; RUN: opt %loadPolly -basic-aa -polly-stmt-granularity=bb -polly-scops -analyze -polly-allow-modref-calls \ ; RUN: < %s | FileCheck %s ; RUN: opt %loadPolly -basic-aa -polly-stmt-granularity=bb -polly-codegen -polly-allow-modref-calls \ ; RUN: -disable-output < %s ; ; Verify that we model the may-write access of the prefetch intrinsic ; correctly, thus that A is accessed by it but B is not. ; ; CHECK: Stmt_for_body ; CHECK-NEXT: Domain := ; CHECK-NEXT: { Stmt_for_body[i0] : 0 <= i0 <= 1023 }; ; CHECK-NEXT: Schedule := ; CHECK-NEXT: { Stmt_for_body[i0] -> [i0] }; ; CHECK-NEXT: MayWriteAccess := [Reduction Type: NONE] ; CHECK-NEXT: { Stmt_for_body[i0] -> MemRef_A[o0] }; ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] ; CHECK-NEXT: { Stmt_for_body[i0] -> MemRef_B[i0] }; ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] ; CHECK-NEXT: { Stmt_for_body[i0] -> MemRef_A[i0] }; ; ; void jd(int *restirct A, int *restrict B) { ; for (int i = 0; i < 1024; i++) { ; @llvm.prefetch(A); ; A[i] = B[i]; ; } ; } ; target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" define void @jd(i32* noalias %A, i32* noalias %B) { entry: br label %for.body for.body: ; preds = %entry, %for.inc %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ] %arrayidx = getelementptr inbounds i32, i32* %A, i64 %i %arrayidx1 = getelementptr inbounds i32, i32* %B, i64 %i %bc = bitcast i32* %arrayidx to i8* call void @f(i8* %bc, i32 1, i32 1, i32 1) %tmp = load i32, i32* %arrayidx1 store i32 %tmp, i32* %arrayidx, align 4 br label %for.inc for.inc: ; preds = %for.body %i.next = add nuw nsw i64 %i, 1 %exitcond = icmp ne i64 %i.next, 1024 br i1 %exitcond, label %for.body, label %for.end for.end: ; preds = %for.inc ret void } declare void @f(i8*, i32, i32, i32) #0 attributes #0 = { argmemonly nounwind }