32> affine.for %i0 = 0 to 64 { affine.for %i1 = 0 to 9 { %2 = affine.apply #map3(%i0, %i1) %3 = affine.apply #map4(%i0, %i1) %4 = affine.apply #map5(%i0, %i1) %5 = affine.load %arg0[%2, %c0, %4, %c0] : memref<4x4x16x1xf32> } } return } // ----- // The first load is within bounds, but not the second one. #map0 = affine_map<(d0) -> (d0 mod 4)> #map1 = affine_map<(d0) -> (d0 mod 4 + 4)> // CHECK-LABEL: func @test_mod_bound func @test_mod_bound() { %0 = alloc() : memref<7 x f32> %1 = alloc() : memref<6 x f32> affine.for %i0 = 0 to 4096 { affine.for %i1 = #map0(%i0) to #map1(%i0) { affine.load %0[%i1] : memref<7 x f32> affine.load %1[%i1] : memref<6 x f32> // expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}} } } return } // ----- #map0 = affine_map<(d0) -> (d0 floordiv 4)> #map1 = affine_map<(d0) -> (d0 floordiv 4 + 4)> #map2 = affine_map<(d0) -> (4 * (d0 floordiv 4) + d0 mod 4)> // CHECK-LABEL: func @test_floordiv_bound func @test_floordiv_bound() { %0 = alloc() : memref<1027 x f32> %1 = alloc() : memref<1026 x f32> %2 = alloc() : memref<4096 x f32> %N = constant 2048 : index affine.for %i0 = 0 to 4096 { affine.for %i1 = #map0(%i0) to #map1(%i0) { affine.load %0[%i1] : memref<1027 x f32> affine.load %1[%i1] : memref<1026 x f32> // expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}} } affine.for %i2 = 0 to #map2(%N) { // Within bounds. %v = affine.load %2[%i2] : memref<4096 x f32> } } return } // ----- // This should not give an out of bounds error. The result of the affine.apply // is composed into the bound map during analysis. #map_lb = affine_map<(d0) -> (d0)> #map_ub = affine_map<(d0) -> (d0 + 4)> // CHECK-LABEL: func @non_composed_bound_operand func @non_composed_bound_operand(%arg0: memref<1024xf32>) { affine.for %i0 = 4 to 1028 step 4 { %i1 = affine.apply affine_map<(d0) -> (d0 - 4)> (%i0) affine.for %i2 = #map_lb(%i1) to #map_ub(%i1) { %0 = affine.load %arg0[%i2] : memref<1024xf32> } } return } // CHECK-LABEL: func @zero_d_memref func @zero_d_memref() { %Z = alloc() : memref affine.for %i = 0 to 100 { affine.load %Z[] : memref } return }