/* * Copyright © 2011 Red Hat All Rights Reserved. * Copyright © 2017 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. */ #include "ac_surface.h" #include "ac_gpu_info.h" #include "addrlib/inc/addrinterface.h" #include "addrlib/src/amdgpu_asic_addr.h" #include "amd_family.h" #include "drm-uapi/amdgpu_drm.h" #include "sid.h" #include "util/hash_table.h" #include "util/macros.h" #include "util/simple_mtx.h" #include "util/u_atomic.h" #include "util/u_math.h" #include "util/u_memory.h" #include #include #include #include #ifndef CIASICIDGFXENGINE_SOUTHERNISLAND #define CIASICIDGFXENGINE_SOUTHERNISLAND 0x0000000A #endif #ifndef CIASICIDGFXENGINE_ARCTICISLAND #define CIASICIDGFXENGINE_ARCTICISLAND 0x0000000D #endif struct ac_addrlib { ADDR_HANDLE handle; /* The cache of DCC retile maps for reuse when allocating images of * similar sizes. */ simple_mtx_t dcc_retile_map_lock; struct hash_table *dcc_retile_maps; struct hash_table *dcc_retile_tile_indices; }; struct dcc_retile_map_key { enum radeon_family family; unsigned retile_width; unsigned retile_height; bool rb_aligned; bool pipe_aligned; unsigned dcc_retile_num_elements; ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT input; }; static uint32_t dcc_retile_map_hash_key(const void *key) { return _mesa_hash_data(key, sizeof(struct dcc_retile_map_key)); } static bool dcc_retile_map_keys_equal(const void *a, const void *b) { return memcmp(a, b, sizeof(struct dcc_retile_map_key)) == 0; } static void dcc_retile_map_free(struct hash_entry *entry) { free((void *)entry->key); free(entry->data); } struct dcc_retile_tile_key { enum radeon_family family; unsigned bpp; unsigned swizzle_mode; bool rb_aligned; bool pipe_aligned; }; struct dcc_retile_tile_data { unsigned tile_width_log2; unsigned tile_height_log2; uint16_t *data; }; static uint32_t dcc_retile_tile_hash_key(const void *key) { return _mesa_hash_data(key, sizeof(struct dcc_retile_tile_key)); } static bool dcc_retile_tile_keys_equal(const void *a, const void *b) { return memcmp(a, b, sizeof(struct dcc_retile_tile_key)) == 0; } static void dcc_retile_tile_free(struct hash_entry *entry) { free((void *)entry->key); free(((struct dcc_retile_tile_data *)entry->data)->data); free(entry->data); } /* Assumes dcc_retile_map_lock is taken. */ static const struct dcc_retile_tile_data * ac_compute_dcc_retile_tile_indices(struct ac_addrlib *addrlib, const struct radeon_info *info, unsigned bpp, unsigned swizzle_mode, bool rb_aligned, bool pipe_aligned) { struct dcc_retile_tile_key key; memset(&key, 0, sizeof(key)); key.family = info->family; key.bpp = bpp; key.swizzle_mode = swizzle_mode; key.rb_aligned = rb_aligned; key.pipe_aligned = pipe_aligned; struct hash_entry *entry = _mesa_hash_table_search(addrlib->dcc_retile_tile_indices, &key); if (entry) return entry->data; ADDR2_COMPUTE_DCCINFO_INPUT din = {0}; ADDR2_COMPUTE_DCCINFO_OUTPUT dout = {0}; din.size = sizeof(ADDR2_COMPUTE_DCCINFO_INPUT); dout.size = sizeof(ADDR2_COMPUTE_DCCINFO_OUTPUT); din.dccKeyFlags.pipeAligned = pipe_aligned; din.dccKeyFlags.rbAligned = rb_aligned; din.resourceType = ADDR_RSRC_TEX_2D; din.swizzleMode = swizzle_mode; din.bpp = bpp; din.unalignedWidth = 1; din.unalignedHeight = 1; din.numSlices = 1; din.numFrags = 1; din.numMipLevels = 1; ADDR_E_RETURNCODE ret = Addr2ComputeDccInfo(addrlib->handle, &din, &dout); if (ret != ADDR_OK) return NULL; ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT addrin = {0}; addrin.size = sizeof(addrin); addrin.swizzleMode = swizzle_mode; addrin.resourceType = ADDR_RSRC_TEX_2D; addrin.bpp = bpp; addrin.numSlices = 1; addrin.numMipLevels = 1; addrin.numFrags = 1; addrin.pitch = dout.pitch; addrin.height = dout.height; addrin.compressBlkWidth = dout.compressBlkWidth; addrin.compressBlkHeight = dout.compressBlkHeight; addrin.compressBlkDepth = dout.compressBlkDepth; addrin.metaBlkWidth = dout.metaBlkWidth; addrin.metaBlkHeight = dout.metaBlkHeight; addrin.metaBlkDepth = dout.metaBlkDepth; addrin.dccKeyFlags.pipeAligned = pipe_aligned; addrin.dccKeyFlags.rbAligned = rb_aligned; unsigned w = dout.metaBlkWidth / dout.compressBlkWidth; unsigned h = dout.metaBlkHeight / dout.compressBlkHeight; uint16_t *indices = malloc(w * h * sizeof(uint16_t)); if (!indices) return NULL; ADDR2_COMPUTE_DCC_ADDRFROMCOORD_OUTPUT addrout = {0}; addrout.size = sizeof(addrout); for (unsigned y = 0; y < h; ++y) { addrin.y = y * dout.compressBlkHeight; for (unsigned x = 0; x < w; ++x) { addrin.x = x * dout.compressBlkWidth; addrout.addr = 0; if (Addr2ComputeDccAddrFromCoord(addrlib->handle, &addrin, &addrout) != ADDR_OK) { free(indices); return NULL; } indices[y * w + x] = addrout.addr; } } struct dcc_retile_tile_data *data = calloc(1, sizeof(*data)); if (!data) { free(indices); return NULL; } data->tile_width_log2 = util_logbase2(w); data->tile_height_log2 = util_logbase2(h); data->data = indices; struct dcc_retile_tile_key *heap_key = mem_dup(&key, sizeof(key)); if (!heap_key) { free(data); free(indices); return NULL; } entry = _mesa_hash_table_insert(addrlib->dcc_retile_tile_indices, heap_key, data); if (!entry) { free(heap_key); free(data); free(indices); } return data; } static uint32_t ac_compute_retile_tile_addr(const struct dcc_retile_tile_data *tile, unsigned stride, unsigned x, unsigned y) { unsigned x_mask = (1u << tile->tile_width_log2) - 1; unsigned y_mask = (1u << tile->tile_height_log2) - 1; unsigned tile_size_log2 = tile->tile_width_log2 + tile->tile_height_log2; unsigned base = ((y >> tile->tile_height_log2) * stride + (x >> tile->tile_width_log2)) << tile_size_log2; unsigned offset_in_tile = tile->data[((y & y_mask) << tile->tile_width_log2) + (x & x_mask)]; return base + offset_in_tile; } static uint32_t *ac_compute_dcc_retile_map(struct ac_addrlib *addrlib, const struct radeon_info *info, unsigned retile_width, unsigned retile_height, bool rb_aligned, bool pipe_aligned, bool use_uint16, unsigned dcc_retile_num_elements, const ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT *in) { unsigned dcc_retile_map_size = dcc_retile_num_elements * (use_uint16 ? 2 : 4); struct dcc_retile_map_key key; assert(in->numFrags == 1 && in->numSlices == 1 && in->numMipLevels == 1); memset(&key, 0, sizeof(key)); key.family = info->family; key.retile_width = retile_width; key.retile_height = retile_height; key.rb_aligned = rb_aligned; key.pipe_aligned = pipe_aligned; key.dcc_retile_num_elements = dcc_retile_num_elements; memcpy(&key.input, in, sizeof(*in)); simple_mtx_lock(&addrlib->dcc_retile_map_lock); /* If we have already computed this retile map, get it from the hash table. */ struct hash_entry *entry = _mesa_hash_table_search(addrlib->dcc_retile_maps, &key); if (entry) { uint32_t *map = entry->data; simple_mtx_unlock(&addrlib->dcc_retile_map_lock); return map; } const struct dcc_retile_tile_data *src_tile = ac_compute_dcc_retile_tile_indices( addrlib, info, in->bpp, in->swizzleMode, rb_aligned, pipe_aligned); const struct dcc_retile_tile_data *dst_tile = ac_compute_dcc_retile_tile_indices(addrlib, info, in->bpp, in->swizzleMode, false, false); if (!src_tile || !dst_tile) { simple_mtx_unlock(&addrlib->dcc_retile_map_lock); return NULL; } void *dcc_retile_map = malloc(dcc_retile_map_size); if (!dcc_retile_map) { simple_mtx_unlock(&addrlib->dcc_retile_map_lock); return NULL; } unsigned index = 0; unsigned w = DIV_ROUND_UP(retile_width, in->compressBlkWidth); unsigned h = DIV_ROUND_UP(retile_height, in->compressBlkHeight); unsigned src_stride = DIV_ROUND_UP(w, 1u << src_tile->tile_width_log2); unsigned dst_stride = DIV_ROUND_UP(w, 1u << dst_tile->tile_width_log2); for (unsigned y = 0; y < h; ++y) { for (unsigned x = 0; x < w; ++x) { unsigned src_addr = ac_compute_retile_tile_addr(src_tile, src_stride, x, y); unsigned dst_addr = ac_compute_retile_tile_addr(dst_tile, dst_stride, x, y); if (use_uint16) { ((uint16_t *)dcc_retile_map)[2 * index] = src_addr; ((uint16_t *)dcc_retile_map)[2 * index + 1] = dst_addr; } else { ((uint32_t *)dcc_retile_map)[2 * index] = src_addr; ((uint32_t *)dcc_retile_map)[2 * index + 1] = dst_addr; } ++index; } } /* Fill the remaining pairs with the last one (for the compute shader). */ for (unsigned i = index * 2; i < dcc_retile_num_elements; i++) { if (use_uint16) ((uint16_t *)dcc_retile_map)[i] = ((uint16_t *)dcc_retile_map)[i - 2]; else ((uint32_t *)dcc_retile_map)[i] = ((uint32_t *)dcc_retile_map)[i - 2]; } /* Insert the retile map into the hash table, so that it can be reused and * the computation can be skipped for similar image sizes. */ _mesa_hash_table_insert(addrlib->dcc_retile_maps, mem_dup(&key, sizeof(key)), dcc_retile_map); simple_mtx_unlock(&addrlib->dcc_retile_map_lock); return dcc_retile_map; } static void *ADDR_API allocSysMem(const ADDR_ALLOCSYSMEM_INPUT *pInput) { return malloc(pInput->sizeInBytes); } static ADDR_E_RETURNCODE ADDR_API freeSysMem(const ADDR_FREESYSMEM_INPUT *pInput) { free(pInput->pVirtAddr); return ADDR_OK; } struct ac_addrlib *ac_addrlib_create(const struct radeon_info *info, const struct amdgpu_gpu_info *amdinfo, uint64_t *max_alignment) { ADDR_CREATE_INPUT addrCreateInput = {0}; ADDR_CREATE_OUTPUT addrCreateOutput = {0}; ADDR_REGISTER_VALUE regValue = {0}; ADDR_CREATE_FLAGS createFlags = {{0}}; ADDR_GET_MAX_ALIGNMENTS_OUTPUT addrGetMaxAlignmentsOutput = {0}; ADDR_E_RETURNCODE addrRet; addrCreateInput.size = sizeof(ADDR_CREATE_INPUT); addrCreateOutput.size = sizeof(ADDR_CREATE_OUTPUT); regValue.gbAddrConfig = amdinfo->gb_addr_cfg; createFlags.value = 0; addrCreateInput.chipFamily = info->family_id; addrCreateInput.chipRevision = info->chip_external_rev; if (addrCreateInput.chipFamily == FAMILY_UNKNOWN) return NULL; if (addrCreateInput.chipFamily >= FAMILY_AI) { addrCreateInput.chipEngine = CIASICIDGFXENGINE_ARCTICISLAND; } else { regValue.noOfBanks = amdinfo->mc_arb_ramcfg & 0x3; regValue.noOfRanks = (amdinfo->mc_arb_ramcfg & 0x4) >> 2; regValue.backendDisables = amdinfo->enabled_rb_pipes_mask; regValue.pTileConfig = amdinfo->gb_tile_mode; regValue.noOfEntries = ARRAY_SIZE(amdinfo->gb_tile_mode); if (addrCreateInput.chipFamily == FAMILY_SI) { regValue.pMacroTileConfig = NULL; regValue.noOfMacroEntries = 0; } else { regValue.pMacroTileConfig = amdinfo->gb_macro_tile_mode; regValue.noOfMacroEntries = ARRAY_SIZE(amdinfo->gb_macro_tile_mode); } createFlags.useTileIndex = 1; createFlags.useHtileSliceAlign = 1; addrCreateInput.chipEngine = CIASICIDGFXENGINE_SOUTHERNISLAND; } addrCreateInput.callbacks.allocSysMem = allocSysMem; addrCreateInput.callbacks.freeSysMem = freeSysMem; addrCreateInput.callbacks.debugPrint = 0; addrCreateInput.createFlags = createFlags; addrCreateInput.regValue = regValue; addrRet = AddrCreate(&addrCreateInput, &addrCreateOutput); if (addrRet != ADDR_OK) return NULL; if (max_alignment) { addrRet = AddrGetMaxAlignments(addrCreateOutput.hLib, &addrGetMaxAlignmentsOutput); if (addrRet == ADDR_OK) { *max_alignment = addrGetMaxAlignmentsOutput.baseAlign; } } struct ac_addrlib *addrlib = calloc(1, sizeof(struct ac_addrlib)); if (!addrlib) { AddrDestroy(addrCreateOutput.hLib); return NULL; } addrlib->handle = addrCreateOutput.hLib; simple_mtx_init(&addrlib->dcc_retile_map_lock, mtx_plain); addrlib->dcc_retile_maps = _mesa_hash_table_create(NULL, dcc_retile_map_hash_key, dcc_retile_map_keys_equal); addrlib->dcc_retile_tile_indices = _mesa_hash_table_create(NULL, dcc_retile_tile_hash_key, dcc_retile_tile_keys_equal); return addrlib; } void ac_addrlib_destroy(struct ac_addrlib *addrlib) { AddrDestroy(addrlib->handle); simple_mtx_destroy(&addrlib->dcc_retile_map_lock); _mesa_hash_table_destroy(addrlib->dcc_retile_maps, dcc_retile_map_free); _mesa_hash_table_destroy(addrlib->dcc_retile_tile_indices, dcc_retile_tile_free); free(addrlib); } static int surf_config_sanity(const struct ac_surf_config *config, unsigned flags) { /* FMASK is allocated together with the color surface and can't be * allocated separately. */ assert(!(flags & RADEON_SURF_FMASK)); if (flags & RADEON_SURF_FMASK) return -EINVAL; /* all dimension must be at least 1 ! */ if (!config->info.width || !config->info.height || !config->info.depth || !config->info.array_size || !config->info.levels) return -EINVAL; switch (config->info.samples) { case 0: case 1: case 2: case 4: case 8: break; case 16: if (flags & RADEON_SURF_Z_OR_SBUFFER) return -EINVAL; break; default: return -EINVAL; } if (!(flags & RADEON_SURF_Z_OR_SBUFFER)) { switch (config->info.storage_samples) { case 0: case 1: case 2: case 4: case 8: break; default: return -EINVAL; } } if (config->is_3d && config->info.array_size > 1) return -EINVAL; if (config->is_cube && config->info.depth > 1) return -EINVAL; return 0; } static int gfx6_compute_level(ADDR_HANDLE addrlib, const struct ac_surf_config *config, struct radeon_surf *surf, bool is_stencil, unsigned level, bool compressed, ADDR_COMPUTE_SURFACE_INFO_INPUT *AddrSurfInfoIn, ADDR_COMPUTE_SURFACE_INFO_OUTPUT *AddrSurfInfoOut, ADDR_COMPUTE_DCCINFO_INPUT *AddrDccIn, ADDR_COMPUTE_DCCINFO_OUTPUT *AddrDccOut, ADDR_COMPUTE_HTILE_INFO_INPUT *AddrHtileIn, ADDR_COMPUTE_HTILE_INFO_OUTPUT *AddrHtileOut) { struct legacy_surf_level *surf_level; ADDR_E_RETURNCODE ret; AddrSurfInfoIn->mipLevel = level; AddrSurfInfoIn->width = u_minify(config->info.width, level); AddrSurfInfoIn->height = u_minify(config->info.height, level); /* Make GFX6 linear surfaces compatible with GFX9 for hybrid graphics, * because GFX9 needs linear alignment of 256 bytes. */ if (config->info.levels == 1 && AddrSurfInfoIn->tileMode == ADDR_TM_LINEAR_ALIGNED && AddrSurfInfoIn->bpp && util_is_power_of_two_or_zero(AddrSurfInfoIn->bpp)) { unsigned alignment = 256 / (AddrSurfInfoIn->bpp / 8); AddrSurfInfoIn->width = align(AddrSurfInfoIn->width, alignment); } /* addrlib assumes the bytes/pixel is a divisor of 64, which is not * true for r32g32b32 formats. */ if (AddrSurfInfoIn->bpp == 96) { assert(config->info.levels == 1); assert(AddrSurfInfoIn->tileMode == ADDR_TM_LINEAR_ALIGNED); /* The least common multiple of 64 bytes and 12 bytes/pixel is * 192 bytes, or 16 pixels. */ AddrSurfInfoIn->width = align(AddrSurfInfoIn->width, 16); } if (config->is_3d) AddrSurfInfoIn->numSlices = u_minify(config->info.depth, level); else if (config->is_cube) AddrSurfInfoIn->numSlices = 6; else AddrSurfInfoIn->numSlices = config->info.array_size; if (level > 0) { /* Set the base level pitch. This is needed for calculation * of non-zero levels. */ if (is_stencil) AddrSurfInfoIn->basePitch = surf->u.legacy.stencil_level[0].nblk_x; else AddrSurfInfoIn->basePitch = surf->u.legacy.level[0].nblk_x; /* Convert blocks to pixels for compressed formats. */ if (compressed) AddrSurfInfoIn->basePitch *= surf->blk_w; } ret = AddrComputeSurfaceInfo(addrlib, AddrSurfInfoIn, AddrSurfInfoOut); if (ret != ADDR_OK) { return ret; } surf_level = is_stencil ? &surf->u.legacy.stencil_level[level] : &surf->u.legacy.level[level]; surf_level->offset = align64(surf->surf_size, AddrSurfInfoOut->baseAlign); surf_level->slice_size_dw = AddrSurfInfoOut->sliceSize / 4; surf_level->nblk_x = AddrSurfInfoOut->pitch; surf_level->nblk_y = AddrSurfInfoOut->height; switch (AddrSurfInfoOut->tileMode) { case ADDR_TM_LINEAR_ALIGNED: surf_level->mode = RADEON_SURF_MODE_LINEAR_ALIGNED; break; case ADDR_TM_1D_TILED_THIN1: surf_level->mode = RADEON_SURF_MODE_1D; break; case ADDR_TM_2D_TILED_THIN1: surf_level->mode = RADEON_SURF_MODE_2D; break; default: assert(0); } if (is_stencil) surf->u.legacy.stencil_tiling_index[level] = AddrSurfInfoOut->tileIndex; else surf->u.legacy.tiling_index[level] = AddrSurfInfoOut->tileIndex; surf->surf_size = surf_level->offset + AddrSurfInfoOut->surfSize; /* Clear DCC fields at the beginning. */ surf_level->dcc_offset = 0; /* The previous level's flag tells us if we can use DCC for this level. */ if (AddrSurfInfoIn->flags.dccCompatible && (level == 0 || AddrDccOut->subLvlCompressible)) { bool prev_level_clearable = level == 0 || AddrDccOut->dccRamSizeAligned; AddrDccIn->colorSurfSize = AddrSurfInfoOut->surfSize; AddrDccIn->tileMode = AddrSurfInfoOut->tileMode; AddrDccIn->tileInfo = *AddrSurfInfoOut->pTileInfo; AddrDccIn->tileIndex = AddrSurfInfoOut->tileIndex; AddrDccIn->macroModeIndex = AddrSurfInfoOut->macroModeIndex; ret = AddrComputeDccInfo(addrlib, AddrDccIn, AddrDccOut); if (ret == ADDR_OK) { surf_level->dcc_offset = surf->dcc_size; surf->num_dcc_levels = level + 1; surf->dcc_size = surf_level->dcc_offset + AddrDccOut->dccRamSize; surf->dcc_alignment = MAX2(surf->dcc_alignment, AddrDccOut->dccRamBaseAlign); /* If the DCC size of a subresource (1 mip level or 1 slice) * is not aligned, the DCC memory layout is not contiguous for * that subresource, which means we can't use fast clear. * * We only do fast clears for whole mipmap levels. If we did * per-slice fast clears, the same restriction would apply. * (i.e. only compute the slice size and see if it's aligned) * * The last level can be non-contiguous and still be clearable * if it's interleaved with the next level that doesn't exist. */ if (AddrDccOut->dccRamSizeAligned || (prev_level_clearable && level == config->info.levels - 1)) surf_level->dcc_fast_clear_size = AddrDccOut->dccFastClearSize; else surf_level->dcc_fast_clear_size = 0; /* Compute the DCC slice size because addrlib doesn't * provide this info. As DCC memory is linear (each * slice is the same size) it's easy to compute. */ surf->dcc_slice_size = AddrDccOut->dccRamSize / config->info.array_size; /* For arrays, we have to compute the DCC info again * with one slice size to get a correct fast clear * size. */ if (config->info.array_size > 1) { AddrDccIn->colorSurfSize = AddrSurfInfoOut->sliceSize; AddrDccIn->tileMode = AddrSurfInfoOut->tileMode; AddrDccIn->tileInfo = *AddrSurfInfoOut->pTileInfo; AddrDccIn->tileIndex = AddrSurfInfoOut->tileIndex; AddrDccIn->macroModeIndex = AddrSurfInfoOut->macroModeIndex; ret = AddrComputeDccInfo(addrlib, AddrDccIn, AddrDccOut); if (ret == ADDR_OK) { /* If the DCC memory isn't properly * aligned, the data are interleaved * accross slices. */ if (AddrDccOut->dccRamSizeAligned) surf_level->dcc_slice_fast_clear_size = AddrDccOut->dccFastClearSize; else surf_level->dcc_slice_fast_clear_size = 0; } if (surf->flags & RADEON_SURF_CONTIGUOUS_DCC_LAYERS && surf->dcc_slice_size != surf_level->dcc_slice_fast_clear_size) { surf->dcc_size = 0; surf->num_dcc_levels = 0; AddrDccOut->subLvlCompressible = false; } } else { surf_level->dcc_slice_fast_clear_size = surf_level->dcc_fast_clear_size; } } } /* HTILE. */ if (!is_stencil && AddrSurfInfoIn->flags.depth && surf_level->mode == RADEON_SURF_MODE_2D && level == 0 && !(surf->flags & RADEON_SURF_NO_HTILE)) { AddrHtileIn->flags.tcCompatible = AddrSurfInfoOut->tcCompatible; AddrHtileIn->pitch = AddrSurfInfoOut->pitch; AddrHtileIn->height = AddrSurfInfoOut->height; AddrHtileIn->numSlices = AddrSurfInfoOut->depth; AddrHtileIn->blockWidth = ADDR_HTILE_BLOCKSIZE_8; AddrHtileIn->blockHeight = ADDR_HTILE_BLOCKSIZE_8; AddrHtileIn->pTileInfo = AddrSurfInfoOut->pTileInfo; AddrHtileIn->tileIndex = AddrSurfInfoOut->tileIndex; AddrHtileIn->macroModeIndex = AddrSurfInfoOut->macroModeIndex; ret = AddrComputeHtileInfo(addrlib, AddrHtileIn, AddrHtileOut); if (ret == ADDR_OK) { surf->htile_size = AddrHtileOut->htileBytes; surf->htile_slice_size = AddrHtileOut->sliceSize; surf->htile_alignment = AddrHtileOut->baseAlign; } } return 0; } static void gfx6_set_micro_tile_mode(struct radeon_surf *surf, const struct radeon_info *info) { uint32_t tile_mode = info->si_tile_mode_array[surf->u.legacy.tiling_index[0]]; if (info->chip_class >= GFX7) surf->micro_tile_mode = G_009910_MICRO_TILE_MODE_NEW(tile_mode); else surf->micro_tile_mode = G_009910_MICRO_TILE_MODE(tile_mode); } static unsigned cik_get_macro_tile_index(struct radeon_surf *surf) { unsigned index, tileb; tileb = 8 * 8 * surf->bpe; tileb = MIN2(surf->u.legacy.tile_split, tileb); for (index = 0; tileb > 64; index++) tileb >>= 1; assert(index < 16); return index; } static bool get_display_flag(const struct ac_surf_config *config, const struct radeon_surf *surf) { unsigned num_channels = config->info.num_channels; unsigned bpe = surf->bpe; if (!config->is_3d && !config->is_cube && !(surf->flags & RADEON_SURF_Z_OR_SBUFFER) && surf->flags & RADEON_SURF_SCANOUT && config->info.samples <= 1 && surf->blk_w <= 2 && surf->blk_h == 1) { /* subsampled */ if (surf->blk_w == 2 && surf->blk_h == 1) return true; if (/* RGBA8 or RGBA16F */ (bpe >= 4 && bpe <= 8 && num_channels == 4) || /* R5G6B5 or R5G5B5A1 */ (bpe == 2 && num_channels >= 3) || /* C8 palette */ (bpe == 1 && num_channels == 1)) return true; } return false; } /** * This must be called after the first level is computed. * * Copy surface-global settings like pipe/bank config from level 0 surface * computation, and compute tile swizzle. */ static int gfx6_surface_settings(ADDR_HANDLE addrlib, const struct radeon_info *info, const struct ac_surf_config *config, ADDR_COMPUTE_SURFACE_INFO_OUTPUT *csio, struct radeon_surf *surf) { surf->surf_alignment = csio->baseAlign; surf->u.legacy.pipe_config = csio->pTileInfo->pipeConfig - 1; gfx6_set_micro_tile_mode(surf, info); /* For 2D modes only. */ if (csio->tileMode >= ADDR_TM_2D_TILED_THIN1) { surf->u.legacy.bankw = csio->pTileInfo->bankWidth; surf->u.legacy.bankh = csio->pTileInfo->bankHeight; surf->u.legacy.mtilea = csio->pTileInfo->macroAspectRatio; surf->u.legacy.tile_split = csio->pTileInfo->tileSplitBytes; surf->u.legacy.num_banks = csio->pTileInfo->banks; surf->u.legacy.macro_tile_index = csio->macroModeIndex; } else { surf->u.legacy.macro_tile_index = 0; } /* Compute tile swizzle. */ /* TODO: fix tile swizzle with mipmapping for GFX6 */ if ((info->chip_class >= GFX7 || config->info.levels == 1) && config->info.surf_index && surf->u.legacy.level[0].mode == RADEON_SURF_MODE_2D && !(surf->flags & (RADEON_SURF_Z_OR_SBUFFER | RADEON_SURF_SHAREABLE)) && !get_display_flag(config, surf)) { ADDR_COMPUTE_BASE_SWIZZLE_INPUT AddrBaseSwizzleIn = {0}; ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT AddrBaseSwizzleOut = {0}; AddrBaseSwizzleIn.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_INPUT); AddrBaseSwizzleOut.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT); AddrBaseSwizzleIn.surfIndex = p_atomic_inc_return(config->info.surf_index) - 1; AddrBaseSwizzleIn.tileIndex = csio->tileIndex; AddrBaseSwizzleIn.macroModeIndex = csio->macroModeIndex; AddrBaseSwizzleIn.pTileInfo = csio->pTileInfo; AddrBaseSwizzleIn.tileMode = csio->tileMode; int r = AddrComputeBaseSwizzle(addrlib, &AddrBaseSwizzleIn, &AddrBaseSwizzleOut); if (r != ADDR_OK) return r; assert(AddrBaseSwizzleOut.tileSwizzle <= u_bit_consecutive(0, sizeof(surf->tile_swizzle) * 8)); surf->tile_swizzle = AddrBaseSwizzleOut.tileSwizzle; } return 0; } static void ac_compute_cmask(const struct radeon_info *info, const struct ac_surf_config *config, struct radeon_surf *surf) { unsigned pipe_interleave_bytes = info->pipe_interleave_bytes; unsigned num_pipes = info->num_tile_pipes; unsigned cl_width, cl_height; if (surf->flags & RADEON_SURF_Z_OR_SBUFFER || surf->is_linear || (config->info.samples >= 2 && !surf->fmask_size)) return; assert(info->chip_class <= GFX8); switch (num_pipes) { case 2: cl_width = 32; cl_height = 16; break; case 4: cl_width = 32; cl_height = 32; break; case 8: cl_width = 64; cl_height = 32; break; case 16: /* Hawaii */ cl_width = 64; cl_height = 64; break; default: assert(0); return; } unsigned base_align = num_pipes * pipe_interleave_bytes; unsigned width = align(surf->u.legacy.level[0].nblk_x, cl_width * 8); unsigned height = align(surf->u.legacy.level[0].nblk_y, cl_height * 8); unsigned slice_elements = (width * height) / (8 * 8); /* Each element of CMASK is a nibble. */ unsigned slice_bytes = slice_elements / 2; surf->u.legacy.cmask_slice_tile_max = (width * height) / (128 * 128); if (surf->u.legacy.cmask_slice_tile_max) surf->u.legacy.cmask_slice_tile_max -= 1; unsigned num_layers; if (config->is_3d) num_layers = config->info.depth; else if (config->is_cube) num_layers = 6; else num_layers = config->info.array_size; surf->cmask_alignment = MAX2(256, base_align); surf->cmask_slice_size = align(slice_bytes, base_align); surf->cmask_size = surf->cmask_slice_size * num_layers; } /** * Fill in the tiling information in \p surf based on the given surface config. * * The following fields of \p surf must be initialized by the caller: * blk_w, blk_h, bpe, flags. */ static int gfx6_compute_surface(ADDR_HANDLE addrlib, const struct radeon_info *info, const struct ac_surf_config *config, enum radeon_surf_mode mode, struct radeon_surf *surf) { unsigned level; bool compressed; ADDR_COMPUTE_SURFACE_INFO_INPUT AddrSurfInfoIn = {0}; ADDR_COMPUTE_SURFACE_INFO_OUTPUT AddrSurfInfoOut = {0}; ADDR_COMPUTE_DCCINFO_INPUT AddrDccIn = {0}; ADDR_COMPUTE_DCCINFO_OUTPUT AddrDccOut = {0}; ADDR_COMPUTE_HTILE_INFO_INPUT AddrHtileIn = {0}; ADDR_COMPUTE_HTILE_INFO_OUTPUT AddrHtileOut = {0}; ADDR_TILEINFO AddrTileInfoIn = {0}; ADDR_TILEINFO AddrTileInfoOut = {0}; int r; AddrSurfInfoIn.size = sizeof(ADDR_COMPUTE_SURFACE_INFO_INPUT); AddrSurfInfoOut.size = sizeof(ADDR_COMPUTE_SURFACE_INFO_OUTPUT); AddrDccIn.size = sizeof(ADDR_COMPUTE_DCCINFO_INPUT); AddrDccOut.size = sizeof(ADDR_COMPUTE_DCCINFO_OUTPUT); AddrHtileIn.size = sizeof(ADDR_COMPUTE_HTILE_INFO_INPUT); AddrHtileOut.size = sizeof(ADDR_COMPUTE_HTILE_INFO_OUTPUT); AddrSurfInfoOut.pTileInfo = &AddrTileInfoOut; compressed = surf->blk_w == 4 && surf->blk_h == 4; /* MSAA requires 2D tiling. */ if (config->info.samples > 1) mode = RADEON_SURF_MODE_2D; /* DB doesn't support linear layouts. */ if (surf->flags & (RADEON_SURF_Z_OR_SBUFFER) && mode < RADEON_SURF_MODE_1D) mode = RADEON_SURF_MODE_1D; /* Set the requested tiling mode. */ switch (mode) { case RADEON_SURF_MODE_LINEAR_ALIGNED: AddrSurfInfoIn.tileMode = ADDR_TM_LINEAR_ALIGNED; break; case RADEON_SURF_MODE_1D: AddrSurfInfoIn.tileMode = ADDR_TM_1D_TILED_THIN1; break; case RADEON_SURF_MODE_2D: AddrSurfInfoIn.tileMode = ADDR_TM_2D_TILED_THIN1; break; default: assert(0); } /* The format must be set correctly for the allocation of compressed * textures to work. In other cases, setting the bpp is sufficient. */ if (compressed) { switch (surf->bpe) { case 8: AddrSurfInfoIn.format = ADDR_FMT_BC1; break; case 16: AddrSurfInfoIn.format = ADDR_FMT_BC3; break; default: assert(0); } } else { AddrDccIn.bpp = AddrSurfInfoIn.bpp = surf->bpe * 8; } AddrDccIn.numSamples = AddrSurfInfoIn.numSamples = MAX2(1, config->info.samples); AddrSurfInfoIn.tileIndex = -1; if (!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)) { AddrDccIn.numSamples = AddrSurfInfoIn.numFrags = MAX2(1, config->info.storage_samples); } /* Set the micro tile type. */ if (surf->flags & RADEON_SURF_SCANOUT) AddrSurfInfoIn.tileType = ADDR_DISPLAYABLE; else if (surf->flags & RADEON_SURF_Z_OR_SBUFFER) AddrSurfInfoIn.tileType = ADDR_DEPTH_SAMPLE_ORDER; else AddrSurfInfoIn.tileType = ADDR_NON_DISPLAYABLE; AddrSurfInfoIn.flags.color = !(surf->flags & RADEON_SURF_Z_OR_SBUFFER); AddrSurfInfoIn.flags.depth = (surf->flags & RADEON_SURF_ZBUFFER) != 0; AddrSurfInfoIn.flags.cube = config->is_cube; AddrSurfInfoIn.flags.display = get_display_flag(config, surf); AddrSurfInfoIn.flags.pow2Pad = config->info.levels > 1; AddrSurfInfoIn.flags.tcCompatible = (surf->flags & RADEON_SURF_TC_COMPATIBLE_HTILE) != 0; /* Only degrade the tile mode for space if TC-compatible HTILE hasn't been * requested, because TC-compatible HTILE requires 2D tiling. */ AddrSurfInfoIn.flags.opt4Space = !AddrSurfInfoIn.flags.tcCompatible && !AddrSurfInfoIn.flags.fmask && config->info.samples <= 1 && !(surf->flags & RADEON_SURF_FORCE_SWIZZLE_MODE); /* DCC notes: * - If we add MSAA support, keep in mind that CB can't decompress 8bpp * with samples >= 4. * - Mipmapped array textures have low performance (discovered by a closed * driver team). */ AddrSurfInfoIn.flags.dccCompatible = info->chip_class >= GFX8 && info->has_graphics && /* disable DCC on compute-only chips */ !(surf->flags & RADEON_SURF_Z_OR_SBUFFER) && !(surf->flags & RADEON_SURF_DISABLE_DCC) && !compressed && ((config->info.array_size == 1 && config->info.depth == 1) || config->info.levels == 1); AddrSurfInfoIn.flags.noStencil = (surf->flags & RADEON_SURF_SBUFFER) == 0; AddrSurfInfoIn.flags.compressZ = !!(surf->flags & RADEON_SURF_Z_OR_SBUFFER); /* On GFX7-GFX8, the DB uses the same pitch and tile mode (except tilesplit) * for Z and stencil. This can cause a number of problems which we work * around here: * * - a depth part that is incompatible with mipmapped texturing * - at least on Stoney, entirely incompatible Z/S aspects (e.g. * incorrect tiling applied to the stencil part, stencil buffer * memory accesses that go out of bounds) even without mipmapping * * Some piglit tests that are prone to different types of related * failures: * ./bin/ext_framebuffer_multisample-upsample 2 stencil * ./bin/framebuffer-blit-levels {draw,read} stencil * ./bin/ext_framebuffer_multisample-unaligned-blit N {depth,stencil} {msaa,upsample,downsample} * ./bin/fbo-depth-array fs-writes-{depth,stencil} / {depth,stencil}-{clear,layered-clear,draw} * ./bin/depthstencil-render-miplevels 1024 d=s=z24_s8 */ int stencil_tile_idx = -1; if (AddrSurfInfoIn.flags.depth && !AddrSurfInfoIn.flags.noStencil && (config->info.levels > 1 || info->family == CHIP_STONEY)) { /* Compute stencilTileIdx that is compatible with the (depth) * tileIdx. This degrades the depth surface if necessary to * ensure that a matching stencilTileIdx exists. */ AddrSurfInfoIn.flags.matchStencilTileCfg = 1; /* Keep the depth mip-tail compatible with texturing. */ AddrSurfInfoIn.flags.noStencil = 1; } /* Set preferred macrotile parameters. This is usually required * for shared resources. This is for 2D tiling only. */ if (!(surf->flags & RADEON_SURF_Z_OR_SBUFFER) && AddrSurfInfoIn.tileMode >= ADDR_TM_2D_TILED_THIN1 && surf->u.legacy.bankw && surf->u.legacy.bankh && surf->u.legacy.mtilea && surf->u.legacy.tile_split) { /* If any of these parameters are incorrect, the calculation * will fail. */ AddrTileInfoIn.banks = surf->u.legacy.num_banks; AddrTileInfoIn.bankWidth = surf->u.legacy.bankw; AddrTileInfoIn.bankHeight = surf->u.legacy.bankh; AddrTileInfoIn.macroAspectRatio = surf->u.legacy.mtilea; AddrTileInfoIn.tileSplitBytes = surf->u.legacy.tile_split; AddrTileInfoIn.pipeConfig = surf->u.legacy.pipe_config + 1; /* +1 compared to GB_TILE_MODE */ AddrSurfInfoIn.flags.opt4Space = 0; AddrSurfInfoIn.pTileInfo = &AddrTileInfoIn; /* If AddrSurfInfoIn.pTileInfo is set, Addrlib doesn't set * the tile index, because we are expected to know it if * we know the other parameters. * * This is something that can easily be fixed in Addrlib. * For now, just figure it out here. * Note that only 2D_TILE_THIN1 is handled here. */ assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)); assert(AddrSurfInfoIn.tileMode == ADDR_TM_2D_TILED_THIN1); if (info->chip_class == GFX6) { if (AddrSurfInfoIn.tileType == ADDR_DISPLAYABLE) { if (surf->bpe == 2) AddrSurfInfoIn.tileIndex = 11; /* 16bpp */ else AddrSurfInfoIn.tileIndex = 12; /* 32bpp */ } else { if (surf->bpe == 1) AddrSurfInfoIn.tileIndex = 14; /* 8bpp */ else if (surf->bpe == 2) AddrSurfInfoIn.tileIndex = 15; /* 16bpp */ else if (surf->bpe == 4) AddrSurfInfoIn.tileIndex = 16; /* 32bpp */ else AddrSurfInfoIn.tileIndex = 17; /* 64bpp (and 128bpp) */ } } else { /* GFX7 - GFX8 */ if (AddrSurfInfoIn.tileType == ADDR_DISPLAYABLE) AddrSurfInfoIn.tileIndex = 10; /* 2D displayable */ else AddrSurfInfoIn.tileIndex = 14; /* 2D non-displayable */ /* Addrlib doesn't set this if tileIndex is forced like above. */ AddrSurfInfoOut.macroModeIndex = cik_get_macro_tile_index(surf); } } surf->has_stencil = !!(surf->flags & RADEON_SURF_SBUFFER); surf->num_dcc_levels = 0; surf->surf_size = 0; surf->dcc_size = 0; surf->dcc_alignment = 1; surf->htile_size = 0; surf->htile_slice_size = 0; surf->htile_alignment = 1; const bool only_stencil = (surf->flags & RADEON_SURF_SBUFFER) && !(surf->flags & RADEON_SURF_ZBUFFER); /* Calculate texture layout information. */ if (!only_stencil) { for (level = 0; level < config->info.levels; level++) { r = gfx6_compute_level(addrlib, config, surf, false, level, compressed, &AddrSurfInfoIn, &AddrSurfInfoOut, &AddrDccIn, &AddrDccOut, &AddrHtileIn, &AddrHtileOut); if (r) return r; if (level > 0) continue; if (!AddrSurfInfoOut.tcCompatible) { AddrSurfInfoIn.flags.tcCompatible = 0; surf->flags &= ~RADEON_SURF_TC_COMPATIBLE_HTILE; } if (AddrSurfInfoIn.flags.matchStencilTileCfg) { AddrSurfInfoIn.flags.matchStencilTileCfg = 0; AddrSurfInfoIn.tileIndex = AddrSurfInfoOut.tileIndex; stencil_tile_idx = AddrSurfInfoOut.stencilTileIdx; assert(stencil_tile_idx >= 0); } r = gfx6_surface_settings(addrlib, info, config, &AddrSurfInfoOut, surf); if (r) return r; } } /* Calculate texture layout information for stencil. */ if (surf->flags & RADEON_SURF_SBUFFER) { AddrSurfInfoIn.tileIndex = stencil_tile_idx; AddrSurfInfoIn.bpp = 8; AddrSurfInfoIn.flags.depth = 0; AddrSurfInfoIn.flags.stencil = 1; AddrSurfInfoIn.flags.tcCompatible = 0; /* This will be ignored if AddrSurfInfoIn.pTileInfo is NULL. */ AddrTileInfoIn.tileSplitBytes = surf->u.legacy.stencil_tile_split; for (level = 0; level < config->info.levels; level++) { r = gfx6_compute_level(addrlib, config, surf, true, level, compressed, &AddrSurfInfoIn, &AddrSurfInfoOut, &AddrDccIn, &AddrDccOut, NULL, NULL); if (r) return r; /* DB uses the depth pitch for both stencil and depth. */ if (!only_stencil) { if (surf->u.legacy.stencil_level[level].nblk_x != surf->u.legacy.level[level].nblk_x) surf->u.legacy.stencil_adjusted = true; } else { surf->u.legacy.level[level].nblk_x = surf->u.legacy.stencil_level[level].nblk_x; } if (level == 0) { if (only_stencil) { r = gfx6_surface_settings(addrlib, info, config, &AddrSurfInfoOut, surf); if (r) return r; } /* For 2D modes only. */ if (AddrSurfInfoOut.tileMode >= ADDR_TM_2D_TILED_THIN1) { surf->u.legacy.stencil_tile_split = AddrSurfInfoOut.pTileInfo->tileSplitBytes; } } } } /* Compute FMASK. */ if (config->info.samples >= 2 && AddrSurfInfoIn.flags.color && info->has_graphics && !(surf->flags & RADEON_SURF_NO_FMASK)) { ADDR_COMPUTE_FMASK_INFO_INPUT fin = {0}; ADDR_COMPUTE_FMASK_INFO_OUTPUT fout = {0}; ADDR_TILEINFO fmask_tile_info = {0}; fin.size = sizeof(fin); fout.size = sizeof(fout); fin.tileMode = AddrSurfInfoOut.tileMode; fin.pitch = AddrSurfInfoOut.pitch; fin.height = config->info.height; fin.numSlices = AddrSurfInfoIn.numSlices; fin.numSamples = AddrSurfInfoIn.numSamples; fin.numFrags = AddrSurfInfoIn.numFrags; fin.tileIndex = -1; fout.pTileInfo = &fmask_tile_info; r = AddrComputeFmaskInfo(addrlib, &fin, &fout); if (r) return r; surf->fmask_size = fout.fmaskBytes; surf->fmask_alignment = fout.baseAlign; surf->fmask_tile_swizzle = 0; surf->u.legacy.fmask.slice_tile_max = (fout.pitch * fout.height) / 64; if (surf->u.legacy.fmask.slice_tile_max) surf->u.legacy.fmask.slice_tile_max -= 1; surf->u.legacy.fmask.tiling_index = fout.tileIndex; surf->u.legacy.fmask.bankh = fout.pTileInfo->bankHeight; surf->u.legacy.fmask.pitch_in_pixels = fout.pitch; surf->u.legacy.fmask.slice_size = fout.sliceSize; /* Compute tile swizzle for FMASK. */ if (config->info.fmask_surf_index && !(surf->flags & RADEON_SURF_SHAREABLE)) { ADDR_COMPUTE_BASE_SWIZZLE_INPUT xin = {0}; ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT xout = {0}; xin.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_INPUT); xout.size = sizeof(ADDR_COMPUTE_BASE_SWIZZLE_OUTPUT); /* This counter starts from 1 instead of 0. */ xin.surfIndex = p_atomic_inc_return(config->info.fmask_surf_index); xin.tileIndex = fout.tileIndex; xin.macroModeIndex = fout.macroModeIndex; xin.pTileInfo = fout.pTileInfo; xin.tileMode = fin.tileMode; int r = AddrComputeBaseSwizzle(addrlib, &xin, &xout); if (r != ADDR_OK) return r; assert(xout.tileSwizzle <= u_bit_consecutive(0, sizeof(surf->tile_swizzle) * 8)); surf->fmask_tile_swizzle = xout.tileSwizzle; } } /* Recalculate the whole DCC miptree size including disabled levels. * This is what addrlib does, but calling addrlib would be a lot more * complicated. */ if (surf->dcc_size && config->info.levels > 1) { /* The smallest miplevels that are never compressed by DCC * still read the DCC buffer via TC if the base level uses DCC, * and for some reason the DCC buffer needs to be larger if * the miptree uses non-zero tile_swizzle. Otherwise there are * VM faults. * * "dcc_alignment * 4" was determined by trial and error. */ surf->dcc_size = align64(surf->surf_size >> 8, surf->dcc_alignment * 4); } /* Make sure HTILE covers the whole miptree, because the shader reads * TC-compatible HTILE even for levels where it's disabled by DB. */ if (surf->htile_size && config->info.levels > 1 && surf->flags & RADEON_SURF_TC_COMPATIBLE_HTILE) { /* MSAA can't occur with levels > 1, so ignore the sample count. */ const unsigned total_pixels = surf->surf_size / surf->bpe; const unsigned htile_block_size = 8 * 8; const unsigned htile_element_size = 4; surf->htile_size = (total_pixels / htile_block_size) * htile_element_size; surf->htile_size = align(surf->htile_size, surf->htile_alignment); } else if (!surf->htile_size) { /* Unset this if HTILE is not present. */ surf->flags &= ~RADEON_SURF_TC_COMPATIBLE_HTILE; } surf->is_linear = surf->u.legacy.level[0].mode == RADEON_SURF_MODE_LINEAR_ALIGNED; surf->is_displayable = surf->is_linear || surf->micro_tile_mode == RADEON_MICRO_MODE_DISPLAY || surf->micro_tile_mode == RADEON_MICRO_MODE_RENDER; /* The rotated micro tile mode doesn't work if both CMASK and RB+ are * used at the same time. This case is not currently expected to occur * because we don't use rotated. Enforce this restriction on all chips * to facilitate testing. */ if (surf->micro_tile_mode == RADEON_MICRO_MODE_RENDER) { assert(!"rotate micro tile mode is unsupported"); return ADDR_ERROR; } ac_compute_cmask(info, config, surf); return 0; } /* This is only called when expecting a tiled layout. */ static int gfx9_get_preferred_swizzle_mode(ADDR_HANDLE addrlib, struct radeon_surf *surf, ADDR2_COMPUTE_SURFACE_INFO_INPUT *in, bool is_fmask, AddrSwizzleMode *swizzle_mode) { ADDR_E_RETURNCODE ret; ADDR2_GET_PREFERRED_SURF_SETTING_INPUT sin = {0}; ADDR2_GET_PREFERRED_SURF_SETTING_OUTPUT sout = {0}; sin.size = sizeof(ADDR2_GET_PREFERRED_SURF_SETTING_INPUT); sout.size = sizeof(ADDR2_GET_PREFERRED_SURF_SETTING_OUTPUT); sin.flags = in->flags; sin.resourceType = in->resourceType; sin.format = in->format; sin.resourceLoction = ADDR_RSRC_LOC_INVIS; /* TODO: We could allow some of these: */ sin.forbiddenBlock.micro = 1; /* don't allow the 256B swizzle modes */ sin.forbiddenBlock.var = 1; /* don't allow the variable-sized swizzle modes */ sin.bpp = in->bpp; sin.width = in->width; sin.height = in->height; sin.numSlices = in->numSlices; sin.numMipLevels = in->numMipLevels; sin.numSamples = in->numSamples; sin.numFrags = in->numFrags; if (is_fmask) { sin.flags.display = 0; sin.flags.color = 0; sin.flags.fmask = 1; } if (surf->flags & RADEON_SURF_FORCE_MICRO_TILE_MODE) { sin.forbiddenBlock.linear = 1; if (surf->micro_tile_mode == RADEON_MICRO_MODE_DISPLAY) sin.preferredSwSet.sw_D = 1; else if (surf->micro_tile_mode == RADEON_MICRO_MODE_STANDARD) sin.preferredSwSet.sw_S = 1; else if (surf->micro_tile_mode == RADEON_MICRO_MODE_DEPTH) sin.preferredSwSet.sw_Z = 1; else if (surf->micro_tile_mode == RADEON_MICRO_MODE_RENDER) sin.preferredSwSet.sw_R = 1; } ret = Addr2GetPreferredSurfaceSetting(addrlib, &sin, &sout); if (ret != ADDR_OK) return ret; *swizzle_mode = sout.swizzleMode; return 0; } static bool is_dcc_supported_by_CB(const struct radeon_info *info, unsigned sw_mode) { if (info->chip_class >= GFX10) return sw_mode == ADDR_SW_64KB_Z_X || sw_mode == ADDR_SW_64KB_R_X; return sw_mode != ADDR_SW_LINEAR; } ASSERTED static bool is_dcc_supported_by_L2(const struct radeon_info *info, const struct radeon_surf *surf) { if (info->chip_class <= GFX9) { /* Only independent 64B blocks are supported. */ return surf->u.gfx9.dcc.independent_64B_blocks && !surf->u.gfx9.dcc.independent_128B_blocks && surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B; } if (info->family == CHIP_NAVI10) { /* Only independent 128B blocks are supported. */ return !surf->u.gfx9.dcc.independent_64B_blocks && surf->u.gfx9.dcc.independent_128B_blocks && surf->u.gfx9.dcc.max_compressed_block_size <= V_028C78_MAX_BLOCK_SIZE_128B; } if (info->family == CHIP_NAVI12 || info->family == CHIP_NAVI14) { /* Either 64B or 128B can be used, but not both. * If 64B is used, DCC image stores are unsupported. */ return surf->u.gfx9.dcc.independent_64B_blocks != surf->u.gfx9.dcc.independent_128B_blocks && (!surf->u.gfx9.dcc.independent_64B_blocks || surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B) && (!surf->u.gfx9.dcc.independent_128B_blocks || surf->u.gfx9.dcc.max_compressed_block_size <= V_028C78_MAX_BLOCK_SIZE_128B); } /* 128B is recommended, but 64B can be set too if needed for 4K by DCN. * Since there is no reason to ever disable 128B, require it. * DCC image stores are always supported. */ return surf->u.gfx9.dcc.independent_128B_blocks && surf->u.gfx9.dcc.max_compressed_block_size <= V_028C78_MAX_BLOCK_SIZE_128B; } static bool is_dcc_supported_by_DCN(const struct radeon_info *info, const struct ac_surf_config *config, const struct radeon_surf *surf, bool rb_aligned, bool pipe_aligned) { if (!info->use_display_dcc_unaligned && !info->use_display_dcc_with_retile_blit) return false; /* 16bpp and 64bpp are more complicated, so they are disallowed for now. */ if (surf->bpe != 4) return false; /* Handle unaligned DCC. */ if (info->use_display_dcc_unaligned && (rb_aligned || pipe_aligned)) return false; switch (info->chip_class) { case GFX9: /* There are more constraints, but we always set * INDEPENDENT_64B_BLOCKS = 1 and MAX_COMPRESSED_BLOCK_SIZE = 64B, * which always works. */ assert(surf->u.gfx9.dcc.independent_64B_blocks && surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B); return true; case GFX10: case GFX10_3: /* DCN requires INDEPENDENT_128B_BLOCKS = 0 only on Navi1x. */ if (info->chip_class == GFX10 && surf->u.gfx9.dcc.independent_128B_blocks) return false; /* For 4K, DCN requires INDEPENDENT_64B_BLOCKS = 1. */ return ((config->info.width <= 2560 && config->info.height <= 2560) || (surf->u.gfx9.dcc.independent_64B_blocks && surf->u.gfx9.dcc.max_compressed_block_size == V_028C78_MAX_BLOCK_SIZE_64B)); default: unreachable("unhandled chip"); return false; } } static int gfx9_compute_miptree(struct ac_addrlib *addrlib, const struct radeon_info *info, const struct ac_surf_config *config, struct radeon_surf *surf, bool compressed, ADDR2_COMPUTE_SURFACE_INFO_INPUT *in) { ADDR2_MIP_INFO mip_info[RADEON_SURF_MAX_LEVELS] = {0}; ADDR2_COMPUTE_SURFACE_INFO_OUTPUT out = {0}; ADDR_E_RETURNCODE ret; out.size = sizeof(ADDR2_COMPUTE_SURFACE_INFO_OUTPUT); out.pMipInfo = mip_info; ret = Addr2ComputeSurfaceInfo(addrlib->handle, in, &out); if (ret != ADDR_OK) return ret; if (in->flags.stencil) { surf->u.gfx9.stencil.swizzle_mode = in->swizzleMode; surf->u.gfx9.stencil.epitch = out.epitchIsHeight ? out.mipChainHeight - 1 : out.mipChainPitch - 1; surf->surf_alignment = MAX2(surf->surf_alignment, out.baseAlign); surf->u.gfx9.stencil_offset = align(surf->surf_size, out.baseAlign); surf->surf_size = surf->u.gfx9.stencil_offset + out.surfSize; return 0; } surf->u.gfx9.surf.swizzle_mode = in->swizzleMode; surf->u.gfx9.surf.epitch = out.epitchIsHeight ? out.mipChainHeight - 1 : out.mipChainPitch - 1; /* CMASK fast clear uses these even if FMASK isn't allocated. * FMASK only supports the Z swizzle modes, whose numbers are multiples of 4. */ surf->u.gfx9.fmask.swizzle_mode = surf->u.gfx9.surf.swizzle_mode & ~0x3; surf->u.gfx9.fmask.epitch = surf->u.gfx9.surf.epitch; surf->u.gfx9.surf_slice_size = out.sliceSize; surf->u.gfx9.surf_pitch = out.pitch; surf->u.gfx9.surf_height = out.height; surf->surf_size = out.surfSize; surf->surf_alignment = out.baseAlign; if (!compressed && surf->blk_w > 1 && out.pitch == out.pixelPitch && surf->u.gfx9.surf.swizzle_mode == ADDR_SW_LINEAR) { /* Adjust surf_pitch to be in elements units not in pixels */ surf->u.gfx9.surf_pitch = align(surf->u.gfx9.surf_pitch / surf->blk_w, 256 / surf->bpe); surf->u.gfx9.surf.epitch = MAX2(surf->u.gfx9.surf.epitch, surf->u.gfx9.surf_pitch * surf->blk_w - 1); /* The surface is really a surf->bpe bytes per pixel surface even if we * use it as a surf->bpe bytes per element one. * Adjust surf_slice_size and surf_size to reflect the change * made to surf_pitch. */ surf->u.gfx9.surf_slice_size = MAX2(surf->u.gfx9.surf_slice_size, surf->u.gfx9.surf_pitch * out.height * surf->bpe * surf->blk_w); surf->surf_size = surf->u.gfx9.surf_slice_size * in->numSlices; } if (in->swizzleMode == ADDR_SW_LINEAR) { for (unsigned i = 0; i < in->numMipLevels; i++) { surf->u.gfx9.offset[i] = mip_info[i].offset; surf->u.gfx9.pitch[i] = mip_info[i].pitch; } } surf->u.gfx9.base_mip_width = mip_info[0].pitch; surf->u.gfx9.base_mip_height = mip_info[0].height; if (in->flags.depth) { assert(in->swizzleMode != ADDR_SW_LINEAR); if (surf->flags & RADEON_SURF_NO_HTILE) return 0; /* HTILE */ ADDR2_COMPUTE_HTILE_INFO_INPUT hin = {0}; ADDR2_COMPUTE_HTILE_INFO_OUTPUT hout = {0}; hin.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_INPUT); hout.size = sizeof(ADDR2_COMPUTE_HTILE_INFO_OUTPUT); assert(in->flags.metaPipeUnaligned == 0); assert(in->flags.metaRbUnaligned == 0); hin.hTileFlags.pipeAligned = 1; hin.hTileFlags.rbAligned = 1; hin.depthFlags = in->flags; hin.swizzleMode = in->swizzleMode; hin.unalignedWidth = in->width; hin.unalignedHeight = in->height; hin.numSlices = in->numSlices; hin.numMipLevels = in->numMipLevels; hin.firstMipIdInTail = out.firstMipIdInTail; ret = Addr2ComputeHtileInfo(addrlib->handle, &hin, &hout); if (ret != ADDR_OK) return ret; surf->htile_size = hout.htileBytes; surf->htile_slice_size = hout.sliceSize; surf->htile_alignment = hout.baseAlign; return 0; } { /* Compute tile swizzle for the color surface. * All *_X and *_T modes can use the swizzle. */ if (config->info.surf_index && in->swizzleMode >= ADDR_SW_64KB_Z_T && !out.mipChainInTail && !(surf->flags & RADEON_SURF_SHAREABLE) && !in->flags.display) { ADDR2_COMPUTE_PIPEBANKXOR_INPUT xin = {0}; ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT xout = {0}; xin.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_INPUT); xout.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT); xin.surfIndex = p_atomic_inc_return(config->info.surf_index) - 1; xin.flags = in->flags; xin.swizzleMode = in->swizzleMode; xin.resourceType = in->resourceType; xin.format = in->format; xin.numSamples = in->numSamples; xin.numFrags = in->numFrags; ret = Addr2ComputePipeBankXor(addrlib->handle, &xin, &xout); if (ret != ADDR_OK) return ret; assert(xout.pipeBankXor <= u_bit_consecutive(0, sizeof(surf->tile_swizzle) * 8)); surf->tile_swizzle = xout.pipeBankXor; } /* DCC */ if (info->has_graphics && !(surf->flags & RADEON_SURF_DISABLE_DCC) && !compressed && is_dcc_supported_by_CB(info, in->swizzleMode) && (!in->flags.display || is_dcc_supported_by_DCN(info, config, surf, !in->flags.metaRbUnaligned, !in->flags.metaPipeUnaligned))) { ADDR2_COMPUTE_DCCINFO_INPUT din = {0}; ADDR2_COMPUTE_DCCINFO_OUTPUT dout = {0}; ADDR2_META_MIP_INFO meta_mip_info[RADEON_SURF_MAX_LEVELS] = {0}; din.size = sizeof(ADDR2_COMPUTE_DCCINFO_INPUT); dout.size = sizeof(ADDR2_COMPUTE_DCCINFO_OUTPUT); dout.pMipInfo = meta_mip_info; din.dccKeyFlags.pipeAligned = !in->flags.metaPipeUnaligned; din.dccKeyFlags.rbAligned = !in->flags.metaRbUnaligned; din.resourceType = in->resourceType; din.swizzleMode = in->swizzleMode; din.bpp = in->bpp; din.unalignedWidth = in->width; din.unalignedHeight = in->height; din.numSlices = in->numSlices; din.numFrags = in->numFrags; din.numMipLevels = in->numMipLevels; din.dataSurfaceSize = out.surfSize; din.firstMipIdInTail = out.firstMipIdInTail; ret = Addr2ComputeDccInfo(addrlib->handle, &din, &dout); if (ret != ADDR_OK) return ret; surf->u.gfx9.dcc.rb_aligned = din.dccKeyFlags.rbAligned; surf->u.gfx9.dcc.pipe_aligned = din.dccKeyFlags.pipeAligned; surf->u.gfx9.dcc_block_width = dout.compressBlkWidth; surf->u.gfx9.dcc_block_height = dout.compressBlkHeight; surf->u.gfx9.dcc_block_depth = dout.compressBlkDepth; surf->dcc_size = dout.dccRamSize; surf->dcc_alignment = dout.dccRamBaseAlign; surf->num_dcc_levels = in->numMipLevels; /* Disable DCC for levels that are in the mip tail. * * There are two issues that this is intended to * address: * * 1. Multiple mip levels may share a cache line. This * can lead to corruption when switching between * rendering to different mip levels because the * RBs don't maintain coherency. * * 2. Texturing with metadata after rendering sometimes * fails with corruption, probably for a similar * reason. * * Working around these issues for all levels in the * mip tail may be overly conservative, but it's what * Vulkan does. * * Alternative solutions that also work but are worse: * - Disable DCC entirely. * - Flush TC L2 after rendering. */ for (unsigned i = 0; i < in->numMipLevels; i++) { if (meta_mip_info[i].inMiptail) { /* GFX10 can only compress the first level * in the mip tail. * * TODO: Try to do the same thing for gfx9 * if there are no regressions. */ if (info->chip_class >= GFX10) surf->num_dcc_levels = i + 1; else surf->num_dcc_levels = i; break; } } if (!surf->num_dcc_levels) surf->dcc_size = 0; surf->u.gfx9.display_dcc_size = surf->dcc_size; surf->u.gfx9.display_dcc_alignment = surf->dcc_alignment; surf->u.gfx9.display_dcc_pitch_max = dout.pitch - 1; surf->u.gfx9.dcc_pitch_max = dout.pitch - 1; /* Compute displayable DCC. */ if (in->flags.display && surf->num_dcc_levels && info->use_display_dcc_with_retile_blit) { /* Compute displayable DCC info. */ din.dccKeyFlags.pipeAligned = 0; din.dccKeyFlags.rbAligned = 0; assert(din.numSlices == 1); assert(din.numMipLevels == 1); assert(din.numFrags == 1); assert(surf->tile_swizzle == 0); assert(surf->u.gfx9.dcc.pipe_aligned || surf->u.gfx9.dcc.rb_aligned); ret = Addr2ComputeDccInfo(addrlib->handle, &din, &dout); if (ret != ADDR_OK) return ret; surf->u.gfx9.display_dcc_size = dout.dccRamSize; surf->u.gfx9.display_dcc_alignment = dout.dccRamBaseAlign; surf->u.gfx9.display_dcc_pitch_max = dout.pitch - 1; assert(surf->u.gfx9.display_dcc_size <= surf->dcc_size); surf->u.gfx9.dcc_retile_use_uint16 = surf->u.gfx9.display_dcc_size <= UINT16_MAX + 1 && surf->dcc_size <= UINT16_MAX + 1; /* Align the retile map size to get more hash table hits and * decrease the maximum memory footprint when all retile maps * are cached in the hash table. */ unsigned retile_dim[2] = {in->width, in->height}; for (unsigned i = 0; i < 2; i++) { /* Increase the alignment as the size increases. * Greater alignment increases retile compute work, * but decreases maximum memory footprint for the cache. * * With this alignment, the worst case memory footprint of * the cache is: * 1920x1080: 55 MB * 2560x1440: 99 MB * 3840x2160: 305 MB * * The worst case size in MB can be computed in Haskell as follows: * (sum (map get_retile_size (map get_dcc_size (deduplicate (map align_pair * [(i*16,j*16) | i <- [1..maxwidth`div`16], j <- [1..maxheight`div`16]]))))) * `div` 1024^2 where alignment x = if x <= 512 then 16 else if x <= 1024 then 32 * else if x <= 2048 then 64 else 128 align x = (x + (alignment x) - 1) `div` * (alignment x) * (alignment x) align_pair e = (align (fst e), align (snd e)) * deduplicate = map head . groupBy (\ a b -> ((fst a) == (fst b)) && ((snd a) * == (snd b))) . sortBy compare get_dcc_size e = ((fst e) * (snd e) * bpp) `div` 256 * get_retile_size dcc_size = dcc_size * 2 * (if dcc_size <= 2^16 then 2 else * 4) bpp = 4; maxwidth = 3840; maxheight = 2160 */ if (retile_dim[i] <= 512) retile_dim[i] = align(retile_dim[i], 16); else if (retile_dim[i] <= 1024) retile_dim[i] = align(retile_dim[i], 32); else if (retile_dim[i] <= 2048) retile_dim[i] = align(retile_dim[i], 64); else retile_dim[i] = align(retile_dim[i], 128); /* Don't align more than the DCC pixel alignment. */ assert(dout.metaBlkWidth >= 128 && dout.metaBlkHeight >= 128); } surf->u.gfx9.dcc_retile_num_elements = DIV_ROUND_UP(retile_dim[0], dout.compressBlkWidth) * DIV_ROUND_UP(retile_dim[1], dout.compressBlkHeight) * 2; /* Align the size to 4 (for the compute shader). */ surf->u.gfx9.dcc_retile_num_elements = align(surf->u.gfx9.dcc_retile_num_elements, 4); /* Compute address mapping from non-displayable to displayable DCC. */ ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT addrin; memset(&addrin, 0, sizeof(addrin)); addrin.size = sizeof(addrin); addrin.swizzleMode = din.swizzleMode; addrin.resourceType = din.resourceType; addrin.bpp = din.bpp; addrin.numSlices = 1; addrin.numMipLevels = 1; addrin.numFrags = 1; addrin.pitch = dout.pitch; addrin.height = dout.height; addrin.compressBlkWidth = dout.compressBlkWidth; addrin.compressBlkHeight = dout.compressBlkHeight; addrin.compressBlkDepth = dout.compressBlkDepth; addrin.metaBlkWidth = dout.metaBlkWidth; addrin.metaBlkHeight = dout.metaBlkHeight; addrin.metaBlkDepth = dout.metaBlkDepth; addrin.dccRamSliceSize = 0; /* Don't care for non-layered images. */ surf->u.gfx9.dcc_retile_map = ac_compute_dcc_retile_map( addrlib, info, retile_dim[0], retile_dim[1], surf->u.gfx9.dcc.rb_aligned, surf->u.gfx9.dcc.pipe_aligned, surf->u.gfx9.dcc_retile_use_uint16, surf->u.gfx9.dcc_retile_num_elements, &addrin); if (!surf->u.gfx9.dcc_retile_map) return ADDR_OUTOFMEMORY; } } /* FMASK */ if (in->numSamples > 1 && info->has_graphics && !(surf->flags & RADEON_SURF_NO_FMASK)) { ADDR2_COMPUTE_FMASK_INFO_INPUT fin = {0}; ADDR2_COMPUTE_FMASK_INFO_OUTPUT fout = {0}; fin.size = sizeof(ADDR2_COMPUTE_FMASK_INFO_INPUT); fout.size = sizeof(ADDR2_COMPUTE_FMASK_INFO_OUTPUT); ret = gfx9_get_preferred_swizzle_mode(addrlib->handle, surf, in, true, &fin.swizzleMode); if (ret != ADDR_OK) return ret; fin.unalignedWidth = in->width; fin.unalignedHeight = in->height; fin.numSlices = in->numSlices; fin.numSamples = in->numSamples; fin.numFrags = in->numFrags; ret = Addr2ComputeFmaskInfo(addrlib->handle, &fin, &fout); if (ret != ADDR_OK) return ret; surf->u.gfx9.fmask.swizzle_mode = fin.swizzleMode; surf->u.gfx9.fmask.epitch = fout.pitch - 1; surf->fmask_size = fout.fmaskBytes; surf->fmask_alignment = fout.baseAlign; /* Compute tile swizzle for the FMASK surface. */ if (config->info.fmask_surf_index && fin.swizzleMode >= ADDR_SW_64KB_Z_T && !(surf->flags & RADEON_SURF_SHAREABLE)) { ADDR2_COMPUTE_PIPEBANKXOR_INPUT xin = {0}; ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT xout = {0}; xin.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_INPUT); xout.size = sizeof(ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT); /* This counter starts from 1 instead of 0. */ xin.surfIndex = p_atomic_inc_return(config->info.fmask_surf_index); xin.flags = in->flags; xin.swizzleMode = fin.swizzleMode; xin.resourceType = in->resourceType; xin.format = in->format; xin.numSamples = in->numSamples; xin.numFrags = in->numFrags; ret = Addr2ComputePipeBankXor(addrlib->handle, &xin, &xout); if (ret != ADDR_OK) return ret; assert(xout.pipeBankXor <= u_bit_consecutive(0, sizeof(surf->fmask_tile_swizzle) * 8)); surf->fmask_tile_swizzle = xout.pipeBankXor; } } /* CMASK -- on GFX10 only for FMASK */ if (in->swizzleMode != ADDR_SW_LINEAR && in->resourceType == ADDR_RSRC_TEX_2D && ((info->chip_class <= GFX9 && in->numSamples == 1 && in->flags.metaPipeUnaligned == 0 && in->flags.metaRbUnaligned == 0) || (surf->fmask_size && in->numSamples >= 2))) { ADDR2_COMPUTE_CMASK_INFO_INPUT cin = {0}; ADDR2_COMPUTE_CMASK_INFO_OUTPUT cout = {0}; cin.size = sizeof(ADDR2_COMPUTE_CMASK_INFO_INPUT); cout.size = sizeof(ADDR2_COMPUTE_CMASK_INFO_OUTPUT); assert(in->flags.metaPipeUnaligned == 0); assert(in->flags.metaRbUnaligned == 0); cin.cMaskFlags.pipeAligned = 1; cin.cMaskFlags.rbAligned = 1; cin.resourceType = in->resourceType; cin.unalignedWidth = in->width; cin.unalignedHeight = in->height; cin.numSlices = in->numSlices; if (in->numSamples > 1) cin.swizzleMode = surf->u.gfx9.fmask.swizzle_mode; else cin.swizzleMode = in->swizzleMode; ret = Addr2ComputeCmaskInfo(addrlib->handle, &cin, &cout); if (ret != ADDR_OK) return ret; surf->cmask_size = cout.cmaskBytes; surf->cmask_alignment = cout.baseAlign; } } return 0; } static int gfx9_compute_surface(struct ac_addrlib *addrlib, const struct radeon_info *info, const struct ac_surf_config *config, enum radeon_surf_mode mode, struct radeon_surf *surf) { bool compressed; ADDR2_COMPUTE_SURFACE_INFO_INPUT AddrSurfInfoIn = {0}; int r; AddrSurfInfoIn.size = sizeof(ADDR2_COMPUTE_SURFACE_INFO_INPUT); compressed = surf->blk_w == 4 && surf->blk_h == 4; /* The format must be set correctly for the allocation of compressed * textures to work. In other cases, setting the bpp is sufficient. */ if (compressed) { switch (surf->bpe) { case 8: AddrSurfInfoIn.format = ADDR_FMT_BC1; break; case 16: AddrSurfInfoIn.format = ADDR_FMT_BC3; break; default: assert(0); } } else { switch (surf->bpe) { case 1: assert(!(surf->flags & RADEON_SURF_ZBUFFER)); AddrSurfInfoIn.format = ADDR_FMT_8; break; case 2: assert(surf->flags & RADEON_SURF_ZBUFFER || !(surf->flags & RADEON_SURF_SBUFFER)); AddrSurfInfoIn.format = ADDR_FMT_16; break; case 4: assert(surf->flags & RADEON_SURF_ZBUFFER || !(surf->flags & RADEON_SURF_SBUFFER)); AddrSurfInfoIn.format = ADDR_FMT_32; break; case 8: assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)); AddrSurfInfoIn.format = ADDR_FMT_32_32; break; case 12: assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)); AddrSurfInfoIn.format = ADDR_FMT_32_32_32; break; case 16: assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)); AddrSurfInfoIn.format = ADDR_FMT_32_32_32_32; break; default: assert(0); } AddrSurfInfoIn.bpp = surf->bpe * 8; } bool is_color_surface = !(surf->flags & RADEON_SURF_Z_OR_SBUFFER); AddrSurfInfoIn.flags.color = is_color_surface && !(surf->flags & RADEON_SURF_NO_RENDER_TARGET); AddrSurfInfoIn.flags.depth = (surf->flags & RADEON_SURF_ZBUFFER) != 0; AddrSurfInfoIn.flags.display = get_display_flag(config, surf); /* flags.texture currently refers to TC-compatible HTILE */ AddrSurfInfoIn.flags.texture = is_color_surface || surf->flags & RADEON_SURF_TC_COMPATIBLE_HTILE; AddrSurfInfoIn.flags.opt4space = 1; AddrSurfInfoIn.numMipLevels = config->info.levels; AddrSurfInfoIn.numSamples = MAX2(1, config->info.samples); AddrSurfInfoIn.numFrags = AddrSurfInfoIn.numSamples; if (!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)) AddrSurfInfoIn.numFrags = MAX2(1, config->info.storage_samples); /* GFX9 doesn't support 1D depth textures, so allocate all 1D textures * as 2D to avoid having shader variants for 1D vs 2D, so all shaders * must sample 1D textures as 2D. */ if (config->is_3d) AddrSurfInfoIn.resourceType = ADDR_RSRC_TEX_3D; else if (info->chip_class != GFX9 && config->is_1d) AddrSurfInfoIn.resourceType = ADDR_RSRC_TEX_1D; else AddrSurfInfoIn.resourceType = ADDR_RSRC_TEX_2D; AddrSurfInfoIn.width = config->info.width; AddrSurfInfoIn.height = config->info.height; if (config->is_3d) AddrSurfInfoIn.numSlices = config->info.depth; else if (config->is_cube) AddrSurfInfoIn.numSlices = 6; else AddrSurfInfoIn.numSlices = config->info.array_size; /* This is propagated to DCC. It must be 0 for HTILE and CMASK. */ AddrSurfInfoIn.flags.metaPipeUnaligned = 0; AddrSurfInfoIn.flags.metaRbUnaligned = 0; /* Optimal values for the L2 cache. */ if (info->chip_class == GFX9) { surf->u.gfx9.dcc.independent_64B_blocks = 1; surf->u.gfx9.dcc.independent_128B_blocks = 0; surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B; } else if (info->chip_class >= GFX10) { surf->u.gfx9.dcc.independent_64B_blocks = 0; surf->u.gfx9.dcc.independent_128B_blocks = 1; surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B; } if (AddrSurfInfoIn.flags.display) { /* The display hardware can only read DCC with RB_ALIGNED=0 and * PIPE_ALIGNED=0. PIPE_ALIGNED really means L2CACHE_ALIGNED. * * The CB block requires RB_ALIGNED=1 except 1 RB chips. * PIPE_ALIGNED is optional, but PIPE_ALIGNED=0 requires L2 flushes * after rendering, so PIPE_ALIGNED=1 is recommended. */ if (info->use_display_dcc_unaligned) { AddrSurfInfoIn.flags.metaPipeUnaligned = 1; AddrSurfInfoIn.flags.metaRbUnaligned = 1; } /* Adjust DCC settings to meet DCN requirements. */ if (info->use_display_dcc_unaligned || info->use_display_dcc_with_retile_blit) { /* Only Navi12/14 support independent 64B blocks in L2, * but without DCC image stores. */ if (info->family == CHIP_NAVI12 || info->family == CHIP_NAVI14) { surf->u.gfx9.dcc.independent_64B_blocks = 1; surf->u.gfx9.dcc.independent_128B_blocks = 0; surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B; } if (info->chip_class >= GFX10_3) { surf->u.gfx9.dcc.independent_64B_blocks = 1; surf->u.gfx9.dcc.independent_128B_blocks = 1; surf->u.gfx9.dcc.max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B; } } } switch (mode) { case RADEON_SURF_MODE_LINEAR_ALIGNED: assert(config->info.samples <= 1); assert(!(surf->flags & RADEON_SURF_Z_OR_SBUFFER)); AddrSurfInfoIn.swizzleMode = ADDR_SW_LINEAR; break; case RADEON_SURF_MODE_1D: case RADEON_SURF_MODE_2D: if (surf->flags & RADEON_SURF_IMPORTED || (info->chip_class >= GFX10 && surf->flags & RADEON_SURF_FORCE_SWIZZLE_MODE)) { AddrSurfInfoIn.swizzleMode = surf->u.gfx9.surf.swizzle_mode; break; } r = gfx9_get_preferred_swizzle_mode(addrlib->handle, surf, &AddrSurfInfoIn, false, &AddrSurfInfoIn.swizzleMode); if (r) return r; break; default: assert(0); } surf->u.gfx9.resource_type = AddrSurfInfoIn.resourceType; surf->has_stencil = !!(surf->flags & RADEON_SURF_SBUFFER); surf->num_dcc_levels = 0; surf->surf_size = 0; surf->fmask_size = 0; surf->dcc_size = 0; surf->htile_size = 0; surf->htile_slice_size = 0; surf->u.gfx9.surf_offset = 0; surf->u.gfx9.stencil_offset = 0; surf->cmask_size = 0; surf->u.gfx9.dcc_retile_use_uint16 = false; surf->u.gfx9.dcc_retile_num_elements = 0; surf->u.gfx9.dcc_retile_map = NULL; /* Calculate texture layout information. */ r = gfx9_compute_miptree(addrlib, info, config, surf, compressed, &AddrSurfInfoIn); if (r) return r; /* Calculate texture layout information for stencil. */ if (surf->flags & RADEON_SURF_SBUFFER) { AddrSurfInfoIn.flags.stencil = 1; AddrSurfInfoIn.bpp = 8; AddrSurfInfoIn.format = ADDR_FMT_8; if (!AddrSurfInfoIn.flags.depth) { r = gfx9_get_preferred_swizzle_mode(addrlib->handle, surf, &AddrSurfInfoIn, false, &AddrSurfInfoIn.swizzleMode); if (r) return r; } else AddrSurfInfoIn.flags.depth = 0; r = gfx9_compute_miptree(addrlib, info, config, surf, compressed, &AddrSurfInfoIn); if (r) return r; } surf->is_linear = surf->u.gfx9.surf.swizzle_mode == ADDR_SW_LINEAR; /* Query whether the surface is displayable. */ /* This is only useful for surfaces that are allocated without SCANOUT. */ bool displayable = false; if (!config->is_3d && !config->is_cube) { r = Addr2IsValidDisplaySwizzleMode(addrlib->handle, surf->u.gfx9.surf.swizzle_mode, surf->bpe * 8, &displayable); if (r) return r; /* Display needs unaligned DCC. */ if (surf->num_dcc_levels && (!is_dcc_supported_by_DCN(info, config, surf, surf->u.gfx9.dcc.rb_aligned, surf->u.gfx9.dcc.pipe_aligned) || /* Don't set is_displayable if displayable DCC is missing. */ (info->use_display_dcc_with_retile_blit && !surf->u.gfx9.dcc_retile_num_elements))) displayable = false; } surf->is_displayable = displayable; /* Validate that we allocated a displayable surface if requested. */ assert(!AddrSurfInfoIn.flags.display || surf->is_displayable); /* Validate that DCC is set up correctly. */ if (surf->num_dcc_levels) { assert(is_dcc_supported_by_L2(info, surf)); if (AddrSurfInfoIn.flags.color) assert(is_dcc_supported_by_CB(info, surf->u.gfx9.surf.swizzle_mode)); if (AddrSurfInfoIn.flags.display) { assert(is_dcc_supported_by_DCN(info, config, surf, surf->u.gfx9.dcc.rb_aligned, surf->u.gfx9.dcc.pipe_aligned)); } } if (info->has_graphics && !compressed && !config->is_3d && config->info.levels == 1 && AddrSurfInfoIn.flags.color && !surf->is_linear && surf->surf_alignment >= 64 * 1024 && /* 64KB tiling */ !(surf->flags & (RADEON_SURF_DISABLE_DCC | RADEON_SURF_FORCE_SWIZZLE_MODE | RADEON_SURF_FORCE_MICRO_TILE_MODE))) { /* Validate that DCC is enabled if DCN can do it. */ if ((info->use_display_dcc_unaligned || info->use_display_dcc_with_retile_blit) && AddrSurfInfoIn.flags.display && surf->bpe == 4) { assert(surf->num_dcc_levels); } /* Validate that non-scanout DCC is always enabled. */ if (!AddrSurfInfoIn.flags.display) assert(surf->num_dcc_levels); } if (!surf->htile_size) { /* Unset this if HTILE is not present. */ surf->flags &= ~RADEON_SURF_TC_COMPATIBLE_HTILE; } switch (surf->u.gfx9.surf.swizzle_mode) { /* S = standard. */ case ADDR_SW_256B_S: case ADDR_SW_4KB_S: case ADDR_SW_64KB_S: case ADDR_SW_64KB_S_T: case ADDR_SW_4KB_S_X: case ADDR_SW_64KB_S_X: surf->micro_tile_mode = RADEON_MICRO_MODE_STANDARD; break; /* D = display. */ case ADDR_SW_LINEAR: case ADDR_SW_256B_D: case ADDR_SW_4KB_D: case ADDR_SW_64KB_D: case ADDR_SW_64KB_D_T: case ADDR_SW_4KB_D_X: case ADDR_SW_64KB_D_X: surf->micro_tile_mode = RADEON_MICRO_MODE_DISPLAY; break; /* R = rotated (gfx9), render target (gfx10). */ case ADDR_SW_256B_R: case ADDR_SW_4KB_R: case ADDR_SW_64KB_R: case ADDR_SW_64KB_R_T: case ADDR_SW_4KB_R_X: case ADDR_SW_64KB_R_X: case ADDR_SW_VAR_R_X: /* The rotated micro tile mode doesn't work if both CMASK and RB+ are * used at the same time. We currently do not use rotated * in gfx9. */ assert(info->chip_class >= GFX10 || !"rotate micro tile mode is unsupported"); surf->micro_tile_mode = RADEON_MICRO_MODE_RENDER; break; /* Z = depth. */ case ADDR_SW_4KB_Z: case ADDR_SW_64KB_Z: case ADDR_SW_64KB_Z_T: case ADDR_SW_4KB_Z_X: case ADDR_SW_64KB_Z_X: case ADDR_SW_VAR_Z_X: surf->micro_tile_mode = RADEON_MICRO_MODE_DEPTH; break; default: assert(0); } return 0; } int ac_compute_surface(struct ac_addrlib *addrlib, const struct radeon_info *info, const struct ac_surf_config *config, enum radeon_surf_mode mode, struct radeon_surf *surf) { int r; r = surf_config_sanity(config, surf->flags); if (r) return r; if (info->chip_class >= GFX9) r = gfx9_compute_surface(addrlib, info, config, mode, surf); else r = gfx6_compute_surface(addrlib->handle, info, config, mode, surf); if (r) return r; /* Determine the memory layout of multiple allocations in one buffer. */ surf->total_size = surf->surf_size; surf->alignment = surf->surf_alignment; /* Ensure the offsets are always 0 if not available. */ surf->dcc_offset = surf->display_dcc_offset = 0; surf->fmask_offset = surf->cmask_offset = 0; surf->htile_offset = 0; if (surf->htile_size) { surf->htile_offset = align64(surf->total_size, surf->htile_alignment); surf->total_size = surf->htile_offset + surf->htile_size; surf->alignment = MAX2(surf->alignment, surf->htile_alignment); } if (surf->fmask_size) { assert(config->info.samples >= 2); surf->fmask_offset = align64(surf->total_size, surf->fmask_alignment); surf->total_size = surf->fmask_offset + surf->fmask_size; surf->alignment = MAX2(surf->alignment, surf->fmask_alignment); } /* Single-sample CMASK is in a separate buffer. */ if (surf->cmask_size && config->info.samples >= 2) { surf->cmask_offset = align64(surf->total_size, surf->cmask_alignment); surf->total_size = surf->cmask_offset + surf->cmask_size; surf->alignment = MAX2(surf->alignment, surf->cmask_alignment); } if (surf->is_displayable) surf->flags |= RADEON_SURF_SCANOUT; if (surf->dcc_size && /* dcc_size is computed on GFX9+ only if it's displayable. */ (info->chip_class >= GFX9 || !get_display_flag(config, surf))) { /* It's better when displayable DCC is immediately after * the image due to hw-specific reasons. */ if (info->chip_class >= GFX9 && surf->u.gfx9.dcc_retile_num_elements) { /* Add space for the displayable DCC buffer. */ surf->display_dcc_offset = align64(surf->total_size, surf->u.gfx9.display_dcc_alignment); surf->total_size = surf->display_dcc_offset + surf->u.gfx9.display_dcc_size; } surf->dcc_offset = align64(surf->total_size, surf->dcc_alignment); surf->total_size = surf->dcc_offset + surf->dcc_size; surf->alignment = MAX2(surf->alignment, surf->dcc_alignment); } return 0; } /* This is meant to be used for disabling DCC. */ void ac_surface_zero_dcc_fields(struct radeon_surf *surf) { surf->dcc_offset = 0; surf->display_dcc_offset = 0; } static unsigned eg_tile_split(unsigned tile_split) { switch (tile_split) { case 0: tile_split = 64; break; case 1: tile_split = 128; break; case 2: tile_split = 256; break; case 3: tile_split = 512; break; default: case 4: tile_split = 1024; break; case 5: tile_split = 2048; break; case 6: tile_split = 4096; break; } return tile_split; } static unsigned eg_tile_split_rev(unsigned eg_tile_split) { switch (eg_tile_split) { case 64: return 0; case 128: return 1; case 256: return 2; case 512: return 3; default: case 1024: return 4; case 2048: return 5; case 4096: return 6; } } #define AMDGPU_TILING_DCC_MAX_COMPRESSED_BLOCK_SIZE_SHIFT 45 #define AMDGPU_TILING_DCC_MAX_COMPRESSED_BLOCK_SIZE_MASK 0x3 /* This should be called before ac_compute_surface. */ void ac_surface_set_bo_metadata(const struct radeon_info *info, struct radeon_surf *surf, uint64_t tiling_flags, enum radeon_surf_mode *mode) { bool scanout; if (info->chip_class >= GFX9) { surf->u.gfx9.surf.swizzle_mode = AMDGPU_TILING_GET(tiling_flags, SWIZZLE_MODE); surf->u.gfx9.dcc.independent_64B_blocks = AMDGPU_TILING_GET(tiling_flags, DCC_INDEPENDENT_64B); surf->u.gfx9.dcc.independent_128B_blocks = AMDGPU_TILING_GET(tiling_flags, DCC_INDEPENDENT_128B); surf->u.gfx9.dcc.max_compressed_block_size = AMDGPU_TILING_GET(tiling_flags, DCC_MAX_COMPRESSED_BLOCK_SIZE); surf->u.gfx9.display_dcc_pitch_max = AMDGPU_TILING_GET(tiling_flags, DCC_PITCH_MAX); scanout = AMDGPU_TILING_GET(tiling_flags, SCANOUT); *mode = surf->u.gfx9.surf.swizzle_mode > 0 ? RADEON_SURF_MODE_2D : RADEON_SURF_MODE_LINEAR_ALIGNED; } else { surf->u.legacy.pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG); surf->u.legacy.bankw = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH); surf->u.legacy.bankh = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT); surf->u.legacy.tile_split = eg_tile_split(AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT)); surf->u.legacy.mtilea = 1 << AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT); surf->u.legacy.num_banks = 2 << AMDGPU_TILING_GET(tiling_flags, NUM_BANKS); scanout = AMDGPU_TILING_GET(tiling_flags, MICRO_TILE_MODE) == 0; /* DISPLAY */ if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 4) /* 2D_TILED_THIN1 */ *mode = RADEON_SURF_MODE_2D; else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 2) /* 1D_TILED_THIN1 */ *mode = RADEON_SURF_MODE_1D; else *mode = RADEON_SURF_MODE_LINEAR_ALIGNED; } if (scanout) surf->flags |= RADEON_SURF_SCANOUT; else surf->flags &= ~RADEON_SURF_SCANOUT; } void ac_surface_get_bo_metadata(const struct radeon_info *info, struct radeon_surf *surf, uint64_t *tiling_flags) { *tiling_flags = 0; if (info->chip_class >= GFX9) { uint64_t dcc_offset = 0; if (surf->dcc_offset) { dcc_offset = surf->display_dcc_offset ? surf->display_dcc_offset : surf->dcc_offset; assert((dcc_offset >> 8) != 0 && (dcc_offset >> 8) < (1 << 24)); } *tiling_flags |= AMDGPU_TILING_SET(SWIZZLE_MODE, surf->u.gfx9.surf.swizzle_mode); *tiling_flags |= AMDGPU_TILING_SET(DCC_OFFSET_256B, dcc_offset >> 8); *tiling_flags |= AMDGPU_TILING_SET(DCC_PITCH_MAX, surf->u.gfx9.display_dcc_pitch_max); *tiling_flags |= AMDGPU_TILING_SET(DCC_INDEPENDENT_64B, surf->u.gfx9.dcc.independent_64B_blocks); *tiling_flags |= AMDGPU_TILING_SET(DCC_INDEPENDENT_128B, surf->u.gfx9.dcc.independent_128B_blocks); *tiling_flags |= AMDGPU_TILING_SET(DCC_MAX_COMPRESSED_BLOCK_SIZE, surf->u.gfx9.dcc.max_compressed_block_size); *tiling_flags |= AMDGPU_TILING_SET(SCANOUT, (surf->flags & RADEON_SURF_SCANOUT) != 0); } else { if (surf->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D) *tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 4); /* 2D_TILED_THIN1 */ else if (surf->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D) *tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 2); /* 1D_TILED_THIN1 */ else *tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 1); /* LINEAR_ALIGNED */ *tiling_flags |= AMDGPU_TILING_SET(PIPE_CONFIG, surf->u.legacy.pipe_config); *tiling_flags |= AMDGPU_TILING_SET(BANK_WIDTH, util_logbase2(surf->u.legacy.bankw)); *tiling_flags |= AMDGPU_TILING_SET(BANK_HEIGHT, util_logbase2(surf->u.legacy.bankh)); if (surf->u.legacy.tile_split) *tiling_flags |= AMDGPU_TILING_SET(TILE_SPLIT, eg_tile_split_rev(surf->u.legacy.tile_split)); *tiling_flags |= AMDGPU_TILING_SET(MACRO_TILE_ASPECT, util_logbase2(surf->u.legacy.mtilea)); *tiling_flags |= AMDGPU_TILING_SET(NUM_BANKS, util_logbase2(surf->u.legacy.num_banks) - 1); if (surf->flags & RADEON_SURF_SCANOUT) *tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 0); /* DISPLAY_MICRO_TILING */ else *tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 1); /* THIN_MICRO_TILING */ } } static uint32_t ac_get_umd_metadata_word1(const struct radeon_info *info) { return (ATI_VENDOR_ID << 16) | info->pci_id; } /* This should be called after ac_compute_surface. */ bool ac_surface_set_umd_metadata(const struct radeon_info *info, struct radeon_surf *surf, unsigned num_storage_samples, unsigned num_mipmap_levels, unsigned size_metadata, uint32_t metadata[64]) { uint32_t *desc = &metadata[2]; uint64_t offset; if (info->chip_class >= GFX9) offset = surf->u.gfx9.surf_offset; else offset = surf->u.legacy.level[0].offset; if (offset || /* Non-zero planes ignore metadata. */ size_metadata < 10 * 4 || /* at least 2(header) + 8(desc) dwords */ metadata[0] == 0 || /* invalid version number */ metadata[1] != ac_get_umd_metadata_word1(info)) /* invalid PCI ID */ { /* Disable DCC because it might not be enabled. */ ac_surface_zero_dcc_fields(surf); /* Don't report an error if the texture comes from an incompatible driver, * but this might not work. */ return true; } /* Validate that sample counts and the number of mipmap levels match. */ unsigned desc_last_level = G_008F1C_LAST_LEVEL(desc[3]); unsigned type = G_008F1C_TYPE(desc[3]); if (type == V_008F1C_SQ_RSRC_IMG_2D_MSAA || type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) { unsigned log_samples = util_logbase2(MAX2(1, num_storage_samples)); if (desc_last_level != log_samples) { fprintf(stderr, "amdgpu: invalid MSAA texture import, " "metadata has log2(samples) = %u, the caller set %u\n", desc_last_level, log_samples); return false; } } else { if (desc_last_level != num_mipmap_levels - 1) { fprintf(stderr, "amdgpu: invalid mipmapped texture import, " "metadata has last_level = %u, the caller set %u\n", desc_last_level, num_mipmap_levels - 1); return false; } } if (info->chip_class >= GFX8 && G_008F28_COMPRESSION_EN(desc[6])) { /* Read DCC information. */ switch (info->chip_class) { case GFX8: surf->dcc_offset = (uint64_t)desc[7] << 8; break; case GFX9: surf->dcc_offset = ((uint64_t)desc[7] << 8) | ((uint64_t)G_008F24_META_DATA_ADDRESS(desc[5]) << 40); surf->u.gfx9.dcc.pipe_aligned = G_008F24_META_PIPE_ALIGNED(desc[5]); surf->u.gfx9.dcc.rb_aligned = G_008F24_META_RB_ALIGNED(desc[5]); /* If DCC is unaligned, this can only be a displayable image. */ if (!surf->u.gfx9.dcc.pipe_aligned && !surf->u.gfx9.dcc.rb_aligned) assert(surf->is_displayable); break; case GFX10: case GFX10_3: surf->dcc_offset = ((uint64_t)G_00A018_META_DATA_ADDRESS_LO(desc[6]) << 8) | ((uint64_t)desc[7] << 16); surf->u.gfx9.dcc.pipe_aligned = G_00A018_META_PIPE_ALIGNED(desc[6]); break; default: assert(0); return false; } } else { /* Disable DCC. dcc_offset is always set by texture_from_handle * and must be cleared here. */ ac_surface_zero_dcc_fields(surf); } return true; } void ac_surface_get_umd_metadata(const struct radeon_info *info, struct radeon_surf *surf, unsigned num_mipmap_levels, uint32_t desc[8], unsigned *size_metadata, uint32_t metadata[64]) { /* Clear the base address and set the relative DCC offset. */ desc[0] = 0; desc[1] &= C_008F14_BASE_ADDRESS_HI; switch (info->chip_class) { case GFX6: case GFX7: break; case GFX8: desc[7] = surf->dcc_offset >> 8; break; case GFX9: desc[7] = surf->dcc_offset >> 8; desc[5] &= C_008F24_META_DATA_ADDRESS; desc[5] |= S_008F24_META_DATA_ADDRESS(surf->dcc_offset >> 40); break; case GFX10: case GFX10_3: desc[6] &= C_00A018_META_DATA_ADDRESS_LO; desc[6] |= S_00A018_META_DATA_ADDRESS_LO(surf->dcc_offset >> 8); desc[7] = surf->dcc_offset >> 16; break; default: assert(0); } /* Metadata image format format version 1: * [0] = 1 (metadata format identifier) * [1] = (VENDOR_ID << 16) | PCI_ID * [2:9] = image descriptor for the whole resource * [2] is always 0, because the base address is cleared * [9] is the DCC offset bits [39:8] from the beginning of * the buffer * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level */ metadata[0] = 1; /* metadata image format version 1 */ /* Tiling modes are ambiguous without a PCI ID. */ metadata[1] = ac_get_umd_metadata_word1(info); /* Dwords [2:9] contain the image descriptor. */ memcpy(&metadata[2], desc, 8 * 4); *size_metadata = 10 * 4; /* Dwords [10:..] contain the mipmap level offsets. */ if (info->chip_class <= GFX8) { for (unsigned i = 0; i < num_mipmap_levels; i++) metadata[10 + i] = surf->u.legacy.level[i].offset >> 8; *size_metadata += num_mipmap_levels * 4; } } void ac_surface_override_offset_stride(const struct radeon_info *info, struct radeon_surf *surf, unsigned num_mipmap_levels, uint64_t offset, unsigned pitch) { if (info->chip_class >= GFX9) { if (pitch) { surf->u.gfx9.surf_pitch = pitch; if (num_mipmap_levels == 1) surf->u.gfx9.surf.epitch = pitch - 1; surf->u.gfx9.surf_slice_size = (uint64_t)pitch * surf->u.gfx9.surf_height * surf->bpe; } surf->u.gfx9.surf_offset = offset; if (surf->u.gfx9.stencil_offset) surf->u.gfx9.stencil_offset += offset; } else { if (pitch) { surf->u.legacy.level[0].nblk_x = pitch; surf->u.legacy.level[0].slice_size_dw = ((uint64_t)pitch * surf->u.legacy.level[0].nblk_y * surf->bpe) / 4; } if (offset) { for (unsigned i = 0; i < ARRAY_SIZE(surf->u.legacy.level); ++i) surf->u.legacy.level[i].offset += offset; } } if (surf->htile_offset) surf->htile_offset += offset; if (surf->fmask_offset) surf->fmask_offset += offset; if (surf->cmask_offset) surf->cmask_offset += offset; if (surf->dcc_offset) surf->dcc_offset += offset; if (surf->display_dcc_offset) surf->display_dcc_offset += offset; }