//===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // RTL for hsa machine // //===----------------------------------------------------------------------===// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Header from ATMI interface #include "atmi_interop_hsa.h" #include "atmi_runtime.h" #include "internal.h" #include "Debug.h" #include "omptargetplugin.h" #include "llvm/Frontend/OpenMP/OMPGridValues.h" #ifndef TARGET_NAME #define TARGET_NAME AMDHSA #endif #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" // hostrpc interface, FIXME: consider moving to its own include these are // statically linked into amdgpu/plugin if present from hostrpc_services.a, // linked as --whole-archive to override the weak symbols that are used to // implement a fallback for toolchains that do not yet have a hostrpc library. extern "C" { unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, uint32_t device_id); hsa_status_t hostrpc_init(); hsa_status_t hostrpc_terminate(); __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } __attribute__((weak)) hsa_status_t hostrpc_terminate() { return HSA_STATUS_SUCCESS; } __attribute__((weak)) unsigned long hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " "missing\n", device_id); return 0; } } int print_kernel_trace; // Size of the target call stack struture uint32_t TgtStackItemSize = 0; #undef check // Drop definition from internal.h #ifdef OMPTARGET_DEBUG #define check(msg, status) \ if (status != ATMI_STATUS_SUCCESS) { \ /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ DP(#msg " failed\n"); \ /*assert(0);*/ \ } else { \ /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ */ \ DP(#msg " succeeded\n"); \ } #else #define check(msg, status) \ {} #endif #include "../../common/elf_common.c" static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { const uint16_t amdgcnMachineID = 224; int32_t r = elf_check_machine(image, amdgcnMachineID); if (!r) { DP("Supported machine ID not found\n"); } return r; } /// Keep entries table per device struct FuncOrGblEntryTy { __tgt_target_table Table; std::vector<__tgt_offload_entry> Entries; }; enum ExecutionModeType { SPMD, // constructors, destructors, // combined constructs (`teams distribute parallel for [simd]`) GENERIC, // everything else NONE }; struct KernelArgPool { private: static pthread_mutex_t mutex; public: uint32_t kernarg_segment_size; void *kernarg_region = nullptr; std::queue free_kernarg_segments; uint32_t kernarg_size_including_implicit() { return kernarg_segment_size + sizeof(atmi_implicit_args_t); } ~KernelArgPool() { if (kernarg_region) { auto r = hsa_amd_memory_pool_free(kernarg_region); assert(r == HSA_STATUS_SUCCESS); ErrorCheck(Memory pool free, r); } } // Can't really copy or move a mutex KernelArgPool() = default; KernelArgPool(const KernelArgPool &) = delete; KernelArgPool(KernelArgPool &&) = delete; KernelArgPool(uint32_t kernarg_segment_size) : kernarg_segment_size(kernarg_segment_size) { // atmi uses one pool per kernel for all gpus, with a fixed upper size // preserving that exact scheme here, including the queue { hsa_status_t err = hsa_amd_memory_pool_allocate( atl_gpu_kernarg_pools[0], kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, &kernarg_region); ErrorCheck(Allocating memory for the executable-kernel, err); core::allow_access_to_all_gpu_agents(kernarg_region); for (int i = 0; i < MAX_NUM_KERNELS; i++) { free_kernarg_segments.push(i); } } } void *allocate(uint64_t arg_num) { assert((arg_num * sizeof(void *)) == kernarg_segment_size); lock l(&mutex); void *res = nullptr; if (!free_kernarg_segments.empty()) { int free_idx = free_kernarg_segments.front(); res = static_cast(static_cast(kernarg_region) + (free_idx * kernarg_size_including_implicit())); assert(free_idx == pointer_to_index(res)); free_kernarg_segments.pop(); } return res; } void deallocate(void *ptr) { lock l(&mutex); int idx = pointer_to_index(ptr); free_kernarg_segments.push(idx); } private: int pointer_to_index(void *ptr) { ptrdiff_t bytes = static_cast(ptr) - static_cast(kernarg_region); assert(bytes >= 0); assert(bytes % kernarg_size_including_implicit() == 0); return bytes / kernarg_size_including_implicit(); } struct lock { lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } ~lock() { pthread_mutex_unlock(m); } pthread_mutex_t *m; }; }; pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; std::unordered_map> KernelArgPoolMap; /// Use a single entity to encode a kernel and a set of flags struct KernelTy { // execution mode of kernel // 0 - SPMD mode (without master warp) // 1 - Generic mode (with master warp) int8_t ExecutionMode; int16_t ConstWGSize; int32_t device_id; void *CallStackAddr = nullptr; const char *Name; KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, void *_CallStackAddr, const char *_Name, uint32_t _kernarg_segment_size) : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); std::string N(_Name); if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { KernelArgPoolMap.insert( std::make_pair(N, std::unique_ptr( new KernelArgPool(_kernarg_segment_size)))); } } }; /// List that contains all the kernels. /// FIXME: we may need this to be per device and per library. std::list KernelsList; // ATMI API to get gpu and gpu memory place static atmi_place_t get_gpu_place(int device_id) { return ATMI_PLACE_GPU(0, device_id); } static atmi_mem_place_t get_gpu_mem_place(int device_id) { return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); } static std::vector find_gpu_agents() { std::vector res; hsa_status_t err = hsa_iterate_agents( [](hsa_agent_t agent, void *data) -> hsa_status_t { std::vector *res = static_cast *>(data); hsa_device_type_t device_type; // get_info fails iff HSA runtime not yet initialized hsa_status_t err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) printf("rtl.cpp: err %d\n", err); assert(err == HSA_STATUS_SUCCESS); if (device_type == HSA_DEVICE_TYPE_GPU) { res->push_back(agent); } return HSA_STATUS_SUCCESS; }, &res); // iterate_agents fails iff HSA runtime not yet initialized if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) printf("rtl.cpp: err %d\n", err); assert(err == HSA_STATUS_SUCCESS); return res; } static void callbackQueue(hsa_status_t status, hsa_queue_t *source, void *data) { if (status != HSA_STATUS_SUCCESS) { const char *status_string; if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { status_string = "unavailable"; } fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, status, status_string); abort(); } } namespace core { void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); } uint16_t create_header(hsa_packet_type_t type, int barrier, atmi_task_fence_scope_t acq_fence, atmi_task_fence_scope_t rel_fence) { uint16_t header = type << HSA_PACKET_HEADER_TYPE; header |= barrier << HSA_PACKET_HEADER_BARRIER; header |= (hsa_fence_scope_t) static_cast( acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); header |= (hsa_fence_scope_t) static_cast( rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); return header; } } // namespace core /// Class containing all the device information class RTLDeviceInfoTy { std::vector> FuncGblEntries; public: // load binary populates symbol tables and mutates various global state // run uses those symbol tables std::shared_timed_mutex load_run_lock; int NumberOfDevices; // GPU devices std::vector HSAAgents; std::vector HSAQueues; // one per gpu // Device properties std::vector ComputeUnits; std::vector GroupsPerDevice; std::vector ThreadsPerGroup; std::vector WarpSize; // OpenMP properties std::vector NumTeams; std::vector NumThreads; // OpenMP Environment properties int EnvNumTeams; int EnvTeamLimit; int EnvMaxTeamsDefault; // OpenMP Requires Flags int64_t RequiresFlags; // Resource pools SignalPoolT FreeSignalPool; struct atmiFreePtrDeletor { void operator()(void *p) { atmi_free(p); // ignore failure to free } }; // device_State shared across loaded binaries, error if inconsistent size std::vector, uint64_t>> deviceStateStore; static const unsigned HardTeamLimit = (1 << 16) - 1; // 64K needed to fit in uint16 static const int DefaultNumTeams = 128; static const int Max_Teams = llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; static const int Warp_Size = llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; static const int Max_WG_Size = llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; static const int Default_WG_Size = llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, size_t size, hsa_agent_t); atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, MemcpyFunc Func, int32_t deviceId) { hsa_agent_t agent = HSAAgents[deviceId]; hsa_signal_t s = FreeSignalPool.pop(); if (s.handle == 0) { return ATMI_STATUS_ERROR; } atmi_status_t r = Func(s, dest, src, size, agent); FreeSignalPool.push(s); return r; } atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, size_t size, int32_t deviceId) { return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); } atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, size_t size, int32_t deviceId) { return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); } // Record entry point associated with device void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); E.Entries.push_back(entry); } // Return true if the entry is associated with device bool findOffloadEntry(int32_t device_id, void *addr) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); for (auto &it : E.Entries) { if (it.addr == addr) return true; } return false; } // Return the pointer to the target entries table __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); int32_t size = E.Entries.size(); // Table is empty if (!size) return 0; __tgt_offload_entry *begin = &E.Entries[0]; __tgt_offload_entry *end = &E.Entries[size - 1]; // Update table info according to the entries and return the pointer E.Table.EntriesBegin = begin; E.Table.EntriesEnd = ++end; return &E.Table; } // Clear entries table for a device void clearOffloadEntriesTable(int device_id) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncGblEntries[device_id].emplace_back(); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); // KernelArgPoolMap.clear(); E.Entries.clear(); E.Table.EntriesBegin = E.Table.EntriesEnd = 0; } RTLDeviceInfoTy() { // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr // anytime. You do not need a debug library build. // 0 => no tracing // 1 => tracing dispatch only // >1 => verbosity increase if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) print_kernel_trace = atoi(envStr); else print_kernel_trace = 0; DP("Start initializing HSA-ATMI\n"); atmi_status_t err = atmi_init(); if (err != ATMI_STATUS_SUCCESS) { DP("Error when initializing HSA-ATMI\n"); return; } // Init hostcall soon after initializing ATMI hostrpc_init(); HSAAgents = find_gpu_agents(); NumberOfDevices = (int)HSAAgents.size(); if (NumberOfDevices == 0) { DP("There are no devices supporting HSA.\n"); return; } else { DP("There are %d devices supporting HSA.\n", NumberOfDevices); } // Init the device info HSAQueues.resize(NumberOfDevices); FuncGblEntries.resize(NumberOfDevices); ThreadsPerGroup.resize(NumberOfDevices); ComputeUnits.resize(NumberOfDevices); GroupsPerDevice.resize(NumberOfDevices); WarpSize.resize(NumberOfDevices); NumTeams.resize(NumberOfDevices); NumThreads.resize(NumberOfDevices); deviceStateStore.resize(NumberOfDevices); for (int i = 0; i < NumberOfDevices; i++) { uint32_t queue_size = 0; { hsa_status_t err; err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); ErrorCheck(Querying the agent maximum queue size, err); if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { queue_size = core::Runtime::getInstance().getMaxQueueSize(); } } hsa_status_t rc = hsa_queue_create( HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &HSAQueues[i]); if (rc != HSA_STATUS_SUCCESS) { DP("Failed to create HSA queues\n"); return; } deviceStateStore[i] = {nullptr, 0}; } for (int i = 0; i < NumberOfDevices; i++) { ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; ComputeUnits[i] = 1; DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, GroupsPerDevice[i], ThreadsPerGroup[i]); } // Get environment variables regarding teams char *envStr = getenv("OMP_TEAM_LIMIT"); if (envStr) { // OMP_TEAM_LIMIT has been set EnvTeamLimit = std::stoi(envStr); DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); } else { EnvTeamLimit = -1; } envStr = getenv("OMP_NUM_TEAMS"); if (envStr) { // OMP_NUM_TEAMS has been set EnvNumTeams = std::stoi(envStr); DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); } else { EnvNumTeams = -1; } // Get environment variables regarding expMaxTeams envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); if (envStr) { EnvMaxTeamsDefault = std::stoi(envStr); DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); } else { EnvMaxTeamsDefault = -1; } // Default state. RequiresFlags = OMP_REQ_UNDEFINED; } ~RTLDeviceInfoTy() { DP("Finalizing the HSA-ATMI DeviceInfo.\n"); // Run destructors on types that use HSA before // atmi_finalize removes access to it deviceStateStore.clear(); KernelArgPoolMap.clear(); // Terminate hostrpc before finalizing ATMI hostrpc_terminate(); atmi_finalize(); } }; pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; // TODO: May need to drop the trailing to fields until deviceRTL is updated struct omptarget_device_environmentTy { int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG // only useful for Debug build of deviceRTLs int32_t num_devices; // gets number of active offload devices int32_t device_num; // gets a value 0 to num_devices-1 }; static RTLDeviceInfoTy DeviceInfo; namespace { int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, __tgt_async_info *AsyncInfoPtr) { assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); // Return success if we are not copying back to host from target. if (!HstPtr) return OFFLOAD_SUCCESS; atmi_status_t err; DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, (long long unsigned)(Elf64_Addr)TgtPtr, (long long unsigned)(Elf64_Addr)HstPtr); err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, DeviceId); if (err != ATMI_STATUS_SUCCESS) { DP("Error when copying data from device to host. Pointers: " "host = 0x%016lx, device = 0x%016lx, size = %lld\n", (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); return OFFLOAD_FAIL; } DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, (long long unsigned)(Elf64_Addr)TgtPtr, (long long unsigned)(Elf64_Addr)HstPtr); return OFFLOAD_SUCCESS; } int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, __tgt_async_info *AsyncInfoPtr) { assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); atmi_status_t err; assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); // Return success if we are not doing host to target. if (!HstPtr) return OFFLOAD_SUCCESS; DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, (long long unsigned)(Elf64_Addr)HstPtr, (long long unsigned)(Elf64_Addr)TgtPtr); err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, DeviceId); if (err != ATMI_STATUS_SUCCESS) { DP("Error when copying data from host to device. Pointers: " "host = 0x%016lx, device = 0x%016lx, size = %lld\n", (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); return OFFLOAD_FAIL; } return OFFLOAD_SUCCESS; } // Async. // The implementation was written with cuda streams in mind. The semantics of // that are to execute kernels on a queue in order of insertion. A synchronise // call then makes writes visible between host and device. This means a series // of N data_submit_async calls are expected to execute serially. HSA offers // various options to run the data copies concurrently. This may require changes // to libomptarget. // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that // there are no outstanding kernels that need to be synchronized. Any async call // may be passed a Queue==0, at which point the cuda implementation will set it // to non-null (see getStream). The cuda streams are per-device. Upstream may // change this interface to explicitly initialize the async_info_pointer, but // until then hsa lazily initializes it as well. void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) { // set non-null while using async calls, return to null to indicate completion assert(async_info_ptr); if (!async_info_ptr->Queue) { async_info_ptr->Queue = reinterpret_cast(UINT64_MAX); } } void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) { assert(async_info_ptr); assert(async_info_ptr->Queue); async_info_ptr->Queue = 0; } } // namespace int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { return elf_machine_id_is_amdgcn(image); } int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { DP("Init requires flags to %ld\n", RequiresFlags); DeviceInfo.RequiresFlags = RequiresFlags; return RequiresFlags; } int32_t __tgt_rtl_init_device(int device_id) { hsa_status_t err; // this is per device id init DP("Initialize the device id: %d\n", device_id); hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; // Get number of Compute Unit uint32_t compute_units = 0; err = hsa_agent_get_info( agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, &compute_units); if (err != HSA_STATUS_SUCCESS) { DeviceInfo.ComputeUnits[device_id] = 1; DP("Error getting compute units : settiing to 1\n"); } else { DeviceInfo.ComputeUnits[device_id] = compute_units; DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); } if (print_kernel_trace == 4) fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id, DeviceInfo.ComputeUnits[device_id]); // Query attributes to determine number of threads/block and blocks/grid. uint16_t workgroup_max_dim[3]; err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, &workgroup_max_dim); if (err != HSA_STATUS_SUCCESS) { DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; DP("Error getting grid dims: num groups : %d\n", RTLDeviceInfoTy::DefaultNumTeams); } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; DP("Using %d ROCm blocks per grid\n", DeviceInfo.GroupsPerDevice[device_id]); } else { DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " "at the hard limit\n", workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); } // Get thread limit hsa_dim3_t grid_max_dim; err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); if (err == HSA_STATUS_SUCCESS) { DeviceInfo.ThreadsPerGroup[device_id] = reinterpret_cast(&grid_max_dim)[0] / DeviceInfo.GroupsPerDevice[device_id]; if ((DeviceInfo.ThreadsPerGroup[device_id] > RTLDeviceInfoTy::Max_WG_Size) || DeviceInfo.ThreadsPerGroup[device_id] == 0) { DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; } else { DP("Using ROCm Queried thread limit: %d\n", DeviceInfo.ThreadsPerGroup[device_id]); } } else { DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; DP("Error getting max block dimension, use default:%d \n", RTLDeviceInfoTy::Max_WG_Size); } // Get wavefront size uint32_t wavefront_size = 0; err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); if (err == HSA_STATUS_SUCCESS) { DP("Queried wavefront size: %d\n", wavefront_size); DeviceInfo.WarpSize[device_id] = wavefront_size; } else { DP("Default wavefront size: %d\n", llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); DeviceInfo.WarpSize[device_id] = llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; } // Adjust teams to the env variables if (DeviceInfo.EnvTeamLimit > 0 && DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", DeviceInfo.EnvTeamLimit); } // Set default number of teams if (DeviceInfo.EnvNumTeams > 0) { DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; DP("Default number of teams set according to environment %d\n", DeviceInfo.EnvNumTeams); } else { DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams; DP("Default number of teams set according to library's default %d\n", RTLDeviceInfoTy::DefaultNumTeams); } if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; DP("Default number of teams exceeds device limit, capping at %d\n", DeviceInfo.GroupsPerDevice[device_id]); } // Set default number of threads DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; DP("Default number of threads set according to library's default %d\n", RTLDeviceInfoTy::Default_WG_Size); if (DeviceInfo.NumThreads[device_id] > DeviceInfo.ThreadsPerGroup[device_id]) { DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; DP("Default number of threads exceeds device limit, capping at %d\n", DeviceInfo.ThreadsPerGroup[device_id]); } DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", device_id, DeviceInfo.GroupsPerDevice[device_id], DeviceInfo.ThreadsPerGroup[device_id]); DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], DeviceInfo.GroupsPerDevice[device_id], DeviceInfo.GroupsPerDevice[device_id] * DeviceInfo.ThreadsPerGroup[device_id]); return OFFLOAD_SUCCESS; } namespace { Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { size_t N; int rc = elf_getshdrnum(elf, &N); if (rc != 0) { return nullptr; } Elf64_Shdr *result = nullptr; for (size_t i = 0; i < N; i++) { Elf_Scn *scn = elf_getscn(elf, i); if (scn) { Elf64_Shdr *shdr = elf64_getshdr(scn); if (shdr) { if (shdr->sh_type == SHT_HASH) { if (result == nullptr) { result = shdr; } else { // multiple SHT_HASH sections not handled return nullptr; } } } } } return result; } const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, const char *symname) { assert(section_hash); size_t section_symtab_index = section_hash->sh_link; Elf64_Shdr *section_symtab = elf64_getshdr(elf_getscn(elf, section_symtab_index)); size_t section_strtab_index = section_symtab->sh_link; const Elf64_Sym *symtab = reinterpret_cast(base + section_symtab->sh_offset); const uint32_t *hashtab = reinterpret_cast(base + section_hash->sh_offset); // Layout: // nbucket // nchain // bucket[nbucket] // chain[nchain] uint32_t nbucket = hashtab[0]; const uint32_t *bucket = &hashtab[2]; const uint32_t *chain = &hashtab[nbucket + 2]; const size_t max = strlen(symname) + 1; const uint32_t hash = elf_hash(symname); for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); if (strncmp(symname, n, max) == 0) { return &symtab[i]; } } return nullptr; } typedef struct { void *addr = nullptr; uint32_t size = UINT32_MAX; } symbol_info; int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, symbol_info *res) { if (elf_kind(elf) != ELF_K_ELF) { return 1; } Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); if (!section_hash) { return 1; } const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); if (!sym) { return 1; } if (sym->st_size > UINT32_MAX) { return 1; } res->size = static_cast(sym->st_size); res->addr = sym->st_value + base; return 0; } int get_symbol_info_without_loading(char *base, size_t img_size, const char *symname, symbol_info *res) { Elf *elf = elf_memory(base, img_size); if (elf) { int rc = get_symbol_info_without_loading(elf, base, symname, res); elf_end(elf); return rc; } return 1; } atmi_status_t interop_get_symbol_info(char *base, size_t img_size, const char *symname, void **var_addr, uint32_t *var_size) { symbol_info si; int rc = get_symbol_info_without_loading(base, img_size, symname, &si); if (rc == 0) { *var_addr = si.addr; *var_size = si.size; return ATMI_STATUS_SUCCESS; } else { return ATMI_STATUS_ERROR; } } template atmi_status_t module_register_from_memory_to_place(void *module_bytes, size_t module_size, atmi_place_t place, C cb) { auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { C *unwrapped = static_cast(cb_state); return (*unwrapped)(data, size); }; return atmi_module_register_from_memory_to_place( module_bytes, module_size, place, L, static_cast(&cb)); } } // namespace static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { uint64_t device_State_bytes = 0; { // If this is the deviceRTL, get the state variable size symbol_info size_si; int rc = get_symbol_info_without_loading( ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); if (rc == 0) { if (size_si.size != sizeof(uint64_t)) { fprintf(stderr, "Found device_State_size variable with wrong size, aborting\n"); exit(1); } // Read number of bytes directly from the elf memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); } } return device_State_bytes; } static __tgt_target_table * __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); static __tgt_target_table * __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, __tgt_device_image *image) { DeviceInfo.load_run_lock.lock(); __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); DeviceInfo.load_run_lock.unlock(); return res; } static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, atmi_mem_place_t place) { uint64_t rounded = 4 * ((size + 3) / 4); void *ptr; atmi_status_t err = atmi_malloc(&ptr, rounded, place); if (err != ATMI_STATUS_SUCCESS) { return err; } hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); if (rc != HSA_STATUS_SUCCESS) { fprintf(stderr, "zero fill device_state failed with %u\n", rc); atmi_free(ptr); return ATMI_STATUS_ERROR; } *ret_ptr = ptr; return ATMI_STATUS_SUCCESS; } __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image) { // This function loads the device image onto gpu[device_id] and does other // per-image initialization work. Specifically: // // - Initialize an omptarget_device_environmentTy instance embedded in the // image at the symbol "omptarget_device_environment" // Fields debug_level, device_num, num_devices. Used by the deviceRTL. // // - Allocate a large array per-gpu (could be moved to init_device) // - Read a uint64_t at symbol omptarget_nvptx_device_State_size // - Allocate at least that many bytes of gpu memory // - Zero initialize it // - Write the pointer to the symbol omptarget_nvptx_device_State // // - Pulls some per-kernel information together from various sources and // records it in the KernelsList for quicker access later // // The initialization can be done before or after loading the image onto the // gpu. This function presently does a mixture. Using the hsa api to get/set // the information is simpler to implement, in exchange for more complicated // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes // back from the gpu vs a hashtable lookup on the host. const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; DeviceInfo.clearOffloadEntriesTable(device_id); // We do not need to set the ELF version because the caller of this function // had to do that to decide the right runtime to use if (!elf_machine_id_is_amdgcn(image)) { return NULL; } omptarget_device_environmentTy host_device_env; host_device_env.num_devices = DeviceInfo.NumberOfDevices; host_device_env.device_num = device_id; host_device_env.debug_level = 0; #ifdef OMPTARGET_DEBUG if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { host_device_env.debug_level = std::stoi(envStr); } #endif auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t { const char *device_env_Name = "omptarget_device_environment"; symbol_info si; int rc = get_symbol_info_without_loading((char *)image->ImageStart, img_size, device_env_Name, &si); if (rc != 0) { DP("Finding global device environment '%s' - symbol missing.\n", device_env_Name); // no need to return FAIL, consider this is a not a device debug build. return ATMI_STATUS_SUCCESS; } if (si.size != sizeof(host_device_env)) { return ATMI_STATUS_ERROR; } DP("Setting global device environment %u bytes\n", si.size); uint64_t offset = (char *)si.addr - (char *)image->ImageStart; void *pos = (char *)data + offset; memcpy(pos, &host_device_env, sizeof(host_device_env)); return ATMI_STATUS_SUCCESS; }; atmi_status_t err; { err = module_register_from_memory_to_place( (void *)image->ImageStart, img_size, get_gpu_place(device_id), on_deserialized_data); check("Module registering", err); if (err != ATMI_STATUS_SUCCESS) { char GPUName[64] = "--unknown gpu--"; hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; (void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, (void *)GPUName); fprintf(stderr, "Possible gpu arch mismatch: %s, please check" " compiler: -march= flag\n", GPUName); return NULL; } } DP("ATMI module successfully loaded!\n"); { // the device_State array is either large value in bss or a void* that // needs to be assigned to a pointer to an array of size device_state_bytes void *state_ptr; uint32_t state_ptr_size; atmi_status_t err = atmi_interop_hsa_get_symbol_info( get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", &state_ptr, &state_ptr_size); if (err != ATMI_STATUS_SUCCESS) { fprintf(stderr, "failed to find device_state symbol\n"); return NULL; } if (state_ptr_size < sizeof(void *)) { fprintf(stderr, "unexpected size of state_ptr %u != %zu\n", state_ptr_size, sizeof(void *)); return NULL; } // if it's larger than a void*, assume it's a bss array and no further // initialization is required. Only try to set up a pointer for // sizeof(void*) if (state_ptr_size == sizeof(void *)) { uint64_t device_State_bytes = get_device_State_bytes((char *)image->ImageStart, img_size); if (device_State_bytes == 0) { return NULL; } auto &dss = DeviceInfo.deviceStateStore[device_id]; if (dss.first.get() == nullptr) { assert(dss.second == 0); void *ptr = NULL; atmi_status_t err = atmi_calloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id)); if (err != ATMI_STATUS_SUCCESS) { fprintf(stderr, "Failed to allocate device_state array\n"); return NULL; } dss = {std::unique_ptr{ptr}, device_State_bytes}; } void *ptr = dss.first.get(); if (device_State_bytes != dss.second) { fprintf(stderr, "Inconsistent sizes of device_State unsupported\n"); exit(1); } // write ptr to device memory so it can be used by later kernels err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, sizeof(void *), device_id); if (err != ATMI_STATUS_SUCCESS) { fprintf(stderr, "memcpy install of state_ptr failed\n"); return NULL; } } } // TODO: Check with Guansong to understand the below comment more thoroughly. // Here, we take advantage of the data that is appended after img_end to get // the symbols' name we need to load. This data consist of the host entries // begin and end as well as the target name (see the offloading linker script // creation in clang compiler). // Find the symbols in the module by name. The name can be obtain by // concatenating the host entry name with the target name __tgt_offload_entry *HostBegin = image->EntriesBegin; __tgt_offload_entry *HostEnd = image->EntriesEnd; for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { if (!e->addr) { // The host should have always something in the address to // uniquely identify the target region. fprintf(stderr, "Analyzing host entry '' (size = %lld)...\n", (unsigned long long)e->size); return NULL; } if (e->size) { __tgt_offload_entry entry = *e; void *varptr; uint32_t varsize; err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), e->name, &varptr, &varsize); if (err != ATMI_STATUS_SUCCESS) { DP("Loading global '%s' (Failed)\n", e->name); // Inform the user what symbol prevented offloading fprintf(stderr, "Loading global '%s' (Failed)\n", e->name); return NULL; } if (varsize != e->size) { DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, varsize, e->size); return NULL; } DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); entry.addr = (void *)varptr; DeviceInfo.addOffloadEntry(device_id, entry); if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && e->flags & OMP_DECLARE_TARGET_LINK) { // If unified memory is present any target link variables // can access host addresses directly. There is no longer a // need for device copies. err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, sizeof(void *), device_id); if (err != ATMI_STATUS_SUCCESS) DP("Error when copying USM\n"); DP("Copy linked variable host address (" DPxMOD ")" "to device address (" DPxMOD ")\n", DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); } continue; } DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); atmi_mem_place_t place = get_gpu_mem_place(device_id); uint32_t kernarg_segment_size; err = atmi_interop_hsa_get_kernel_info( place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, &kernarg_segment_size); // each arg is a void * in this openmp implementation uint32_t arg_num = kernarg_segment_size / sizeof(void *); std::vector arg_sizes(arg_num); for (std::vector::iterator it = arg_sizes.begin(); it != arg_sizes.end(); it++) { *it = sizeof(void *); } // default value GENERIC (in case symbol is missing from cubin file) int8_t ExecModeVal = ExecutionModeType::GENERIC; // get flat group size if present, else Default_WG_Size int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; // get Kernel Descriptor if present. // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp struct KernDescValType { uint16_t Version; uint16_t TSize; uint16_t WG_Size; uint8_t Mode; }; struct KernDescValType KernDescVal; std::string KernDescNameStr(e->name); KernDescNameStr += "_kern_desc"; const char *KernDescName = KernDescNameStr.c_str(); void *KernDescPtr; uint32_t KernDescSize; void *CallStackAddr = nullptr; err = interop_get_symbol_info((char *)image->ImageStart, img_size, KernDescName, &KernDescPtr, &KernDescSize); if (err == ATMI_STATUS_SUCCESS) { if ((size_t)KernDescSize != sizeof(KernDescVal)) DP("Loading global computation properties '%s' - size mismatch (%u != " "%lu)\n", KernDescName, KernDescSize, sizeof(KernDescVal)); memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); // Check structure size against recorded size. if ((size_t)KernDescSize != KernDescVal.TSize) DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", sizeof(KernDescVal), KernDescVal.TSize, KernDescName); DP("After loading global for %s KernDesc \n", KernDescName); DP("KernDesc: Version: %d\n", KernDescVal.Version); DP("KernDesc: TSize: %d\n", KernDescVal.TSize); DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); DP("KernDesc: Mode: %d\n", KernDescVal.Mode); // Get ExecMode ExecModeVal = KernDescVal.Mode; DP("ExecModeVal %d\n", ExecModeVal); if (KernDescVal.WG_Size == 0) { KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); } WGSizeVal = KernDescVal.WG_Size; DP("WGSizeVal %d\n", WGSizeVal); check("Loading KernDesc computation property", err); } else { DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); // Generic std::string ExecModeNameStr(e->name); ExecModeNameStr += "_exec_mode"; const char *ExecModeName = ExecModeNameStr.c_str(); void *ExecModePtr; uint32_t varsize; err = interop_get_symbol_info((char *)image->ImageStart, img_size, ExecModeName, &ExecModePtr, &varsize); if (err == ATMI_STATUS_SUCCESS) { if ((size_t)varsize != sizeof(int8_t)) { DP("Loading global computation properties '%s' - size mismatch(%u != " "%lu)\n", ExecModeName, varsize, sizeof(int8_t)); return NULL; } memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); DP("After loading global for %s ExecMode = %d\n", ExecModeName, ExecModeVal); if (ExecModeVal < 0 || ExecModeVal > 1) { DP("Error wrong exec_mode value specified in HSA code object file: " "%d\n", ExecModeVal); return NULL; } } else { DP("Loading global exec_mode '%s' - symbol missing, using default " "value " "GENERIC (1)\n", ExecModeName); } check("Loading computation property", err); // Flat group size std::string WGSizeNameStr(e->name); WGSizeNameStr += "_wg_size"; const char *WGSizeName = WGSizeNameStr.c_str(); void *WGSizePtr; uint32_t WGSize; err = interop_get_symbol_info((char *)image->ImageStart, img_size, WGSizeName, &WGSizePtr, &WGSize); if (err == ATMI_STATUS_SUCCESS) { if ((size_t)WGSize != sizeof(int16_t)) { DP("Loading global computation properties '%s' - size mismatch (%u " "!= " "%lu)\n", WGSizeName, WGSize, sizeof(int16_t)); return NULL; } memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { DP("Error wrong WGSize value specified in HSA code object file: " "%d\n", WGSizeVal); WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; } } else { DP("Warning: Loading WGSize '%s' - symbol not found, " "using default value %d\n", WGSizeName, WGSizeVal); } check("Loading WGSize computation property", err); } KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, CallStackAddr, e->name, kernarg_segment_size)); __tgt_offload_entry entry = *e; entry.addr = (void *)&KernelsList.back(); DeviceInfo.addOffloadEntry(device_id, entry); DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); } return DeviceInfo.getOffloadEntriesTable(device_id); } void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) { void *ptr = NULL; assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, (long long unsigned)(Elf64_Addr)ptr); ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; return ptr; } int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, int64_t size) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); __tgt_async_info async_info; int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info); if (rc != OFFLOAD_SUCCESS) return OFFLOAD_FAIL; return __tgt_rtl_synchronize(device_id, &async_info); } int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, int64_t size, __tgt_async_info *async_info_ptr) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); if (async_info_ptr) { initAsyncInfoPtr(async_info_ptr); return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr); } else { return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); } } int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, int64_t size) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); __tgt_async_info async_info; int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info); if (rc != OFFLOAD_SUCCESS) return OFFLOAD_FAIL; return __tgt_rtl_synchronize(device_id, &async_info); } int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, void *tgt_ptr, int64_t size, __tgt_async_info *async_info_ptr) { assert(async_info_ptr && "async_info is nullptr"); assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); initAsyncInfoPtr(async_info_ptr); return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr); } int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); atmi_status_t err; DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); err = atmi_free(tgt_ptr); if (err != ATMI_STATUS_SUCCESS) { DP("Error when freeing CUDA memory\n"); return OFFLOAD_FAIL; } return OFFLOAD_SUCCESS; } // Determine launch values for threadsPerGroup and num_groups. // Outputs: treadsPerGroup, num_groups // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, // loop_tripcount. void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, int num_teams, int thread_limit, uint64_t loop_tripcount) { int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 ? DeviceInfo.EnvMaxTeamsDefault : DeviceInfo.Max_Teams; if (Max_Teams > DeviceInfo.HardTeamLimit) Max_Teams = DeviceInfo.HardTeamLimit; if (print_kernel_trace == 4) { fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); fprintf(stderr, "Max_Teams: %d\n", Max_Teams); fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", RTLDeviceInfoTy::Warp_Size); fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", RTLDeviceInfoTy::Default_WG_Size); fprintf(stderr, "thread_limit: %d\n", thread_limit); fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); } // check for thread_limit() clause if (thread_limit > 0) { threadsPerGroup = thread_limit; DP("Setting threads per block to requested %d\n", thread_limit); if (ExecutionMode == GENERIC) { // Add master warp for GENERIC threadsPerGroup += RTLDeviceInfoTy::Warp_Size; DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); } if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; DP("Setting threads per block to maximum %d\n", threadsPerGroup); } } // check flat_max_work_group_size attr here if (threadsPerGroup > ConstWGSize) { threadsPerGroup = ConstWGSize; DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", threadsPerGroup); } if (print_kernel_trace == 4) fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); DP("Preparing %d threads\n", threadsPerGroup); // Set default num_groups (teams) if (DeviceInfo.EnvTeamLimit > 0) num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) ? Max_Teams : DeviceInfo.EnvTeamLimit; else num_groups = Max_Teams; DP("Set default num of groups %d\n", num_groups); if (print_kernel_trace == 4) { fprintf(stderr, "num_groups: %d\n", num_groups); fprintf(stderr, "num_teams: %d\n", num_teams); } // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size // This reduction is typical for default case (no thread_limit clause). // or when user goes crazy with num_teams clause. // FIXME: We cant distinguish between a constant or variable thread limit. // So we only handle constant thread_limits. if (threadsPerGroup > RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size // here? num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; // check for num_teams() clause if (num_teams > 0) { num_groups = (num_teams < num_groups) ? num_teams : num_groups; } if (print_kernel_trace == 4) { fprintf(stderr, "num_groups: %d\n", num_groups); fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); } if (DeviceInfo.EnvNumTeams > 0) { num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams : num_groups; DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); } else if (DeviceInfo.EnvTeamLimit > 0) { num_groups = (DeviceInfo.EnvTeamLimit < num_groups) ? DeviceInfo.EnvTeamLimit : num_groups; DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); } else { if (num_teams <= 0) { if (loop_tripcount > 0) { if (ExecutionMode == SPMD) { // round up to the nearest integer num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; } else { num_groups = loop_tripcount; } DP("Using %d teams due to loop trip count %" PRIu64 " and number of " "threads per block %d\n", num_groups, loop_tripcount, threadsPerGroup); } } else { num_groups = num_teams; } if (num_groups > Max_Teams) { num_groups = Max_Teams; if (print_kernel_trace == 4) fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); } if (num_groups > num_teams && num_teams > 0) { num_groups = num_teams; if (print_kernel_trace == 4) fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", num_groups, num_teams); } } // num_teams clause always honored, no matter what, unless DEFAULT is active. if (num_teams > 0) { num_groups = num_teams; // Cap num_groups to EnvMaxTeamsDefault if set. if (DeviceInfo.EnvMaxTeamsDefault > 0 && num_groups > DeviceInfo.EnvMaxTeamsDefault) num_groups = DeviceInfo.EnvMaxTeamsDefault; } if (print_kernel_trace == 4) { fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); fprintf(stderr, "num_groups: %d\n", num_groups); fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); } DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, threadsPerGroup); } static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); bool full = true; while (full) { full = packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); } return packet_id; } extern bool g_atmi_hostcall_required; // declared without header by atmi static int32_t __tgt_rtl_run_target_team_region_locked( int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, int32_t thread_limit, uint64_t loop_tripcount); int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, int32_t thread_limit, uint64_t loop_tripcount) { DeviceInfo.load_run_lock.lock_shared(); int32_t res = __tgt_rtl_run_target_team_region_locked( device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, thread_limit, loop_tripcount); DeviceInfo.load_run_lock.unlock_shared(); return res; } int32_t __tgt_rtl_run_target_team_region_locked( int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, int32_t thread_limit, uint64_t loop_tripcount) { // Set the context we are using // update thread limit content in gpu memory if un-initialized or specified // from host DP("Run target team region thread_limit %d\n", thread_limit); // All args are references. std::vector args(arg_num); std::vector ptrs(arg_num); DP("Arg_num: %d\n", arg_num); for (int32_t i = 0; i < arg_num; ++i) { ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); args[i] = &ptrs[i]; DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); } KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; /* * Set limit based on ThreadsPerGroup and GroupsPerDevice */ int num_groups = 0; int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, DeviceInfo.EnvNumTeams, num_teams, // From run_region arg thread_limit, // From run_region arg loop_tripcount // From run_region arg ); if (print_kernel_trace == 4) // enum modes are SPMD, GENERIC, NONE 0,1,2 fprintf(stderr, "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " "reqd:(%4dX%4d) n:%s\n", device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, KernelInfo->Name); // Run on the device. { hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; uint64_t packet_id = acquire_available_packet_id(queue); const uint32_t mask = queue->size - 1; // size is a power of 2 hsa_kernel_dispatch_packet_t *packet = (hsa_kernel_dispatch_packet_t *)queue->base_address + (packet_id & mask); // packet->header is written last packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; packet->workgroup_size_x = threadsPerGroup; packet->workgroup_size_y = 1; packet->workgroup_size_z = 1; packet->reserved0 = 0; packet->grid_size_x = num_groups * threadsPerGroup; packet->grid_size_y = 1; packet->grid_size_z = 1; packet->private_segment_size = 0; packet->group_segment_size = 0; packet->kernel_object = 0; packet->kernarg_address = 0; // use the block allocator packet->reserved2 = 0; // atmi writes id_ here packet->completion_signal = {0}; // may want a pool of signals std::string kernel_name = std::string(KernelInfo->Name); { assert(KernelInfoTable[device_id].find(kernel_name) != KernelInfoTable[device_id].end()); auto it = KernelInfoTable[device_id][kernel_name]; packet->kernel_object = it.kernel_object; packet->private_segment_size = it.private_segment_size; packet->group_segment_size = it.group_segment_size; assert(arg_num == (int)it.num_args); } KernelArgPool *ArgPool = nullptr; { auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); if (it != KernelArgPoolMap.end()) { ArgPool = (it->second).get(); } } if (!ArgPool) { fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, device_id); } { void *kernarg = nullptr; if (ArgPool) { assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); kernarg = ArgPool->allocate(arg_num); } if (!kernarg) { printf("Allocate kernarg failed\n"); exit(1); } // Copy explicit arguments for (int i = 0; i < arg_num; i++) { memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); } // Initialize implicit arguments. ATMI seems to leave most fields // uninitialized atmi_implicit_args_t *impl_args = reinterpret_cast( static_cast(kernarg) + ArgPool->kernarg_segment_size); memset(impl_args, 0, sizeof(atmi_implicit_args_t)); // may not be necessary impl_args->offset_x = 0; impl_args->offset_y = 0; impl_args->offset_z = 0; // assign a hostcall buffer for the selected Q if (g_atmi_hostcall_required) { // hostrpc_assign_buffer is not thread safe, and this function is // under a multiple reader lock, not a writer lock. static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_lock(&hostcall_init_lock); impl_args->hostcall_ptr = hostrpc_assign_buffer( DeviceInfo.HSAAgents[device_id], queue, device_id); pthread_mutex_unlock(&hostcall_init_lock); if (!impl_args->hostcall_ptr) { DP("hostrpc_assign_buffer failed, gpu would dereference null and " "error\n"); return OFFLOAD_FAIL; } } packet->kernarg_address = kernarg; } { hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); if (s.handle == 0) { printf("Failed to get signal instance\n"); exit(1); } packet->completion_signal = s; hsa_signal_store_relaxed(packet->completion_signal, 1); } core::packet_store_release( reinterpret_cast(packet), core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), packet->setup); hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); while (hsa_signal_wait_scacquire(packet->completion_signal, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, HSA_WAIT_STATE_BLOCKED) != 0) ; assert(ArgPool); ArgPool->deallocate(packet->kernarg_address); DeviceInfo.FreeSignalPool.push(packet->completion_signal); } DP("Kernel completed\n"); return OFFLOAD_SUCCESS; } int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num) { // use one team and one thread // fix thread num int32_t team_num = 1; int32_t thread_limit = 0; // use default return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num, thread_limit, 0); } int32_t __tgt_rtl_run_target_region_async(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, __tgt_async_info *async_info_ptr) { assert(async_info_ptr && "async_info is nullptr"); initAsyncInfoPtr(async_info_ptr); // use one team and one thread // fix thread num int32_t team_num = 1; int32_t thread_limit = 0; // use default return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num, thread_limit, 0); } int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *async_info_ptr) { assert(async_info_ptr && "async_info is nullptr"); // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant // is not ensured by devices.cpp for amdgcn // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr"); if (async_info_ptr->Queue) { finiAsyncInfoPtr(async_info_ptr); } return OFFLOAD_SUCCESS; }