//===- Schedule.cpp - Calculate an optimized schedule ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass generates an entirely new schedule tree from the data dependences // and iteration domains. The new schedule tree is computed in two steps: // // 1) The isl scheduling optimizer is run // // The isl scheduling optimizer creates a new schedule tree that maximizes // parallelism and tileability and minimizes data-dependence distances. The // algorithm used is a modified version of the ``Pluto'' algorithm: // // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. // // 2) A set of post-scheduling transformations is applied on the schedule tree. // // These optimizations include: // // - Tiling of the innermost tilable bands // - Prevectorization - The choice of a possible outer loop that is strip-mined // to the innermost level to enable inner-loop // vectorization. // - Some optimizations for spatial locality are also planned. // // For a detailed description of the schedule tree itself please see section 6 // of: // // Polyhedral AST generation is more than scanning polyhedra // Tobias Grosser, Sven Verdoolaege, Albert Cohen // ACM Transactions on Programming Languages and Systems (TOPLAS), // 37(4), July 2015 // http://www.grosser.es/#pub-polyhedral-AST-generation // // This publication also contains a detailed discussion of the different options // for polyhedral loop unrolling, full/partial tile separation and other uses // of the schedule tree. // //===----------------------------------------------------------------------===// #include "polly/ScheduleOptimizer.h" #include "polly/CodeGen/CodeGeneration.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScheduleTreeTransform.h" #include "polly/ScopInfo.h" #include "polly/ScopPass.h" #include "polly/Simplify.h" #include "polly/Support/ISLOStream.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Function.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "isl/ctx.h" #include "isl/options.h" #include "isl/printer.h" #include "isl/schedule.h" #include "isl/schedule_node.h" #include "isl/union_map.h" #include "isl/union_set.h" #include #include #include #include #include #include #include using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-opt-isl" static cl::opt OptimizeDeps("polly-opt-optimize-only", cl::desc("Only a certain kind of dependences (all/raw)"), cl::Hidden, cl::init("all"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SimplifyDeps("polly-opt-simplify-deps", cl::desc("Dependences should be simplified (yes/no)"), cl::Hidden, cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaxConstantTerm( "polly-opt-max-constant-term", cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden, cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaxCoefficient( "polly-opt-max-coefficient", cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden, cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FusionStrategy( "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"), cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaximizeBandDepth("polly-opt-maximize-bands", cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt OuterCoincidence( "polly-opt-outer-coincidence", cl::desc("Try to construct schedules where the outer member of each band " "satisfies the coincidence constraints (yes/no)"), cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt PrevectorWidth( "polly-prevect-width", cl::desc( "The number of loop iterations to strip-mine for pre-vectorization"), cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FirstLevelTiling("polly-tiling", cl::desc("Enable loop tiling"), cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt LatencyVectorFma( "polly-target-latency-vector-fma", cl::desc("The minimal number of cycles between issuing two " "dependent consecutive vector fused multiply-add " "instructions."), cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt ThroughputVectorFma( "polly-target-throughput-vector-fma", cl::desc("A throughput of the processor floating-point arithmetic units " "expressed in the number of vector fused multiply-add " "instructions per clock cycle."), cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory)); // This option, along with --polly-target-2nd-cache-level-associativity, // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size // represent the parameters of the target cache, which do not have typical // values that can be used by default. However, to apply the pattern matching // optimizations, we use the values of the parameters of Intel Core i7-3820 // SandyBridge in case the parameters are not specified or not provided by the // TargetTransformInfo. static cl::opt FirstCacheLevelAssociativity( "polly-target-1st-cache-level-associativity", cl::desc("The associativity of the first cache level."), cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FirstCacheLevelDefaultAssociativity( "polly-target-1st-cache-level-default-associativity", cl::desc("The default associativity of the first cache level" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SecondCacheLevelAssociativity( "polly-target-2nd-cache-level-associativity", cl::desc("The associativity of the second cache level."), cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SecondCacheLevelDefaultAssociativity( "polly-target-2nd-cache-level-default-associativity", cl::desc("The default associativity of the second cache level" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FirstCacheLevelSize( "polly-target-1st-cache-level-size", cl::desc("The size of the first cache level specified in bytes."), cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FirstCacheLevelDefaultSize( "polly-target-1st-cache-level-default-size", cl::desc("The default size of the first cache level specified in bytes" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SecondCacheLevelSize( "polly-target-2nd-cache-level-size", cl::desc("The size of the second level specified in bytes."), cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SecondCacheLevelDefaultSize( "polly-target-2nd-cache-level-default-size", cl::desc("The default size of the second cache level specified in bytes" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt VectorRegisterBitwidth( "polly-target-vector-register-bitwidth", cl::desc("The size in bits of a vector register (if not set, this " "information is taken from LLVM's target information."), cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FirstLevelDefaultTileSize( "polly-default-tile-size", cl::desc("The default tile size (if not enough were provided by" " --polly-tile-sizes)"), cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::list FirstLevelTileSizes("polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled " "with --polly-default-tile-size"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); static cl::opt SecondLevelTiling("polly-2nd-level-tiling", cl::desc("Enable a 2nd level loop of loop tiling"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SecondLevelDefaultTileSize( "polly-2nd-level-default-tile-size", cl::desc("The default 2nd-level tile size (if not enough were provided by" " --polly-2nd-level-tile-sizes)"), cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::list SecondLevelTileSizes("polly-2nd-level-tile-sizes", cl::desc("A tile size for each loop dimension, filled " "with --polly-default-tile-size"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); static cl::opt RegisterTiling("polly-register-tiling", cl::desc("Enable register tiling"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt RegisterDefaultTileSize( "polly-register-tiling-default-tile-size", cl::desc("The default register tile size (if not enough were provided by" " --polly-register-tile-sizes)"), cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt PollyPatternMatchingNcQuotient( "polly-pattern-matching-nc-quotient", cl::desc("Quotient that is obtained by dividing Nc, the parameter of the" "macro-kernel, by Nr, the parameter of the micro-kernel"), cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::list RegisterTileSizes("polly-register-tile-sizes", cl::desc("A tile size for each loop dimension, filled " "with --polly-register-tile-size"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); static cl::opt PMBasedOpts("polly-pattern-matching-based-opts", cl::desc("Perform optimizations based on pattern matching"), cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt OptimizedScops( "polly-optimized-scops", cl::desc("Polly - Dump polyhedral description of Scops optimized with " "the isl scheduling optimizer and the set of post-scheduling " "transformations is applied on the schedule tree"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); STATISTIC(ScopsProcessed, "Number of scops processed"); STATISTIC(ScopsRescheduled, "Number of scops rescheduled"); STATISTIC(ScopsOptimized, "Number of scops optimized"); STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized"); STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized"); #define THREE_STATISTICS(VARNAME, DESC) \ static Statistic VARNAME[3] = { \ {DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \ {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \ {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}} THREE_STATISTICS(NumBands, "Number of bands"); THREE_STATISTICS(NumBandMembers, "Number of band members"); THREE_STATISTICS(NumCoincident, "Number of coincident band members"); THREE_STATISTICS(NumPermutable, "Number of permutable bands"); THREE_STATISTICS(NumFilters, "Number of filter nodes"); THREE_STATISTICS(NumExtension, "Number of extension nodes"); STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied"); STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied"); STATISTIC(RegisterTileOpts, "Number of register tiling applied"); STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied"); STATISTIC(MatMulOpts, "Number of matrix multiplication patterns detected and optimized"); /// Create an isl::union_set, which describes the isolate option based on /// IsolateDomain. /// /// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should /// belong to the current band node. /// @param OutDimsNum A number of dimensions that should belong to /// the current band node. static isl::union_set getIsolateOptions(isl::set IsolateDomain, unsigned OutDimsNum) { unsigned Dims = IsolateDomain.dim(isl::dim::set); assert(OutDimsNum <= Dims && "The isl::set IsolateDomain is used to describe the range of schedule " "dimensions values, which should be isolated. Consequently, the " "number of its dimensions should be greater than or equal to the " "number of the schedule dimensions."); isl::map IsolateRelation = isl::map::from_domain(IsolateDomain); IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in, Dims - OutDimsNum, OutDimsNum); isl::set IsolateOption = IsolateRelation.wrap(); isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr); IsolateOption = IsolateOption.set_tuple_id(Id); return isl::union_set(IsolateOption); } namespace { /// Create an isl::union_set, which describes the specified option for the /// dimension of the current node. /// /// @param Ctx An isl::ctx, which is used to create the isl::union_set. /// @param Option The name of the option. isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) { isl::space Space(Ctx, 0, 1); auto DimOption = isl::set::universe(Space); auto Id = isl::id::alloc(Ctx, Option, nullptr); DimOption = DimOption.set_tuple_id(Id); return isl::union_set(DimOption); } } // namespace /// Create an isl::union_set, which describes the option of the form /// [isolate[] -> unroll[x]]. /// /// @param Ctx An isl::ctx, which is used to create the isl::union_set. static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) { isl::space Space = isl::space(Ctx, 0, 0, 1); isl::map UnrollIsolatedSetOption = isl::map::universe(Space); isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr); isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr); UnrollIsolatedSetOption = UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId); UnrollIsolatedSetOption = UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId); return UnrollIsolatedSetOption.wrap(); } /// Make the last dimension of Set to take values from 0 to VectorWidth - 1. /// /// @param Set A set, which should be modified. /// @param VectorWidth A parameter, which determines the constraint. static isl::set addExtentConstraints(isl::set Set, int VectorWidth) { unsigned Dims = Set.dim(isl::dim::set); isl::space Space = Set.get_space(); isl::local_space LocalSpace = isl::local_space(Space); isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace); ExtConstr = ExtConstr.set_constant_si(0); ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1); Set = Set.add_constraint(ExtConstr); ExtConstr = isl::constraint::alloc_inequality(LocalSpace); ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1); ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1); return Set.add_constraint(ExtConstr); } isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) { unsigned Dims = ScheduleRange.dim(isl::dim::set); isl::set LoopPrefixes = ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1); auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth); isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange); BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1); LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1); return LoopPrefixes.subtract(BadPrefixes); } isl::schedule_node ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node, int VectorWidth) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); Node = Node.child(0).child(0); isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation(); isl::union_set ScheduleRangeUSet = SchedRelUMap.range(); isl::set ScheduleRange{ScheduleRangeUSet}; isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth); auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic"); isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1); Node = Node.parent().parent(); isl::union_set Options = IsolateOption.unite(AtomicOption); Node = Node.band_set_ast_build_options(Options); return Node; } isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand( isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); auto ScheduleDimensions = Space.dim(isl::dim::set); assert(DimToVectorize < ScheduleDimensions); if (DimToVectorize > 0) { Node = isl::manage( isl_schedule_node_band_split(Node.release(), DimToVectorize)); Node = Node.child(0); } if (DimToVectorize < ScheduleDimensions - 1) Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1)); Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); auto Sizes = isl::multi_val::zero(Space); Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth)); Node = isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release())); Node = isolateFullPartialTiles(Node, VectorWidth); Node = Node.child(0); // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise, // we will have troubles to match it in the backend. Node = Node.band_set_ast_build_options( isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }")); Node = isl::manage(isl_schedule_node_band_sink(Node.release())); Node = Node.child(0); if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf) Node = Node.parent(); auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr); PrevectOpts++; return Node.insert_mark(LoopMarker); } isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node, const char *Identifier, ArrayRef TileSizes, int DefaultTileSize) { auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); auto Dims = Space.dim(isl::dim::set); auto Sizes = isl::multi_val::zero(Space); std::string IdentifierString(Identifier); for (unsigned i = 0; i < Dims; i++) { auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize; Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize)); } auto TileLoopMarkerStr = IdentifierString + " - Tiles"; auto TileLoopMarker = isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr); Node = Node.insert_mark(TileLoopMarker); Node = Node.child(0); Node = isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release())); Node = Node.child(0); auto PointLoopMarkerStr = IdentifierString + " - Points"; auto PointLoopMarker = isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr); Node = Node.insert_mark(PointLoopMarker); return Node.child(0); } isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling( isl::schedule_node Node, ArrayRef TileSizes, int DefaultTileSize) { Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize); auto Ctx = Node.get_ctx(); return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}")); } static bool isSimpleInnermostBand(const isl::schedule_node &Node) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); assert(isl_schedule_node_n_children(Node.get()) == 1); auto ChildType = isl_schedule_node_get_type(Node.child(0).get()); if (ChildType == isl_schedule_node_leaf) return true; if (ChildType != isl_schedule_node_sequence) return false; auto Sequence = Node.child(0); for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc; ++c) { auto Child = Sequence.child(c); if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter) return false; if (isl_schedule_node_get_type(Child.child(0).get()) != isl_schedule_node_leaf) return false; } return true; } bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) { if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band) return false; if (isl_schedule_node_n_children(Node.get()) != 1) return false; if (!isl_schedule_node_band_get_permutable(Node.get())) return false; auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); auto Dims = Space.dim(isl::dim::set); if (Dims <= 1) return false; return isSimpleInnermostBand(Node); } __isl_give isl::schedule_node ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) { if (FirstLevelTiling) { Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes, FirstLevelDefaultTileSize); FirstLevelTileOpts++; } if (SecondLevelTiling) { Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes, SecondLevelDefaultTileSize); SecondLevelTileOpts++; } if (RegisterTiling) { Node = applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize); RegisterTileOpts++; } if (PollyVectorizerChoice == VECTORIZER_NONE) return Node; auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get())); auto Dims = Space.dim(isl::dim::set); for (int i = Dims - 1; i >= 0; i--) if (Node.band_member_get_coincident(i)) { Node = prevectSchedBand(Node, i, PrevectorWidth); break; } return Node; } /// Permute the two dimensions of the isl map. /// /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that /// have type @p DimType. /// /// @param Map The isl map to be modified. /// @param DimType The type of the dimensions. /// @param DstPos The first dimension. /// @param SrcPos The second dimension. /// @return The modified map. isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos, unsigned SrcPos) { assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType)); if (DstPos == SrcPos) return Map; isl::id DimId; if (Map.has_tuple_id(DimType)) DimId = Map.get_tuple_id(DimType); auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in; isl::id FreeDimId; if (Map.has_tuple_id(FreeDim)) FreeDimId = Map.get_tuple_id(FreeDim); auto MaxDim = std::max(DstPos, SrcPos); auto MinDim = std::min(DstPos, SrcPos); Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1); Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1); Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1); Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1); if (DimId) Map = Map.set_tuple_id(DimType, DimId); if (FreeDimId) Map = Map.set_tuple_id(FreeDim, FreeDimId); return Map; } /// Check the form of the access relation. /// /// Check that the access relation @p AccMap has the form M[i][j], where i /// is a @p FirstPos and j is a @p SecondPos. /// /// @param AccMap The access relation to be checked. /// @param FirstPos The index of the input dimension that is mapped to /// the first output dimension. /// @param SecondPos The index of the input dimension that is mapped to the /// second output dimension. /// @return True in case @p AccMap has the expected form and false, /// otherwise. static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos, int &SecondPos) { isl::space Space = AccMap.get_space(); isl::map Universe = isl::map::universe(Space); if (Space.dim(isl::dim::out) != 2) return false; // MatMul has the form: // for (i = 0; i < N; i++) // for (j = 0; j < M; j++) // for (k = 0; k < P; k++) // C[i, j] += A[i, k] * B[k, j] // // Permutation of three outer loops: 3! = 6 possibilities. int FirstDims[] = {0, 0, 1, 1, 2, 2}; int SecondDims[] = {1, 2, 2, 0, 0, 1}; for (int i = 0; i < 6; i += 1) { auto PossibleMatMul = Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0) .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1); AccMap = AccMap.intersect_domain(Domain); PossibleMatMul = PossibleMatMul.intersect_domain(Domain); // If AccMap spans entire domain (Non-partial write), // compute FirstPos and SecondPos. // If AccMap != PossibleMatMul here (the two maps have been gisted at // this point), it means that the writes are not complete, or in other // words, it is a Partial write and Partial writes must be rejected. if (AccMap.is_equal(PossibleMatMul)) { if (FirstPos != -1 && FirstPos != FirstDims[i]) continue; FirstPos = FirstDims[i]; if (SecondPos != -1 && SecondPos != SecondDims[i]) continue; SecondPos = SecondDims[i]; return true; } } return false; } /// Does the memory access represent a non-scalar operand of the matrix /// multiplication. /// /// Check that the memory access @p MemAccess is the read access to a non-scalar /// operand of the matrix multiplication or its result. /// /// @param MemAccess The memory access to be checked. /// @param MMI Parameters of the matrix multiplication operands. /// @return True in case the memory access represents the read access /// to a non-scalar operand of the matrix multiplication and /// false, otherwise. static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess, MatMulInfoTy &MMI) { if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead()) return false; auto AccMap = MemAccess->getLatestAccessRelation(); isl::set StmtDomain = MemAccess->getStatement()->getDomain(); if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) { MMI.ReadFromC = MemAccess; return true; } if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) { MMI.A = MemAccess; return true; } if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) { MMI.B = MemAccess; return true; } return false; } /// Check accesses to operands of the matrix multiplication. /// /// Check that accesses of the SCoP statement, which corresponds to /// the partial schedule @p PartialSchedule, are scalar in terms of loops /// containing the matrix multiplication, in case they do not represent /// accesses to the non-scalar operands of the matrix multiplication or /// its result. /// /// @param PartialSchedule The partial schedule of the SCoP statement. /// @param MMI Parameters of the matrix multiplication operands. /// @return True in case the corresponding SCoP statement /// represents matrix multiplication and false, /// otherwise. static bool containsOnlyMatrMultAcc(isl::map PartialSchedule, MatMulInfoTy &MMI) { auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in); auto *Stmt = static_cast(InputDimId.get_user()); unsigned OutDimNum = PartialSchedule.dim(isl::dim::out); assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest " "and, consequently, the corresponding scheduling " "functions have at least three dimensions."); auto MapI = permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1); auto MapJ = permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1); auto MapK = permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1); auto Accesses = getAccessesInOrder(*Stmt); for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) { auto *MemAccessPtr = *MemA; if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC && !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) && !(MemAccessPtr->isStrideZero(MapI)) && MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)) return false; } return true; } /// Check for dependencies corresponding to the matrix multiplication. /// /// Check that there is only true dependence of the form /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds /// to the dependency produced by the matrix multiplication. /// /// @param Schedule The schedule of the SCoP statement. /// @param D The SCoP dependencies. /// @param Pos The parameter to describe an acceptable true dependence. /// In case it has a negative value, try to determine its /// acceptable value. /// @return True in case dependencies correspond to the matrix multiplication /// and false, otherwise. static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D, int &Pos) { isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW); isl::union_map Red = D->getDependences(Dependences::TYPE_RED); if (Red) Dep = Dep.unite(Red); auto DomainSpace = Schedule.get_space().domain(); auto Space = DomainSpace.map_from_domain_and_range(DomainSpace); auto Deltas = Dep.extract_map(Space).deltas(); int DeltasDimNum = Deltas.dim(isl::dim::set); for (int i = 0; i < DeltasDimNum; i++) { auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i); Pos = Pos < 0 && Val.is_one() ? i : Pos; if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one()))) return false; } if (DeltasDimNum == 0 || Pos < 0) return false; return true; } /// Check if the SCoP statement could probably be optimized with analytical /// modeling. /// /// containsMatrMult tries to determine whether the following conditions /// are true: /// 1. The last memory access modeling an array, MA1, represents writing to /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement /// under consideration. /// 2. There is only one loop-carried true dependency, and it has the /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no /// loop-carried or anti dependencies. /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3), /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively, /// and all memory accesses of the SCoP that are different from MA1, MA2, /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any /// of loops i1, i2 and i3. /// /// @param PartialSchedule The PartialSchedule that contains a SCoP statement /// to check. /// @D The SCoP dependencies. /// @MMI Parameters of the matrix multiplication operands. static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D, MatMulInfoTy &MMI) { auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in); auto *Stmt = static_cast(InputDimsId.get_user()); if (Stmt->size() <= 1) return false; auto Accesses = getAccessesInOrder(*Stmt); for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) { auto *MemAccessPtr = *MemA; if (!MemAccessPtr->isLatestArrayKind()) continue; if (!MemAccessPtr->isWrite()) return false; auto AccMap = MemAccessPtr->getLatestAccessRelation(); if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j)) return false; MMI.WriteToC = MemAccessPtr; break; } if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k)) return false; if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI)) return false; if (!MMI.A || !MMI.B || !MMI.ReadFromC) return false; return true; } /// Permute two dimensions of the band node. /// /// Permute FirstDim and SecondDim dimensions of the Node. /// /// @param Node The band node to be modified. /// @param FirstDim The first dimension to be permuted. /// @param SecondDim The second dimension to be permuted. static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node, unsigned FirstDim, unsigned SecondDim) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band && (unsigned)isl_schedule_node_band_n_member(Node.get()) > std::max(FirstDim, SecondDim)); auto PartialSchedule = isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get())); auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim); auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim); PartialSchedule = PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim); PartialSchedule = PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim); Node = isl::manage(isl_schedule_node_delete(Node.release())); return Node.insert_partial_schedule(PartialSchedule); } isl::schedule_node ScheduleTreeOptimizer::createMicroKernel( isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) { Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1); Node = Node.parent().parent(); return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0); } isl::schedule_node ScheduleTreeOptimizer::createMacroKernel( isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 && MacroKernelParams.Kc == 1) return Node; int DimOutNum = isl_schedule_node_band_n_member(Node.get()); std::vector TileSizes(DimOutNum, 1); TileSizes[DimOutNum - 3] = MacroKernelParams.Mc; TileSizes[DimOutNum - 2] = MacroKernelParams.Nc; TileSizes[DimOutNum - 1] = MacroKernelParams.Kc; Node = tileNode(Node, "1st level tiling", TileSizes, 1); Node = Node.parent().parent(); Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1); Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1); // Mark the outermost loop as parallelizable. Node = Node.band_member_set_coincident(0, true); return Node.child(0).child(0); } /// Get the size of the widest type of the matrix multiplication operands /// in bytes, including alignment padding. /// /// @param MMI Parameters of the matrix multiplication operands. /// @return The size of the widest type of the matrix multiplication operands /// in bytes, including alignment padding. static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) { auto *S = MMI.A->getStatement()->getParent(); auto &DL = S->getFunction().getParent()->getDataLayout(); auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType()); auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType()); auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType()); return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); } /// Get the size of the widest type of the matrix multiplication operands /// in bits. /// /// @param MMI Parameters of the matrix multiplication operands. /// @return The size of the widest type of the matrix multiplication operands /// in bits. static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) { auto *S = MMI.A->getStatement()->getParent(); auto &DL = S->getFunction().getParent()->getDataLayout(); auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType()); auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType()); auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType()); return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); } /// Get parameters of the BLIS micro kernel. /// /// We choose the Mr and Nr parameters of the micro kernel to be large enough /// such that no stalls caused by the combination of latencies and dependencies /// are introduced during the updates of the resulting matrix of the matrix /// multiplication. However, they should also be as small as possible to /// release more registers for entries of multiplied matrices. /// /// @param TTI Target Transform Info. /// @param MMI Parameters of the matrix multiplication operands. /// @return The structure of type MicroKernelParamsTy. /// @see MicroKernelParamsTy static struct MicroKernelParamsTy getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) { assert(TTI && "The target transform info should be provided."); // Nvec - Number of double-precision floating-point numbers that can be hold // by a vector register. Use 2 by default. long RegisterBitwidth = VectorRegisterBitwidth; if (RegisterBitwidth == -1) RegisterBitwidth = TTI->getRegisterBitWidth(true); auto ElementSize = getMatMulTypeSize(MMI); assert(ElementSize > 0 && "The element size of the matrix multiplication " "operands should be greater than zero."); auto Nvec = RegisterBitwidth / ElementSize; if (Nvec == 0) Nvec = 2; int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) / Nvec) * Nvec; int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr)); return {Mr, Nr}; } namespace { /// Determine parameters of the target cache. /// /// @param TTI Target Transform Info. void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) { auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D; auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D; if (FirstCacheLevelSize == -1) { if (TTI->getCacheSize(L1DCache).hasValue()) FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue(); else FirstCacheLevelSize = static_cast(FirstCacheLevelDefaultSize); } if (SecondCacheLevelSize == -1) { if (TTI->getCacheSize(L2DCache).hasValue()) SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue(); else SecondCacheLevelSize = static_cast(SecondCacheLevelDefaultSize); } if (FirstCacheLevelAssociativity == -1) { if (TTI->getCacheAssociativity(L1DCache).hasValue()) FirstCacheLevelAssociativity = TTI->getCacheAssociativity(L1DCache).getValue(); else FirstCacheLevelAssociativity = static_cast(FirstCacheLevelDefaultAssociativity); } if (SecondCacheLevelAssociativity == -1) { if (TTI->getCacheAssociativity(L2DCache).hasValue()) SecondCacheLevelAssociativity = TTI->getCacheAssociativity(L2DCache).getValue(); else SecondCacheLevelAssociativity = static_cast(SecondCacheLevelDefaultAssociativity); } } } // namespace /// Get parameters of the BLIS macro kernel. /// /// During the computation of matrix multiplication, blocks of partitioned /// matrices are mapped to different layers of the memory hierarchy. /// To optimize data reuse, blocks should be ideally kept in cache between /// iterations. Since parameters of the macro kernel determine sizes of these /// blocks, there are upper and lower bounds on these parameters. /// /// @param TTI Target Transform Info. /// @param MicroKernelParams Parameters of the micro-kernel /// to be taken into account. /// @param MMI Parameters of the matrix multiplication operands. /// @return The structure of type MacroKernelParamsTy. /// @see MacroKernelParamsTy /// @see MicroKernelParamsTy static struct MacroKernelParamsTy getMacroKernelParams(const llvm::TargetTransformInfo *TTI, const MicroKernelParamsTy &MicroKernelParams, MatMulInfoTy MMI) { getTargetCacheParameters(TTI); // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf, // it requires information about the first two levels of a cache to determine // all the parameters of a macro-kernel. It also checks that an associativity // degree of a cache level is greater than two. Otherwise, another algorithm // for determination of the parameters should be used. if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 && FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 && FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2)) return {1, 1, 1}; // The quotient should be greater than zero. if (PollyPatternMatchingNcQuotient <= 0) return {1, 1, 1}; int Car = floor( (FirstCacheLevelAssociativity - 1) / (1 + static_cast(MicroKernelParams.Nr) / MicroKernelParams.Mr)); // Car can be computed to be zero since it is floor to int. // On Mac OS, division by 0 does not raise a signal. This causes negative // tile sizes to be computed. Prevent division by Cac==0 by early returning // if this happens. if (Car == 0) return {1, 1, 1}; auto ElementSize = getMatMulAlignTypeSize(MMI); assert(ElementSize > 0 && "The element size of the matrix multiplication " "operands should be greater than zero."); int Kc = (Car * FirstCacheLevelSize) / (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize); double Cac = static_cast(Kc * ElementSize * SecondCacheLevelAssociativity) / SecondCacheLevelSize; int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac); int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr; assert(Mc > 0 && Nc > 0 && Kc > 0 && "Matrix block sizes should be greater than zero"); return {Mc, Nc, Kc}; } /// Create an access relation that is specific to /// the matrix multiplication pattern. /// /// Create an access relation of the following form: /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ] /// where I is @p FirstDim, J is @p SecondDim. /// /// It can be used, for example, to create relations that helps to consequently /// access elements of operands of a matrix multiplication after creation of /// the BLIS micro and macro kernels. /// /// @see ScheduleTreeOptimizer::createMicroKernel /// @see ScheduleTreeOptimizer::createMacroKernel /// /// Subsequently, the described access relation is applied to the range of /// @p MapOldIndVar, that is used to map original induction variables to /// the ones, which are produced by schedule transformations. It helps to /// define relations using a new space and, at the same time, keep them /// in the original one. /// /// @param MapOldIndVar The relation, which maps original induction variables /// to the ones, which are produced by schedule /// transformations. /// @param FirstDim, SecondDim The input dimensions that are used to define /// the specified access relation. /// @return The specified access relation. isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim, unsigned SecondDim) { auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3); auto AccessRel = isl::map::universe(AccessRelSpace); AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0); AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1); AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2); return MapOldIndVar.apply_range(AccessRel); } isl::schedule_node createExtensionNode(isl::schedule_node Node, isl::map ExtensionMap) { auto Extension = isl::union_map(ExtensionMap); auto NewNode = isl::schedule_node::from_extension(Extension); return Node.graft_before(NewNode); } /// Apply the packing transformation. /// /// The packing transformation can be described as a data-layout /// transformation that requires to introduce a new array, copy data /// to the array, and change memory access locations to reference the array. /// It can be used to ensure that elements of the new array are read in-stride /// access, aligned to cache lines boundaries, and preloaded into certain cache /// levels. /// /// As an example let us consider the packing of the array A that would help /// to read its elements with in-stride access. An access to the array A /// is represented by an access relation that has the form /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr), /// k mod Kc, j mod Nr, i mod Mr]. /// /// To ensure that elements of the array A are read in-stride access, we add /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using /// Scop::createScopArrayInfo, change the access relation /// S[i, j, k] -> A[i, k] to /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using /// the copy statement created by Scop::addScopStmt. /// /// @param Node The schedule node to be optimized. /// @param MapOldIndVar The relation, which maps original induction variables /// to the ones, which are produced by schedule /// transformations. /// @param MicroParams, MacroParams Parameters of the BLIS kernel /// to be taken into account. /// @param MMI Parameters of the matrix multiplication operands. /// @return The optimized schedule node. static isl::schedule_node optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar, MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams, MatMulInfoTy &MMI) { auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in); auto *Stmt = static_cast(InputDimsId.get_user()); // Create a copy statement that corresponds to the memory access to the // matrix B, the second operand of the matrix multiplication. Node = Node.parent().parent().parent().parent().parent().parent(); Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0); auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7); unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr; unsigned SecondDimSize = MacroParams.Kc; unsigned ThirdDimSize = MicroParams.Nr; auto *SAI = Stmt->getParent()->createScopArrayInfo( MMI.B->getElementType(), "Packed_B", {FirstDimSize, SecondDimSize, ThirdDimSize}); AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId()); auto OldAcc = MMI.B->getLatestAccessRelation(); MMI.B->setNewAccessRelation(AccRel); auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, MapOldIndVar.dim(isl::dim::out) - 2); ExtMap = ExtMap.reverse(); ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0); auto Domain = Stmt->getDomain(); // Restrict the domains of the copy statements to only execute when also its // originating statement is executed. auto DomainId = Domain.get_tuple_id(); auto *NewStmt = Stmt->getParent()->addScopStmt( OldAcc, MMI.B->getLatestAccessRelation(), Domain); ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId); ExtMap = ExtMap.intersect_range(Domain); ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId()); Node = createExtensionNode(Node, ExtMap); // Create a copy statement that corresponds to the memory access // to the matrix A, the first operand of the matrix multiplication. Node = Node.child(0); AccRel = getMatMulAccRel(MapOldIndVar, 4, 6); FirstDimSize = MacroParams.Mc / MicroParams.Mr; ThirdDimSize = MicroParams.Mr; SAI = Stmt->getParent()->createScopArrayInfo( MMI.A->getElementType(), "Packed_A", {FirstDimSize, SecondDimSize, ThirdDimSize}); AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId()); OldAcc = MMI.A->getLatestAccessRelation(); MMI.A->setNewAccessRelation(AccRel); ExtMap = MapOldIndVar.project_out(isl::dim::out, 3, MapOldIndVar.dim(isl::dim::out) - 3); ExtMap = ExtMap.reverse(); ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0); NewStmt = Stmt->getParent()->addScopStmt( OldAcc, MMI.A->getLatestAccessRelation(), Domain); // Restrict the domains of the copy statements to only execute when also its // originating statement is executed. ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId); ExtMap = ExtMap.intersect_range(Domain); ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId()); Node = createExtensionNode(Node, ExtMap); return Node.child(0).child(0).child(0).child(0).child(0); } /// Get a relation mapping induction variables produced by schedule /// transformations to the original ones. /// /// @param Node The schedule node produced as the result of creation /// of the BLIS kernels. /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel /// to be taken into account. /// @return The relation mapping original induction variables to the ones /// produced by schedule transformation. /// @see ScheduleTreeOptimizer::createMicroKernel /// @see ScheduleTreeOptimizer::createMacroKernel /// @see getMacroKernelParams isl::map getInductionVariablesSubstitution(isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams, MacroKernelParamsTy MacroKernelParams) { auto Child = Node.child(0); auto UnMapOldIndVar = Child.get_prefix_schedule_union_map(); auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar); if (MapOldIndVar.dim(isl::dim::out) > 9) return MapOldIndVar.project_out(isl::dim::out, 0, MapOldIndVar.dim(isl::dim::out) - 9); return MapOldIndVar; } /// Isolate a set of partial tile prefixes and unroll the isolated part. /// /// The set should ensure that it contains only partial tile prefixes that have /// exactly Mr x Nr iterations of the two innermost loops produced by /// the optimization of the matrix multiplication. Mr and Nr are parameters of /// the micro-kernel. /// /// In case of parametric bounds, this helps to auto-vectorize the unrolled /// innermost loops, using the SLP vectorizer. /// /// @param Node The schedule node to be modified. /// @param MicroKernelParams Parameters of the micro-kernel /// to be taken into account. /// @return The modified isl_schedule_node. static isl::schedule_node isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node, struct MicroKernelParamsTy MicroKernelParams) { isl::schedule_node Child = Node.get_child(0); isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation(); isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range(); unsigned Dims = Prefix.dim(isl::dim::set); Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1); Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr); Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr); isl::union_set IsolateOption = getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3); isl::ctx Ctx = Node.get_ctx(); auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll")); Options = Options.unite(getUnrollIsolatedSetOptions(Ctx)); Node = Node.band_set_ast_build_options(Options); Node = Node.parent().parent().parent(); IsolateOption = getIsolateOptions(Prefix, 3); Options = IsolateOption.unite(getDimOptions(Ctx, "separate")); Node = Node.band_set_ast_build_options(Options); Node = Node.child(0).child(0).child(0); return Node; } /// Mark @p BasePtr with "Inter iteration alias-free" mark node. /// /// @param Node The child of the mark node to be inserted. /// @param BasePtr The pointer to be marked. /// @return The modified isl_schedule_node. static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node, Value *BasePtr) { if (!BasePtr) return Node; auto Id = isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr); return Node.insert_mark(Id).child(0); } /// Insert "Loop Vectorizer Disabled" mark node. /// /// @param Node The child of the mark node to be inserted. /// @return The modified isl_schedule_node. static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) { auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr); return Node.insert_mark(Id).child(0); } /// Restore the initial ordering of dimensions of the band node /// /// In case the band node represents all the dimensions of the iteration /// domain, recreate the band node to restore the initial ordering of the /// dimensions. /// /// @param Node The band node to be modified. /// @return The modified schedule node. static isl::schedule_node getBandNodeWithOriginDimOrder(isl::schedule_node Node) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf) return Node; auto Domain = Node.get_universe_domain(); assert(isl_union_set_n_set(Domain.get()) == 1); if (Node.get_schedule_depth() != 0 || (static_cast(isl::set(Domain).dim(isl::dim::set)) != isl_schedule_node_band_n_member(Node.get()))) return Node; Node = isl::manage(isl_schedule_node_delete(Node.copy())); auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff(); auto PartialScheduleMultiPwAff = isl::multi_union_pw_aff(PartialSchedulePwAff); PartialScheduleMultiPwAff = PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set); return Node.insert_partial_schedule(PartialScheduleMultiPwAff); } isl::schedule_node ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node, const TargetTransformInfo *TTI, MatMulInfoTy &MMI) { assert(TTI && "The target transform info should be provided."); Node = markInterIterationAliasFree( Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr()); int DimOutNum = isl_schedule_node_band_n_member(Node.get()); assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest " "and, consequently, the corresponding scheduling " "functions have at least three dimensions."); Node = getBandNodeWithOriginDimOrder(Node); Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3); int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j; int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k; Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2); NewK = NewK == DimOutNum - 2 ? NewJ : NewK; Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1); auto MicroKernelParams = getMicroKernelParams(TTI, MMI); auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI); Node = createMacroKernel(Node, MacroKernelParams); Node = createMicroKernel(Node, MicroKernelParams); if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 || MacroKernelParams.Kc == 1) return Node; auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams, MacroKernelParams); if (!MapOldIndVar) return Node; Node = markLoopVectorizerDisabled(Node.parent()).child(0); Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams); return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams, MacroKernelParams, MMI); } bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node, const Dependences *D, MatMulInfoTy &MMI) { auto PartialSchedule = isl::manage( isl_schedule_node_band_get_partial_schedule_union_map(Node.get())); Node = Node.child(0); auto LeafType = isl_schedule_node_get_type(Node.get()); Node = Node.parent(); if (LeafType != isl_schedule_node_leaf || isl_schedule_node_band_n_member(Node.get()) < 3 || Node.get_schedule_depth() != 0 || isl_union_map_n_map(PartialSchedule.get()) != 1) return false; auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule); if (containsMatrMult(NewPartialSchedule, D, MMI)) return true; return false; } __isl_give isl_schedule_node * ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node, void *User) { if (!isTileableBandNode(isl::manage_copy(Node))) return Node; const OptimizerAdditionalInfoTy *OAI = static_cast(User); MatMulInfoTy MMI; if (PMBasedOpts && User && isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) { LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n"); MatMulOpts++; return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release(); } return standardBandOpts(isl::manage(Node), User).release(); } isl::schedule ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule, const OptimizerAdditionalInfoTy *OAI) { auto Root = Schedule.get_root(); Root = optimizeScheduleNode(Root, OAI); return Root.get_schedule(); } isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode( isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) { Node = isl::manage(isl_schedule_node_map_descendant_bottom_up( Node.release(), optimizeBand, const_cast(static_cast(OAI)))); return Node; } bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S, isl::schedule NewSchedule) { // To understand if the schedule has been optimized we check if the schedule // has changed at all. // TODO: We can improve this by tracking if any necessarily beneficial // transformations have been performed. This can e.g. be tiling, loop // interchange, or ...) We can track this either at the place where the // transformation has been performed or, in case of automatic ILP based // optimizations, by comparing (yet to be defined) performance metrics // before/after the scheduling optimizer // (e.g., #stride-one accesses) auto NewScheduleMap = NewSchedule.get_map(); auto OldSchedule = S.getSchedule(); assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes " "that make Scop::getSchedule() return nullptr."); bool changed = !OldSchedule.is_equal(NewScheduleMap); return changed; } namespace { class IslScheduleOptimizer : public ScopPass { public: static char ID; explicit IslScheduleOptimizer() : ScopPass(ID) {} ~IslScheduleOptimizer() override { releaseMemory(); } /// Optimize the schedule of the SCoP @p S. bool runOnScop(Scop &S) override; /// Print the new schedule for the SCoP @p S. void printScop(raw_ostream &OS, Scop &S) const override; /// Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override; /// Release the internal memory. void releaseMemory() override { isl_schedule_free(LastSchedule); LastSchedule = nullptr; IslCtx.reset(); } private: std::shared_ptr IslCtx; isl_schedule *LastSchedule = nullptr; }; } // namespace char IslScheduleOptimizer::ID = 0; /// Collect statistics for the schedule tree. /// /// @param Schedule The schedule tree to analyze. If not a schedule tree it is /// ignored. /// @param Version The version of the schedule tree that is analyzed. /// 0 for the original schedule tree before any transformation. /// 1 for the schedule tree after isl's rescheduling. /// 2 for the schedule tree after optimizations are applied /// (tiling, pattern matching) static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) { auto Root = Schedule.get_root(); if (!Root) return; isl_schedule_node_foreach_descendant_top_down( Root.get(), [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool { isl::schedule_node Node = isl::manage_copy(nodeptr); int Version = *static_cast(user); switch (isl_schedule_node_get_type(Node.get())) { case isl_schedule_node_band: { NumBands[Version]++; if (isl_schedule_node_band_get_permutable(Node.get()) == isl_bool_true) NumPermutable[Version]++; int CountMembers = isl_schedule_node_band_n_member(Node.get()); NumBandMembers[Version] += CountMembers; for (int i = 0; i < CountMembers; i += 1) { if (Node.band_member_get_coincident(i)) NumCoincident[Version]++; } break; } case isl_schedule_node_filter: NumFilters[Version]++; break; case isl_schedule_node_extension: NumExtension[Version]++; break; default: break; } return isl_bool_true; }, &Version); } bool IslScheduleOptimizer::runOnScop(Scop &S) { // Skip SCoPs in case they're already optimised by PPCGCodeGeneration if (S.isToBeSkipped()) return false; // Skip empty SCoPs but still allow code generation as it will delete the // loops present but not needed. if (S.getSize() == 0) { S.markAsOptimized(); return false; } const Dependences &D = getAnalysis().getDependences(Dependences::AL_Statement); if (D.getSharedIslCtx() != S.getSharedIslCtx()) { LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n"); return false; } if (!D.hasValidDependences()) return false; isl_schedule_free(LastSchedule); LastSchedule = nullptr; // Build input data. int ValidityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; int ProximityKinds; if (OptimizeDeps == "all") ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; else if (OptimizeDeps == "raw") ProximityKinds = Dependences::TYPE_RAW; else { errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" << " Falling back to optimizing all dependences.\n"; ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; } isl::union_set Domain = S.getDomains(); if (!Domain) return false; ScopsProcessed++; walkScheduleTreeForStatistics(S.getScheduleTree(), 0); isl::union_map Validity = D.getDependences(ValidityKinds); isl::union_map Proximity = D.getDependences(ProximityKinds); // Simplify the dependences by removing the constraints introduced by the // domains. This can speed up the scheduling time significantly, as large // constant coefficients will be removed from the dependences. The // introduction of some additional dependences reduces the possible // transformations, but in most cases, such transformation do not seem to be // interesting anyway. In some cases this option may stop the scheduler to // find any schedule. if (SimplifyDeps == "yes") { Validity = Validity.gist_domain(Domain); Validity = Validity.gist_range(Domain); Proximity = Proximity.gist_domain(Domain); Proximity = Proximity.gist_range(Domain); } else if (SimplifyDeps != "no") { errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " "or 'no'. Falling back to default: 'yes'\n"; } LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: "); LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n"); LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n"); LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n"); unsigned IslSerializeSCCs; if (FusionStrategy == "max") { IslSerializeSCCs = 0; } else if (FusionStrategy == "min") { IslSerializeSCCs = 1; } else { errs() << "warning: Unknown fusion strategy. Falling back to maximal " "fusion.\n"; IslSerializeSCCs = 0; } int IslMaximizeBands; if (MaximizeBandDepth == "yes") { IslMaximizeBands = 1; } else if (MaximizeBandDepth == "no") { IslMaximizeBands = 0; } else { errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" " or 'no'. Falling back to default: 'yes'\n"; IslMaximizeBands = 1; } int IslOuterCoincidence; if (OuterCoincidence == "yes") { IslOuterCoincidence = 1; } else if (OuterCoincidence == "no") { IslOuterCoincidence = 0; } else { errs() << "warning: Option -polly-opt-outer-coincidence should either be " "'yes' or 'no'. Falling back to default: 'no'\n"; IslOuterCoincidence = 0; } isl_ctx *Ctx = S.getIslCtx().get(); isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence); isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs); isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands); isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm); isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient); isl_options_set_tile_scale_tile_loops(Ctx, 0); auto OnErrorStatus = isl_options_get_on_error(Ctx); isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE); auto SC = isl::schedule_constraints::on_domain(Domain); SC = SC.set_proximity(Proximity); SC = SC.set_validity(Validity); SC = SC.set_coincidence(Validity); auto Schedule = SC.compute_schedule(); isl_options_set_on_error(Ctx, OnErrorStatus); walkScheduleTreeForStatistics(Schedule, 1); // In cases the scheduler is not able to optimize the code, we just do not // touch the schedule. if (!Schedule) return false; ScopsRescheduled++; LLVM_DEBUG({ auto *P = isl_printer_to_str(Ctx); P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); P = isl_printer_print_schedule(P, Schedule.get()); auto *str = isl_printer_get_str(P); dbgs() << "NewScheduleTree: \n" << str << "\n"; free(str); isl_printer_free(P); }); Function &F = S.getFunction(); auto *TTI = &getAnalysis().getTTI(F); const OptimizerAdditionalInfoTy OAI = {TTI, const_cast(&D)}; auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI); NewSchedule = hoistExtensionNodes(NewSchedule); walkScheduleTreeForStatistics(NewSchedule, 2); if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) return false; auto ScopStats = S.getStatistics(); ScopsOptimized++; NumAffineLoopsOptimized += ScopStats.NumAffineLoops; NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops; LastSchedule = NewSchedule.copy(); IslCtx = S.getSharedIslCtx(); S.setScheduleTree(NewSchedule); S.markAsOptimized(); if (OptimizedScops) errs() << S; return false; } void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const { isl_printer *p; char *ScheduleStr; OS << "Calculated schedule:\n"; if (!LastSchedule) { OS << "n/a\n"; return; } p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule)); p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK); p = isl_printer_print_schedule(p, LastSchedule); ScheduleStr = isl_printer_get_str(p); isl_printer_free(p); OS << ScheduleStr << "\n"; free(ScheduleStr); } void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { ScopPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addPreserved(); } Pass *polly::createIslScheduleOptimizerPass() { return new IslScheduleOptimizer(); } INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl", "Polly - Optimize schedule of SCoP", false, false); INITIALIZE_PASS_DEPENDENCY(DependenceInfo); INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass); INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl", "Polly - Optimize schedule of SCoP", false, false)