//===- DeadCodeElimination.cpp - Eliminate dead iteration ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The polyhedral dead code elimination pass analyses a SCoP to eliminate // statement instances that can be proven dead. // As a consequence, the code generated for this SCoP may execute a statement // less often. This means, a statement may be executed only in certain loop // iterations or it may not even be part of the generated code at all. // // This code: // // for (i = 0; i < N; i++) // arr[i] = 0; // for (i = 0; i < N; i++) // arr[i] = 10; // for (i = 0; i < N; i++) // arr[i] = i; // // is e.g. simplified to: // // for (i = 0; i < N; i++) // arr[i] = i; // // The idea and the algorithm used was first implemented by Sven Verdoolaege in // the 'ppcg' tool. // //===----------------------------------------------------------------------===// #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "llvm/Support/CommandLine.h" #include "isl/isl-noexceptions.h" using namespace llvm; using namespace polly; namespace { cl::opt DCEPreciseSteps( "polly-dce-precise-steps", cl::desc("The number of precise steps between two approximating " "iterations. (A value of -1 schedules another approximation stage " "before the actual dead code elimination."), cl::ZeroOrMore, cl::init(-1), cl::cat(PollyCategory)); class DeadCodeElim : public ScopPass { public: static char ID; explicit DeadCodeElim() : ScopPass(ID) {} /// Remove dead iterations from the schedule of @p S. bool runOnScop(Scop &S) override; /// Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override; private: /// Return the set of live iterations. /// /// The set of live iterations are all iterations that write to memory and for /// which we can not prove that there will be a later write that _must_ /// overwrite the same memory location and is consequently the only one that /// is visible after the execution of the SCoP. /// isl::union_set getLiveOut(Scop &S); bool eliminateDeadCode(Scop &S, int PreciseSteps); }; } // namespace char DeadCodeElim::ID = 0; // To compute the live outs, we compute for the data-locations that are // must-written to the last statement that touches these locations. On top of // this we add all statements that perform may-write accesses. // // We could be more precise by removing may-write accesses for which we know // that they are overwritten by a must-write after. However, at the moment the // only may-writes we introduce access the full (unbounded) array, such that // bounded write accesses can not overwrite all of the data-locations. As // this means may-writes are in the current situation always live, there is // no point in trying to remove them from the live-out set. isl::union_set DeadCodeElim::getLiveOut(Scop &S) { isl::union_map Schedule = S.getSchedule(); isl::union_map MustWrites = S.getMustWrites(); isl::union_map WriteIterations = MustWrites.reverse(); isl::union_map WriteTimes = WriteIterations.apply_range(Schedule); isl::union_map LastWriteTimes = WriteTimes.lexmax(); isl::union_map LastWriteIterations = LastWriteTimes.apply_range(Schedule.reverse()); isl::union_set Live = LastWriteIterations.range(); isl::union_map MayWrites = S.getMayWrites(); Live = Live.unite(MayWrites.domain()); return Live.coalesce(); } /// Performs polyhedral dead iteration elimination by: /// o Assuming that the last write to each location is live. /// o Following each RAW dependency from a live iteration backwards and adding /// that iteration to the live set. /// /// To ensure the set of live iterations does not get too complex we always /// combine a certain number of precise steps with one approximating step that /// simplifies the life set with an affine hull. bool DeadCodeElim::eliminateDeadCode(Scop &S, int PreciseSteps) { DependenceInfo &DI = getAnalysis(); const Dependences &D = DI.getDependences(Dependences::AL_Statement); if (!D.hasValidDependences()) return false; isl::union_set Live = getLiveOut(S); isl::union_map Dep = D.getDependences(Dependences::TYPE_RAW | Dependences::TYPE_RED); Dep = Dep.reverse(); if (PreciseSteps == -1) Live = Live.affine_hull(); isl::union_set OriginalDomain = S.getDomains(); int Steps = 0; while (true) { Steps++; isl::union_set Extra = Live.apply(Dep); if (Extra.is_subset(Live)) break; Live = Live.unite(Extra); if (Steps > PreciseSteps) { Steps = 0; Live = Live.affine_hull(); } Live = Live.intersect(OriginalDomain); } Live = Live.coalesce(); bool Changed = S.restrictDomains(Live); // FIXME: We can probably avoid the recomputation of all dependences by // updating them explicitly. if (Changed) DI.recomputeDependences(Dependences::AL_Statement); return Changed; } bool DeadCodeElim::runOnScop(Scop &S) { return eliminateDeadCode(S, DCEPreciseSteps); } void DeadCodeElim::getAnalysisUsage(AnalysisUsage &AU) const { ScopPass::getAnalysisUsage(AU); AU.addRequired(); } Pass *polly::createDeadCodeElimPass() { return new DeadCodeElim(); } INITIALIZE_PASS_BEGIN(DeadCodeElim, "polly-dce", "Polly - Remove dead iterations", false, false) INITIALIZE_PASS_DEPENDENCY(DependenceInfo) INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass) INITIALIZE_PASS_END(DeadCodeElim, "polly-dce", "Polly - Remove dead iterations", false, false)