//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "TestDialect.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" #include "mlir/IR/Matchers.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/FoldUtils.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" using namespace mlir; using namespace mlir::test; // Native function for testing NativeCodeCall static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { return choice.getValue() ? input1 : input2; } static void createOpI(PatternRewriter &rewriter, Location loc, Value input) { rewriter.create(loc, input); } static void handleNoResultOp(PatternRewriter &rewriter, OpSymbolBindingNoResult op) { // Turn the no result op to a one-result op. rewriter.create(op.getLoc(), op.operand().getType(), op.operand()); } // Test that natives calls are only called once during rewrites. // OpM_Test will return Pi, increased by 1 for each subsequent calls. // This let us check the number of times OpM_Test was called by inspecting // the returned value in the MLIR output. static int64_t opMIncreasingValue = 314159265; static Attribute OpMTest(PatternRewriter &rewriter, Value val) { int64_t i = opMIncreasingValue++; return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i); } namespace { #include "TestPatterns.inc" } // end anonymous namespace //===----------------------------------------------------------------------===// // Canonicalizer Driver. //===----------------------------------------------------------------------===// namespace { struct FoldingPattern : public RewritePattern { public: FoldingPattern(MLIRContext *context) : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), /*benefit=*/1, context) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const override { // Exercice OperationFolder API for a single-result operation that is folded // upon construction. The operation being created through the folder has an // in-place folder, and it should be still present in the output. // Furthermore, the folder should not crash when attempting to recover the // (unchanged) operation result. OperationFolder folder(op->getContext()); Value result = folder.create( rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0), rewriter.getI32IntegerAttr(0)); assert(result); rewriter.replaceOp(op, result); return success(); } }; struct TestPatternDriver : public PassWrapper { void runOnFunction() override { mlir::OwningRewritePatternList patterns; populateWithGenerated(&getContext(), patterns); // Verify named pattern is generated with expected name. patterns.insert(&getContext()); applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // ReturnType Driver. //===----------------------------------------------------------------------===// namespace { // Generate ops for each instance where the type can be successfully inferred. template static void invokeCreateWithInferredReturnType(Operation *op) { auto *context = op->getContext(); auto fop = op->getParentOfType(); auto location = UnknownLoc::get(context); OpBuilder b(op); b.setInsertionPointAfter(op); // Use permutations of 2 args as operands. assert(fop.getNumArguments() >= 2); for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { for (int j = 0; j < e; ++j) { std::array values = {{fop.getArgument(i), fop.getArgument(j)}}; SmallVector inferredReturnTypes; if (succeeded(OpTy::inferReturnTypes( context, llvm::None, values, op->getAttrDictionary(), op->getRegions(), inferredReturnTypes))) { OperationState state(location, OpTy::getOperationName()); // TODO: Expand to regions. OpTy::build(b, state, values, op->getAttrs()); (void)b.createOperation(state); } } } } static void reifyReturnShape(Operation *op) { OpBuilder b(op); // Use permutations of 2 args as operands. auto shapedOp = cast(op); SmallVector shapes; if (failed(shapedOp.reifyReturnTypeShapes(b, shapes))) return; for (auto it : llvm::enumerate(shapes)) op->emitRemark() << "value " << it.index() << ": " << it.value().getDefiningOp(); } struct TestReturnTypeDriver : public PassWrapper { void runOnFunction() override { if (getFunction().getName() == "testCreateFunctions") { std::vector ops; // Collect ops to avoid triggering on inserted ops. for (auto &op : getFunction().getBody().front()) ops.push_back(&op); // Generate test patterns for each, but skip terminator. for (auto *op : llvm::makeArrayRef(ops).drop_back()) { // Test create method of each of the Op classes below. The resultant // output would be in reverse order underneath `op` from which // the attributes and regions are used. invokeCreateWithInferredReturnType(op); invokeCreateWithInferredReturnType< OpWithShapedTypeInferTypeInterfaceOp>(op); }; return; } if (getFunction().getName() == "testReifyFunctions") { std::vector ops; // Collect ops to avoid triggering on inserted ops. for (auto &op : getFunction().getBody().front()) if (isa(op)) ops.push_back(&op); // Generate test patterns for each, but skip terminator. for (auto *op : ops) reifyReturnShape(op); } } }; } // end anonymous namespace namespace { struct TestDerivedAttributeDriver : public PassWrapper { void runOnFunction() override; }; } // end anonymous namespace void TestDerivedAttributeDriver::runOnFunction() { getFunction().walk([](DerivedAttributeOpInterface dOp) { auto dAttr = dOp.materializeDerivedAttributes(); if (!dAttr) return; for (auto d : dAttr) dOp.emitRemark() << d.first << " = " << d.second; }); } //===----------------------------------------------------------------------===// // Legalization Driver. //===----------------------------------------------------------------------===// namespace { //===----------------------------------------------------------------------===// // Region-Block Rewrite Testing /// This pattern is a simple pattern that inlines the first region of a given /// operation into the parent region. struct TestRegionRewriteBlockMovement : public ConversionPattern { TestRegionRewriteBlockMovement(MLIRContext *ctx) : ConversionPattern("test.region", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { // Inline this region into the parent region. auto &parentRegion = *op->getParentRegion(); auto &opRegion = op->getRegion(0); if (op->getAttr("legalizer.should_clone")) rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end()); else rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end()); if (op->getAttr("legalizer.erase_old_blocks")) { while (!opRegion.empty()) rewriter.eraseBlock(&opRegion.front()); } // Drop this operation. rewriter.eraseOp(op); return success(); } }; /// This pattern is a simple pattern that generates a region containing an /// illegal operation. struct TestRegionRewriteUndo : public RewritePattern { TestRegionRewriteUndo(MLIRContext *ctx) : RewritePattern("test.region_builder", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { // Create the region operation with an entry block containing arguments. OperationState newRegion(op->getLoc(), "test.region"); newRegion.addRegion(); auto *regionOp = rewriter.createOperation(newRegion); auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); entryBlock->addArgument(rewriter.getIntegerType(64)); // Add an explicitly illegal operation to ensure the conversion fails. rewriter.create(op->getLoc(), rewriter.getIntegerType(32)); rewriter.create(op->getLoc(), ArrayRef()); // Drop this operation. rewriter.eraseOp(op); return success(); } }; /// A simple pattern that creates a block at the end of the parent region of the /// matched operation. struct TestCreateBlock : public RewritePattern { TestCreateBlock(MLIRContext *ctx) : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { Region ®ion = *op->getParentRegion(); Type i32Type = rewriter.getIntegerType(32); rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); rewriter.create(op->getLoc()); rewriter.replaceOp(op, {}); return success(); } }; /// A simple pattern that creates a block containing an invalid operation in /// order to trigger the block creation undo mechanism. struct TestCreateIllegalBlock : public RewritePattern { TestCreateIllegalBlock(MLIRContext *ctx) : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { Region ®ion = *op->getParentRegion(); Type i32Type = rewriter.getIntegerType(32); rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); // Create an illegal op to ensure the conversion fails. rewriter.create(op->getLoc(), i32Type); rewriter.create(op->getLoc()); rewriter.replaceOp(op, {}); return success(); } }; /// A simple pattern that tests the undo mechanism when replacing the uses of a /// block argument. struct TestUndoBlockArgReplace : public ConversionPattern { TestUndoBlockArgReplace(MLIRContext *ctx) : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { auto illegalOp = rewriter.create(op->getLoc(), rewriter.getF32Type()); rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0), illegalOp); rewriter.updateRootInPlace(op, [] {}); return success(); } }; /// A rewrite pattern that tests the undo mechanism when erasing a block. struct TestUndoBlockErase : public ConversionPattern { TestUndoBlockErase(MLIRContext *ctx) : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { Block *secondBlock = &*std::next(op->getRegion(0).begin()); rewriter.setInsertionPointToStart(secondBlock); rewriter.create(op->getLoc(), rewriter.getF32Type()); rewriter.eraseBlock(secondBlock); rewriter.updateRootInPlace(op, [] {}); return success(); } }; //===----------------------------------------------------------------------===// // Type-Conversion Rewrite Testing /// This patterns erases a region operation that has had a type conversion. struct TestDropOpSignatureConversion : public ConversionPattern { TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) : ConversionPattern("test.drop_region_op", 1, converter, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { Region ®ion = op->getRegion(0); Block *entry = ®ion.front(); // Convert the original entry arguments. TypeConverter &converter = *getTypeConverter(); TypeConverter::SignatureConversion result(entry->getNumArguments()); if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(), result)) || failed(rewriter.convertRegionTypes(®ion, converter, &result))) return failure(); // Convert the region signature and just drop the operation. rewriter.eraseOp(op); return success(); } }; /// This pattern simply updates the operands of the given operation. struct TestPassthroughInvalidOp : public ConversionPattern { TestPassthroughInvalidOp(MLIRContext *ctx) : ConversionPattern("test.invalid", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { rewriter.replaceOpWithNewOp(op, llvm::None, operands, llvm::None); return success(); } }; /// This pattern handles the case of a split return value. struct TestSplitReturnType : public ConversionPattern { TestSplitReturnType(MLIRContext *ctx) : ConversionPattern("test.return", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { // Check for a return of F32. if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) return failure(); // Check if the first operation is a cast operation, if it is we use the // results directly. auto *defOp = operands[0].getDefiningOp(); if (auto packerOp = llvm::dyn_cast_or_null(defOp)) { rewriter.replaceOpWithNewOp(op, packerOp.getOperands()); return success(); } // Otherwise, fail to match. return failure(); } }; //===----------------------------------------------------------------------===// // Multi-Level Type-Conversion Rewrite Testing struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { TestChangeProducerTypeI32ToF32(MLIRContext *ctx) : ConversionPattern("test.type_producer", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { // If the type is I32, change the type to F32. if (!Type(*op->result_type_begin()).isSignlessInteger(32)) return failure(); rewriter.replaceOpWithNewOp(op, rewriter.getF32Type()); return success(); } }; struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { TestChangeProducerTypeF32ToF64(MLIRContext *ctx) : ConversionPattern("test.type_producer", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { // If the type is F32, change the type to F64. if (!Type(*op->result_type_begin()).isF32()) return rewriter.notifyMatchFailure(op, "expected single f32 operand"); rewriter.replaceOpWithNewOp(op, rewriter.getF64Type()); return success(); } }; struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) : ConversionPattern("test.type_producer", 10, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { // Always convert to B16, even though it is not a legal type. This tests // that values are unmapped correctly. rewriter.replaceOpWithNewOp(op, rewriter.getBF16Type()); return success(); } }; struct TestUpdateConsumerType : public ConversionPattern { TestUpdateConsumerType(MLIRContext *ctx) : ConversionPattern("test.type_consumer", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { // Verify that the incoming operand has been successfully remapped to F64. if (!operands[0].getType().isF64()) return failure(); rewriter.replaceOpWithNewOp(op, operands[0]); return success(); } }; //===----------------------------------------------------------------------===// // Non-Root Replacement Rewrite Testing /// This pattern generates an invalid operation, but replaces it before the /// pattern is finished. This checks that we don't need to legalize the /// temporary op. struct TestNonRootReplacement : public RewritePattern { TestNonRootReplacement(MLIRContext *ctx) : RewritePattern("test.replace_non_root", 1, ctx) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const final { auto resultType = *op->result_type_begin(); auto illegalOp = rewriter.create(op->getLoc(), resultType); auto legalOp = rewriter.create(op->getLoc(), resultType); rewriter.replaceOp(illegalOp, {legalOp}); rewriter.replaceOp(op, {illegalOp}); return success(); } }; //===----------------------------------------------------------------------===// // Recursive Rewrite Testing /// This pattern is applied to the same operation multiple times, but has a /// bounded recursion. struct TestBoundedRecursiveRewrite : public OpRewritePattern { TestBoundedRecursiveRewrite(MLIRContext *ctx) : OpRewritePattern(ctx) { // The conversion target handles bounding the recursion of this pattern. setHasBoundedRewriteRecursion(); } LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, PatternRewriter &rewriter) const final { // Decrement the depth of the op in-place. rewriter.updateRootInPlace(op, [&] { op.setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1)); }); return success(); } }; struct TestNestedOpCreationUndoRewrite : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op, PatternRewriter &rewriter) const final { // rewriter.replaceOpWithNewOp(op); rewriter.replaceOpWithNewOp(op); return success(); }; }; } // namespace namespace { struct TestTypeConverter : public TypeConverter { using TypeConverter::TypeConverter; TestTypeConverter() { addConversion(convertType); addArgumentMaterialization(materializeCast); addArgumentMaterialization(materializeOneToOneCast); addSourceMaterialization(materializeCast); } static LogicalResult convertType(Type t, SmallVectorImpl &results) { // Drop I16 types. if (t.isSignlessInteger(16)) return success(); // Convert I64 to F64. if (t.isSignlessInteger(64)) { results.push_back(FloatType::getF64(t.getContext())); return success(); } // Convert I42 to I43. if (t.isInteger(42)) { results.push_back(IntegerType::get(43, t.getContext())); return success(); } // Split F32 into F16,F16. if (t.isF32()) { results.assign(2, FloatType::getF16(t.getContext())); return success(); } // Otherwise, convert the type directly. results.push_back(t); return success(); } /// Hook for materializing a conversion. This is necessary because we generate /// 1->N type mappings. static Optional materializeCast(OpBuilder &builder, Type resultType, ValueRange inputs, Location loc) { if (inputs.size() == 1) return inputs[0]; return builder.create(loc, resultType, inputs).getResult(); } /// Materialize the cast for one-to-one conversion from i64 to f64. static Optional materializeOneToOneCast(OpBuilder &builder, IntegerType resultType, ValueRange inputs, Location loc) { if (resultType.getWidth() == 42 && inputs.size() == 1) return builder.create(loc, resultType, inputs).getResult(); return llvm::None; } }; struct TestLegalizePatternDriver : public PassWrapper> { /// The mode of conversion to use with the driver. enum class ConversionMode { Analysis, Full, Partial }; TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} void runOnOperation() override { TestTypeConverter converter; mlir::OwningRewritePatternList patterns; populateWithGenerated(&getContext(), patterns); patterns.insert< TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace, TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType, TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64, TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType, TestNonRootReplacement, TestBoundedRecursiveRewrite, TestNestedOpCreationUndoRewrite>(&getContext()); patterns.insert(&getContext(), converter); mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(), converter); mlir::populateCallOpTypeConversionPattern(patterns, &getContext(), converter); // Define the conversion target used for the test. ConversionTarget target(getContext()); target.addLegalOp(); target.addLegalOp(); target .addIllegalOp(); target.addDynamicallyLegalOp([](TestReturnOp op) { // Don't allow F32 operands. return llvm::none_of(op.getOperandTypes(), [](Type type) { return type.isF32(); }); }); target.addDynamicallyLegalOp([&](FuncOp op) { return converter.isSignatureLegal(op.getType()) && converter.isLegal(&op.getBody()); }); // Expect the type_producer/type_consumer operations to only operate on f64. target.addDynamicallyLegalOp( [](TestTypeProducerOp op) { return op.getType().isF64(); }); target.addDynamicallyLegalOp([](TestTypeConsumerOp op) { return op.getOperand().getType().isF64(); }); // Check support for marking certain operations as recursively legal. target.markOpRecursivelyLegal([](Operation *op) { return static_cast( op->getAttrOfType("test.recursively_legal")); }); // Mark the bound recursion operation as dynamically legal. target.addDynamicallyLegalOp( [](TestRecursiveRewriteOp op) { return op.depth() == 0; }); // Handle a partial conversion. if (mode == ConversionMode::Partial) { DenseSet unlegalizedOps; (void)applyPartialConversion(getOperation(), target, std::move(patterns), &unlegalizedOps); // Emit remarks for each legalizable operation. for (auto *op : unlegalizedOps) op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; return; } // Handle a full conversion. if (mode == ConversionMode::Full) { // Check support for marking unknown operations as dynamically legal. target.markUnknownOpDynamicallyLegal([](Operation *op) { return (bool)op->getAttrOfType("test.dynamically_legal"); }); (void)applyFullConversion(getOperation(), target, std::move(patterns)); return; } // Otherwise, handle an analysis conversion. assert(mode == ConversionMode::Analysis); // Analyze the convertible operations. DenseSet legalizedOps; if (failed(applyAnalysisConversion(getOperation(), target, std::move(patterns), legalizedOps))) return signalPassFailure(); // Emit remarks for each legalizable operation. for (auto *op : legalizedOps) op->emitRemark() << "op '" << op->getName() << "' is legalizable"; } /// The mode of conversion to use. ConversionMode mode; }; } // end anonymous namespace static llvm::cl::opt legalizerConversionMode( "test-legalize-mode", llvm::cl::desc("The legalization mode to use with the test driver"), llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), llvm::cl::values( clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, "analysis", "Perform an analysis conversion"), clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", "Perform a full conversion"), clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, "partial", "Perform a partial conversion"))); //===----------------------------------------------------------------------===// // ConversionPatternRewriter::getRemappedValue testing. This method is used // to get the remapped value of an original value that was replaced using // ConversionPatternRewriter. namespace { /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original /// operand twice. /// /// Example: /// %1 = test.one_variadic_out_one_variadic_in1"(%0) /// is replaced with: /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) struct OneVResOneVOperandOp1Converter : public OpConversionPattern { using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { auto origOps = op.getOperands(); assert(std::distance(origOps.begin(), origOps.end()) == 1 && "One operand expected"); Value origOp = *origOps.begin(); SmallVector remappedOperands; // Replicate the remapped original operand twice. Note that we don't used // the remapped 'operand' since the goal is testing 'getRemappedValue'. remappedOperands.push_back(rewriter.getRemappedValue(origOp)); remappedOperands.push_back(rewriter.getRemappedValue(origOp)); rewriter.replaceOpWithNewOp(op, op.getResultTypes(), remappedOperands); return success(); } }; struct TestRemappedValue : public mlir::PassWrapper { void runOnFunction() override { mlir::OwningRewritePatternList patterns; patterns.insert(&getContext()); mlir::ConversionTarget target(getContext()); target.addLegalOp(); // We make OneVResOneVOperandOp1 legal only when it has more that one // operand. This will trigger the conversion that will replace one-operand // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. target.addDynamicallyLegalOp( [](Operation *op) -> bool { return std::distance(op->operand_begin(), op->operand_end()) > 1; }); if (failed(mlir::applyFullConversion(getFunction(), target, std::move(patterns)))) { signalPassFailure(); } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Test patterns without a specific root operation kind //===----------------------------------------------------------------------===// namespace { /// This pattern matches and removes any operation in the test dialect. struct RemoveTestDialectOps : public RewritePattern { RemoveTestDialectOps() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const override { if (!isa(op->getDialect())) return failure(); rewriter.eraseOp(op); return success(); } }; struct TestUnknownRootOpDriver : public mlir::PassWrapper { void runOnFunction() override { mlir::OwningRewritePatternList patterns; patterns.insert(); mlir::ConversionTarget target(getContext()); target.addIllegalDialect(); if (failed( applyPartialConversion(getFunction(), target, std::move(patterns)))) signalPassFailure(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Test type conversions //===----------------------------------------------------------------------===// namespace { struct TestTypeConversionProducer : public OpConversionPattern { using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(TestTypeProducerOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { Type resultType = op.getType(); if (resultType.isa()) resultType = rewriter.getF64Type(); else if (resultType.isInteger(16)) resultType = rewriter.getIntegerType(64); else return failure(); rewriter.replaceOpWithNewOp(op, resultType); return success(); } }; struct TestTypeConversionDriver : public PassWrapper> { void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); } void runOnOperation() override { // Initialize the type converter. TypeConverter converter; /// Add the legal set of type conversions. converter.addConversion([](Type type) -> Type { // Treat F64 as legal. if (type.isF64()) return type; // Allow converting BF16/F16/F32 to F64. if (type.isBF16() || type.isF16() || type.isF32()) return FloatType::getF64(type.getContext()); // Otherwise, the type is illegal. return nullptr; }); converter.addConversion([](IntegerType type, SmallVectorImpl &) { // Drop all integer types. return success(); }); /// Add the legal set of type materializations. converter.addSourceMaterialization([](OpBuilder &builder, Type resultType, ValueRange inputs, Location loc) -> Value { // Allow casting from F64 back to F32. if (!resultType.isF16() && inputs.size() == 1 && inputs[0].getType().isF64()) return builder.create(loc, resultType, inputs).getResult(); // Allow producing an i32 or i64 from nothing. if ((resultType.isInteger(32) || resultType.isInteger(64)) && inputs.empty()) return builder.create(loc, resultType); // Allow producing an i64 from an integer. if (resultType.isa() && inputs.size() == 1 && inputs[0].getType().isa()) return builder.create(loc, resultType, inputs).getResult(); // Otherwise, fail. return nullptr; }); // Initialize the conversion target. mlir::ConversionTarget target(getContext()); target.addDynamicallyLegalOp([](TestTypeProducerOp op) { return op.getType().isF64() || op.getType().isInteger(64); }); target.addDynamicallyLegalOp([&](FuncOp op) { return converter.isSignatureLegal(op.getType()) && converter.isLegal(&op.getBody()); }); target.addDynamicallyLegalOp([&](TestCastOp op) { // Allow casts from F64 to F32. return (*op.operand_type_begin()).isF64() && op.getType().isF32(); }); // Initialize the set of rewrite patterns. OwningRewritePatternList patterns; patterns.insert(converter, &getContext()); mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(), converter); if (failed(applyPartialConversion(getOperation(), target, std::move(patterns)))) signalPassFailure(); } }; } // end anonymous namespace namespace { /// A rewriter pattern that tests that blocks can be merged. struct TestMergeBlock : public OpConversionPattern { using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(TestMergeBlocksOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { Block &firstBlock = op.body().front(); Operation *branchOp = firstBlock.getTerminator(); Block *secondBlock = &*(std::next(op.body().begin())); auto succOperands = branchOp->getOperands(); SmallVector replacements(succOperands); rewriter.eraseOp(branchOp); rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); rewriter.updateRootInPlace(op, [] {}); return success(); } }; /// A rewrite pattern to tests the undo mechanism of blocks being merged. struct TestUndoBlocksMerge : public ConversionPattern { TestUndoBlocksMerge(MLIRContext *ctx) : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {} LogicalResult matchAndRewrite(Operation *op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { Block &firstBlock = op->getRegion(0).front(); Operation *branchOp = firstBlock.getTerminator(); Block *secondBlock = &*(std::next(op->getRegion(0).begin())); rewriter.setInsertionPointToStart(secondBlock); rewriter.create(op->getLoc(), rewriter.getF32Type()); auto succOperands = branchOp->getOperands(); SmallVector replacements(succOperands); rewriter.eraseOp(branchOp); rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); rewriter.updateRootInPlace(op, [] {}); return success(); } }; /// A rewrite mechanism to inline the body of the op into its parent, when both /// ops can have a single block. struct TestMergeSingleBlockOps : public OpConversionPattern { using OpConversionPattern< SingleBlockImplicitTerminatorOp>::OpConversionPattern; LogicalResult matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const final { SingleBlockImplicitTerminatorOp parentOp = op->getParentOfType(); if (!parentOp) return failure(); Block &innerBlock = op.region().front(); TerminatorOp innerTerminator = cast(innerBlock.getTerminator()); rewriter.mergeBlockBefore(&innerBlock, op); rewriter.eraseOp(innerTerminator); rewriter.eraseOp(op); rewriter.updateRootInPlace(op, [] {}); return success(); } }; struct TestMergeBlocksPatternDriver : public PassWrapper> { void runOnOperation() override { mlir::OwningRewritePatternList patterns; MLIRContext *context = &getContext(); patterns .insert( context); ConversionTarget target(*context); target.addLegalOp(); target.addIllegalOp(); /// Expect the op to have a single block after legalization. target.addDynamicallyLegalOp( [&](TestMergeBlocksOp op) -> bool { return llvm::hasSingleElement(op.body()); }); /// Only allow `test.br` within test.merge_blocks op. target.addDynamicallyLegalOp([&](TestBranchOp op) -> bool { return op->getParentOfType(); }); /// Expect that all nested test.SingleBlockImplicitTerminator ops are /// inlined. target.addDynamicallyLegalOp( [&](SingleBlockImplicitTerminatorOp op) -> bool { return !op->getParentOfType(); }); DenseSet unlegalizedOps; (void)applyPartialConversion(getOperation(), target, std::move(patterns), &unlegalizedOps); for (auto *op : unlegalizedOps) op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; } }; } // namespace //===----------------------------------------------------------------------===// // PassRegistration //===----------------------------------------------------------------------===// namespace mlir { namespace test { void registerPatternsTestPass() { PassRegistration("test-return-type", "Run return type functions"); PassRegistration("test-derived-attr", "Run test derived attributes"); PassRegistration("test-patterns", "Run test dialect patterns"); PassRegistration( "test-legalize-patterns", "Run test dialect legalization patterns", [] { return std::make_unique( legalizerConversionMode); }); PassRegistration( "test-remapped-value", "Test public remapped value mechanism in ConversionPatternRewriter"); PassRegistration( "test-legalize-unknown-root-patterns", "Test public remapped value mechanism in ConversionPatternRewriter"); PassRegistration( "test-legalize-type-conversion", "Test various type conversion functionalities in DialectConversion"); PassRegistration{ "test-merge-blocks", "Test Merging operation in ConversionPatternRewriter"}; } } // namespace test } // namespace mlir