/* * Copyright © 2020 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" #include "vulkan/radv_shader.h" #include "c11/threads.h" #include "util/debug.h" namespace aco { uint64_t debug_flags = 0; static const struct debug_control aco_debug_options[] = { {"validateir", DEBUG_VALIDATE_IR}, {"validatera", DEBUG_VALIDATE_RA}, {"perfwarn", DEBUG_PERFWARN}, {"force-waitcnt", DEBUG_FORCE_WAITCNT}, {"novn", DEBUG_NO_VN}, {"noopt", DEBUG_NO_OPT}, {"nosched", DEBUG_NO_SCHED}, {NULL, 0} }; static once_flag init_once_flag = ONCE_FLAG_INIT; static void init_once() { debug_flags = parse_debug_string(getenv("ACO_DEBUG"), aco_debug_options); #ifndef NDEBUG /* enable some flags by default on debug builds */ debug_flags |= aco::DEBUG_VALIDATE_IR; #endif } void init() { call_once(&init_once_flag, init_once); } void init_program(Program *program, Stage stage, struct radv_shader_info *info, enum chip_class chip_class, enum radeon_family family, ac_shader_config *config) { program->stage = stage; program->config = config; program->info = info; program->chip_class = chip_class; if (family == CHIP_UNKNOWN) { switch (chip_class) { case GFX6: program->family = CHIP_TAHITI; break; case GFX7: program->family = CHIP_BONAIRE; break; case GFX8: program->family = CHIP_POLARIS10; break; case GFX9: program->family = CHIP_VEGA10; break; case GFX10: program->family = CHIP_NAVI10; break; default: program->family = CHIP_UNKNOWN; break; } } else { program->family = family; } program->wave_size = info->wave_size; program->lane_mask = program->wave_size == 32 ? s1 : s2; program->lds_alloc_granule = chip_class >= GFX7 ? 512 : 256; program->lds_limit = chip_class >= GFX7 ? 65536 : 32768; /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */ program->has_16bank_lds = family == CHIP_KABINI || family == CHIP_STONEY; program->vgpr_limit = 256; program->vgpr_alloc_granule = 3; if (chip_class >= GFX10) { program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */ program->sgpr_alloc_granule = 127; program->sgpr_limit = 106; if (chip_class >= GFX10_3) program->vgpr_alloc_granule = program->wave_size == 32 ? 15 : 7; else program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3; } else if (program->chip_class >= GFX8) { program->physical_sgprs = 800; program->sgpr_alloc_granule = 15; if (family == CHIP_TONGA || family == CHIP_ICELAND) program->sgpr_limit = 94; /* workaround hardware bug */ else program->sgpr_limit = 102; } else { program->physical_sgprs = 512; program->sgpr_alloc_granule = 7; program->sgpr_limit = 104; } program->next_fp_mode.preserve_signed_zero_inf_nan32 = false; program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false; program->next_fp_mode.must_flush_denorms32 = false; program->next_fp_mode.must_flush_denorms16_64 = false; program->next_fp_mode.care_about_round32 = false; program->next_fp_mode.care_about_round16_64 = false; program->next_fp_mode.denorm16_64 = fp_denorm_keep; program->next_fp_mode.denorm32 = 0; program->next_fp_mode.round16_64 = fp_round_ne; program->next_fp_mode.round32 = fp_round_ne; } memory_sync_info get_sync_info(const Instruction* instr) { switch (instr->format) { case Format::SMEM: return static_cast(instr)->sync; case Format::MUBUF: return static_cast(instr)->sync; case Format::MIMG: return static_cast(instr)->sync; case Format::MTBUF: return static_cast(instr)->sync; case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: return static_cast(instr)->sync; case Format::DS: return static_cast(instr)->sync; default: return memory_sync_info(); } } bool can_use_SDWA(chip_class chip, const aco_ptr& instr) { if (!instr->isVALU()) return false; if (chip < GFX8 || instr->isDPP()) return false; if (instr->isSDWA()) return true; if (instr->isVOP3()) { VOP3A_instruction *vop3 = static_cast(instr.get()); if (instr->format == Format::VOP3) return false; if (vop3->clamp && instr->format == asVOP3(Format::VOPC) && chip != GFX8) return false; if (vop3->omod && chip < GFX9) return false; //TODO: return true if we know we will use vcc if (instr->definitions.size() >= 2) return false; for (unsigned i = 1; i < instr->operands.size(); i++) { if (instr->operands[i].isLiteral()) return false; if (chip < GFX9 && !instr->operands[i].isOfType(RegType::vgpr)) return false; } } if (!instr->operands.empty()) { if (instr->operands[0].isLiteral()) return false; if (chip < GFX9 && !instr->operands[0].isOfType(RegType::vgpr)) return false; } bool is_mac = instr->opcode == aco_opcode::v_mac_f32 || instr->opcode == aco_opcode::v_mac_f16 || instr->opcode == aco_opcode::v_fmac_f32 || instr->opcode == aco_opcode::v_fmac_f16; if (chip != GFX8 && is_mac) return false; //TODO: return true if we know we will use vcc if ((unsigned)instr->format & (unsigned)Format::VOPC) return false; if (instr->operands.size() >= 3 && !is_mac) return false; return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32; } /* updates "instr" and returns the old instruction (or NULL if no update was needed) */ aco_ptr convert_to_SDWA(chip_class chip, aco_ptr& instr) { if (instr->isSDWA()) return NULL; aco_ptr tmp = std::move(instr); Format format = (Format)(((uint16_t)tmp->format & ~(uint16_t)Format::VOP3) | (uint16_t)Format::SDWA); instr.reset(create_instruction(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size())); std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin()); std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), instr->definitions.begin()); SDWA_instruction *sdwa = static_cast(instr.get()); if (tmp->isVOP3()) { VOP3A_instruction *vop3 = static_cast(tmp.get()); memcpy(sdwa->neg, vop3->neg, sizeof(sdwa->neg)); memcpy(sdwa->abs, vop3->abs, sizeof(sdwa->abs)); sdwa->omod = vop3->omod; sdwa->clamp = vop3->clamp; } for (unsigned i = 0; i < instr->operands.size(); i++) { /* SDWA only uses operands 0 and 1. */ if (i >= 2) break; switch (instr->operands[i].bytes()) { case 1: sdwa->sel[i] = sdwa_ubyte; break; case 2: sdwa->sel[i] = sdwa_uword; break; case 4: sdwa->sel[i] = sdwa_udword; break; } } switch (instr->definitions[0].bytes()) { case 1: sdwa->dst_sel = sdwa_ubyte; sdwa->dst_preserve = true; break; case 2: sdwa->dst_sel = sdwa_uword; sdwa->dst_preserve = true; break; case 4: sdwa->dst_sel = sdwa_udword; break; } if (instr->definitions[0].getTemp().type() == RegType::sgpr && chip == GFX8) instr->definitions[0].setFixed(vcc); if (instr->definitions.size() >= 2) instr->definitions[1].setFixed(vcc); if (instr->operands.size() >= 3) instr->operands[2].setFixed(vcc); return tmp; } bool can_use_opsel(chip_class chip, aco_opcode op, int idx, bool high) { /* opsel is only GFX9+ */ if ((high || idx == -1) && chip < GFX9) return false; switch (op) { case aco_opcode::v_div_fixup_f16: case aco_opcode::v_fma_f16: case aco_opcode::v_mad_f16: case aco_opcode::v_mad_u16: case aco_opcode::v_mad_i16: case aco_opcode::v_med3_f16: case aco_opcode::v_med3_i16: case aco_opcode::v_med3_u16: case aco_opcode::v_min3_f16: case aco_opcode::v_min3_i16: case aco_opcode::v_min3_u16: case aco_opcode::v_max3_f16: case aco_opcode::v_max3_i16: case aco_opcode::v_max3_u16: case aco_opcode::v_max_u16_e64: case aco_opcode::v_max_i16_e64: case aco_opcode::v_min_u16_e64: case aco_opcode::v_min_i16_e64: case aco_opcode::v_add_i16: case aco_opcode::v_sub_i16: case aco_opcode::v_add_u16_e64: case aco_opcode::v_sub_u16_e64: case aco_opcode::v_lshlrev_b16_e64: case aco_opcode::v_lshrrev_b16_e64: case aco_opcode::v_ashrrev_i16_e64: case aco_opcode::v_mul_lo_u16_e64: return true; case aco_opcode::v_pack_b32_f16: case aco_opcode::v_cvt_pknorm_i16_f16: case aco_opcode::v_cvt_pknorm_u16_f16: return idx != -1; case aco_opcode::v_mad_u32_u16: case aco_opcode::v_mad_i32_i16: return idx >= 0 && idx < 2; default: return false; } } uint32_t get_reduction_identity(ReduceOp op, unsigned idx) { switch (op) { case iadd8: case iadd16: case iadd32: case iadd64: case fadd16: case fadd32: case fadd64: case ior8: case ior16: case ior32: case ior64: case ixor8: case ixor16: case ixor32: case ixor64: case umax8: case umax16: case umax32: case umax64: return 0; case imul8: case imul16: case imul32: case imul64: return idx ? 0 : 1; case fmul16: return 0x3c00u; /* 1.0 */ case fmul32: return 0x3f800000u; /* 1.0 */ case fmul64: return idx ? 0x3ff00000u : 0u; /* 1.0 */ case imin8: return INT8_MAX; case imin16: return INT16_MAX; case imin32: return INT32_MAX; case imin64: return idx ? 0x7fffffffu : 0xffffffffu; case imax8: return INT8_MIN; case imax16: return INT16_MIN; case imax32: return INT32_MIN; case imax64: return idx ? 0x80000000u : 0; case umin8: case umin16: case iand8: case iand16: return 0xffffffffu; case umin32: case umin64: case iand32: case iand64: return 0xffffffffu; case fmin16: return 0x7c00u; /* infinity */ case fmin32: return 0x7f800000u; /* infinity */ case fmin64: return idx ? 0x7ff00000u : 0u; /* infinity */ case fmax16: return 0xfc00u; /* negative infinity */ case fmax32: return 0xff800000u; /* negative infinity */ case fmax64: return idx ? 0xfff00000u : 0u; /* negative infinity */ default: unreachable("Invalid reduction operation"); break; } return 0; } }