; RUN: opt %loadPolly -polly-codegen \ ; RUN: -S < %s | FileCheck %s define void @foo(float* %A, i1 %cond0, i1 %cond1) { entry: br label %loop loop: %indvar = phi i64 [0, %entry], [%indvar.next, %backedge] %val0 = fadd float 1.0, 2.0 %val1 = fadd float 1.0, 2.0 br i1 %cond0, label %branch1, label %backedge ; CHECK-LABEL: polly.stmt.loop: ; CHECK-NEXT: %p_val0 = fadd float 1.000000e+00, 2.000000e+00 ; CHECK-NEXT: %p_val1 = fadd float 1.000000e+00, 2.000000e+00 ; CHECK-NEXT: br i1 ; The interesting instruction here is %val2, which does not dominate the exit of ; the non-affine region. Care needs to be taken when code-generating this write. ; Specifically, at some point we modeled this scalar write, which we tried to ; code generate in the exit block of the non-affine region. branch1: %val2 = fadd float 1.0, 2.0 br i1 %cond1, label %branch2, label %backedge ; CHECK-LABEL: polly.stmt.branch1: ; CHECK-NEXT: %p_val2 = fadd float 1.000000e+00, 2.000000e+00 ; CHECK-NEXT: br i1 branch2: br label %backedge ; CHECK-LABEL: polly.stmt.branch2: ; CHECK-NEXT: br label ; CHECK-LABEL: polly.stmt.backedge.exit: ; CHECK: %polly.merge = phi float [ %p_val0, %polly.stmt.loop ], [ %p_val1, %polly.stmt.branch1 ], [ %p_val2, %polly.stmt.branch2 ] backedge: %merge = phi float [%val0, %loop], [%val1, %branch1], [%val2, %branch2] %indvar.next = add i64 %indvar, 1 store float %merge, float* %A %cmp = icmp sle i64 %indvar.next, 100 br i1 %cmp, label %loop, label %exit exit: ret void }