/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ #include #include #include #include #include #include #include /* DO NOT REORDER THE HEADERS * The LLVM headers need to all be included before any Mesa header, * as they use the `restrict` keyword in ways that are incompatible * with our #define in include/c99_compat.h */ #include "ac_binary.h" #include "ac_llvm_util.h" #include "ac_llvm_build.h" #include "util/macros.h" void ac_add_attr_dereferenceable(LLVMValueRef val, uint64_t bytes) { llvm::Argument *A = llvm::unwrap(val); A->addAttr(llvm::Attribute::getWithDereferenceableBytes(A->getContext(), bytes)); } void ac_add_attr_alignment(LLVMValueRef val, uint64_t bytes) { #if LLVM_VERSION_MAJOR >= 10 llvm::Argument *A = llvm::unwrap(val); A->addAttr(llvm::Attribute::getWithAlignment(A->getContext(), llvm::Align(bytes))); #else /* Avoid unused parameter warnings. */ (void)val; (void)bytes; #endif } bool ac_is_sgpr_param(LLVMValueRef arg) { llvm::Argument *A = llvm::unwrap(arg); llvm::AttributeList AS = A->getParent()->getAttributes(); unsigned ArgNo = A->getArgNo(); return AS.hasAttribute(ArgNo + 1, llvm::Attribute::InReg); } LLVMValueRef ac_llvm_get_called_value(LLVMValueRef call) { return LLVMGetCalledValue(call); } bool ac_llvm_is_function(LLVMValueRef v) { return LLVMGetValueKind(v) == LLVMFunctionValueKind; } LLVMModuleRef ac_create_module(LLVMTargetMachineRef tm, LLVMContextRef ctx) { llvm::TargetMachine *TM = reinterpret_cast(tm); LLVMModuleRef module = LLVMModuleCreateWithNameInContext("mesa-shader", ctx); llvm::unwrap(module)->setTargetTriple(TM->getTargetTriple().getTriple()); llvm::unwrap(module)->setDataLayout(TM->createDataLayout()); return module; } LLVMBuilderRef ac_create_builder(LLVMContextRef ctx, enum ac_float_mode float_mode) { LLVMBuilderRef builder = LLVMCreateBuilderInContext(ctx); llvm::FastMathFlags flags; switch (float_mode) { case AC_FLOAT_MODE_DEFAULT: case AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO: break; case AC_FLOAT_MODE_DEFAULT_OPENGL: /* Allow optimizations to treat the sign of a zero argument or * result as insignificant. */ flags.setNoSignedZeros(); /* nsz */ /* Allow optimizations to use the reciprocal of an argument * rather than perform division. */ flags.setAllowReciprocal(); /* arcp */ llvm::unwrap(builder)->setFastMathFlags(flags); break; } return builder; } void ac_enable_signed_zeros(struct ac_llvm_context *ctx) { if (ctx->float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL) { auto *b = llvm::unwrap(ctx->builder); llvm::FastMathFlags flags = b->getFastMathFlags(); /* This disables the optimization of (x + 0), which is used * to convert negative zero to positive zero. */ flags.setNoSignedZeros(false); b->setFastMathFlags(flags); } } void ac_disable_signed_zeros(struct ac_llvm_context *ctx) { if (ctx->float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL) { auto *b = llvm::unwrap(ctx->builder); llvm::FastMathFlags flags = b->getFastMathFlags(); flags.setNoSignedZeros(); b->setFastMathFlags(flags); } } LLVMTargetLibraryInfoRef ac_create_target_library_info(const char *triple) { return reinterpret_cast( new llvm::TargetLibraryInfoImpl(llvm::Triple(triple))); } void ac_dispose_target_library_info(LLVMTargetLibraryInfoRef library_info) { delete reinterpret_cast(library_info); } /* Implementation of raw_pwrite_stream that works on malloc()ed memory for * better compatibility with C code. */ struct raw_memory_ostream : public llvm::raw_pwrite_stream { char *buffer; size_t written; size_t bufsize; raw_memory_ostream() { buffer = NULL; written = 0; bufsize = 0; SetUnbuffered(); } ~raw_memory_ostream() { free(buffer); } void clear() { written = 0; } void take(char *&out_buffer, size_t &out_size) { out_buffer = buffer; out_size = written; buffer = NULL; written = 0; bufsize = 0; } void flush() = delete; void write_impl(const char *ptr, size_t size) override { if (unlikely(written + size < written)) abort(); if (written + size > bufsize) { bufsize = MAX3(1024, written + size, bufsize / 3 * 4); buffer = (char *)realloc(buffer, bufsize); if (!buffer) { fprintf(stderr, "amd: out of memory allocating ELF buffer\n"); abort(); } } memcpy(buffer + written, ptr, size); written += size; } void pwrite_impl(const char *ptr, size_t size, uint64_t offset) override { assert(offset == (size_t)offset && offset + size >= offset && offset + size <= written); memcpy(buffer + offset, ptr, size); } uint64_t current_pos() const override { return written; } }; /* The LLVM compiler is represented as a pass manager containing passes for * optimizations, instruction selection, and code generation. */ struct ac_compiler_passes { raw_memory_ostream ostream; /* ELF shader binary stream */ llvm::legacy::PassManager passmgr; /* list of passes */ }; struct ac_compiler_passes *ac_create_llvm_passes(LLVMTargetMachineRef tm) { struct ac_compiler_passes *p = new ac_compiler_passes(); if (!p) return NULL; llvm::TargetMachine *TM = reinterpret_cast(tm); if (TM->addPassesToEmitFile(p->passmgr, p->ostream, nullptr, #if LLVM_VERSION_MAJOR >= 10 llvm::CGFT_ObjectFile)) { #else llvm::TargetMachine::CGFT_ObjectFile)) { #endif fprintf(stderr, "amd: TargetMachine can't emit a file of this type!\n"); delete p; return NULL; } return p; } void ac_destroy_llvm_passes(struct ac_compiler_passes *p) { delete p; } /* This returns false on failure. */ bool ac_compile_module_to_elf(struct ac_compiler_passes *p, LLVMModuleRef module, char **pelf_buffer, size_t *pelf_size) { p->passmgr.run(*llvm::unwrap(module)); p->ostream.take(*pelf_buffer, *pelf_size); return true; } void ac_llvm_add_barrier_noop_pass(LLVMPassManagerRef passmgr) { llvm::unwrap(passmgr)->add(llvm::createBarrierNoopPass()); } void ac_enable_global_isel(LLVMTargetMachineRef tm) { reinterpret_cast(tm)->setGlobalISel(true); } LLVMValueRef ac_build_atomic_rmw(struct ac_llvm_context *ctx, LLVMAtomicRMWBinOp op, LLVMValueRef ptr, LLVMValueRef val, const char *sync_scope) { llvm::AtomicRMWInst::BinOp binop; switch (op) { case LLVMAtomicRMWBinOpXchg: binop = llvm::AtomicRMWInst::Xchg; break; case LLVMAtomicRMWBinOpAdd: binop = llvm::AtomicRMWInst::Add; break; case LLVMAtomicRMWBinOpSub: binop = llvm::AtomicRMWInst::Sub; break; case LLVMAtomicRMWBinOpAnd: binop = llvm::AtomicRMWInst::And; break; case LLVMAtomicRMWBinOpNand: binop = llvm::AtomicRMWInst::Nand; break; case LLVMAtomicRMWBinOpOr: binop = llvm::AtomicRMWInst::Or; break; case LLVMAtomicRMWBinOpXor: binop = llvm::AtomicRMWInst::Xor; break; case LLVMAtomicRMWBinOpMax: binop = llvm::AtomicRMWInst::Max; break; case LLVMAtomicRMWBinOpMin: binop = llvm::AtomicRMWInst::Min; break; case LLVMAtomicRMWBinOpUMax: binop = llvm::AtomicRMWInst::UMax; break; case LLVMAtomicRMWBinOpUMin: binop = llvm::AtomicRMWInst::UMin; break; #if LLVM_VERSION_MAJOR >= 10 case LLVMAtomicRMWBinOpFAdd: binop = llvm::AtomicRMWInst::FAdd; break; #endif default: unreachable("invalid LLVMAtomicRMWBinOp"); break; } unsigned SSID = llvm::unwrap(ctx->context)->getOrInsertSyncScopeID(sync_scope); return llvm::wrap(llvm::unwrap(ctx->builder) ->CreateAtomicRMW(binop, llvm::unwrap(ptr), llvm::unwrap(val), llvm::AtomicOrdering::SequentiallyConsistent, SSID)); } LLVMValueRef ac_build_atomic_cmp_xchg(struct ac_llvm_context *ctx, LLVMValueRef ptr, LLVMValueRef cmp, LLVMValueRef val, const char *sync_scope) { unsigned SSID = llvm::unwrap(ctx->context)->getOrInsertSyncScopeID(sync_scope); return llvm::wrap(llvm::unwrap(ctx->builder) ->CreateAtomicCmpXchg(llvm::unwrap(ptr), llvm::unwrap(cmp), llvm::unwrap(val), llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering::SequentiallyConsistent, SSID)); }