; RUN: opt %loadPolly -polly-import-jscop \ ; RUN: -polly-codegen -S < %s | FileCheck %s ; RUN: opt %loadPolly -polly-import-jscop \ ; RUN: -polly-codegen -polly-import-jscop-postfix=pow2 \ ; RUN: -S < %s | FileCheck %s -check-prefix=POW2 ; ; void exprModDiv(float *A, float *B, float *C, long N, long p) { ; for (long i = 0; i < N; i++) ; C[i] += A[i] + B[i] + A[i] + B[i + p]; ; } ; ; ; This test case changes the access functions such that the resulting index ; expressions are modulo or division operations. We test that the code we ; generate takes advantage of knowledge about unsigned numerators. This is ; useful as LLVM will translate urem and udiv operations with power-of-two ; denominators to fast bitwise and or shift operations. ; A[i % 127] ; CHECK: %pexp.pdiv_r = urem i64 %polly.indvar, 127 ; CHECK: %polly.access.A9 = getelementptr float, float* %A, i64 %pexp.pdiv_r ; A[floor(i / 127)] ; ; Note: without the floor, we would create a map i -> i/127, which only contains ; values of i that are divisible by 127. All other values of i would not ; be mapped to any value. However, to generate correct code we require ; each value of i to indeed be mapped to a value. ; ; CHECK: %pexp.p_div_q = udiv i64 %polly.indvar, 127 ; CHECK: %polly.access.B10 = getelementptr float, float* %B, i64 %pexp.p_div_q ; A[p % 128] ; CHECK: %polly.access.A11 = getelementptr float, float* %A, i64 0 ; A[p / 127] ; CHECK: %pexp.div = sdiv exact i64 %p, 127 ; CHECK: %polly.access.B12 = getelementptr float, float* %B, i64 %pexp.div ; A[i % 128] ; POW2: %pexp.pdiv_r = urem i64 %polly.indvar, 128 ; POW2: %polly.access.A9 = getelementptr float, float* %A, i64 %pexp.pdiv_r ; A[floor(i / 128)] ; POW2: %pexp.p_div_q = udiv i64 %polly.indvar, 128 ; POW2: %polly.access.B10 = getelementptr float, float* %B, i64 %pexp.p_div_q ; A[p % 128] ; POW2: %polly.access.A11 = getelementptr float, float* %A, i64 0 ; A[p / 128] ; POW2: %pexp.div = sdiv exact i64 %p, 128 ; POW2: %polly.access.B12 = getelementptr float, float* %B, i64 %pexp.div target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" define void @exprModDiv(float* %A, float* %B, float* %C, i64 %N, i64 %p) { entry: br label %for.cond for.cond: ; preds = %for.inc, %entry %i.0 = phi i64 [ 0, %entry ], [ %inc, %for.inc ] %cmp = icmp slt i64 %i.0, %N br i1 %cmp, label %for.body, label %for.end for.body: ; preds = %for.cond %arrayidx = getelementptr inbounds float, float* %A, i64 %i.0 %tmp = load float, float* %arrayidx, align 4 %arrayidx1 = getelementptr inbounds float, float* %B, i64 %i.0 %tmp1 = load float, float* %arrayidx1, align 4 %add = fadd float %tmp, %tmp1 %arrayidx2 = getelementptr inbounds float, float* %A, i64 %i.0 %tmp2 = load float, float* %arrayidx2, align 4 %add3 = fadd float %add, %tmp2 %padd = add nsw i64 %p, %i.0 %arrayidx4 = getelementptr inbounds float, float* %B, i64 %padd %tmp3 = load float, float* %arrayidx4, align 4 %add5 = fadd float %add3, %tmp3 %arrayidx6 = getelementptr inbounds float, float* %C, i64 %i.0 %tmp4 = load float, float* %arrayidx6, align 4 %add7 = fadd float %tmp4, %add5 store float %add7, float* %arrayidx6, align 4 br label %for.inc for.inc: ; preds = %for.body %inc = add nuw nsw i64 %i.0, 1 br label %for.cond for.end: ; preds = %for.cond ret void }