/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "drm-uapi/amdgpu_drm.h" #include #include #include #include "util/u_memory.h" #include "ac_debug.h" #include "radv_radeon_winsys.h" #include "radv_amdgpu_cs.h" #include "radv_amdgpu_bo.h" #include "sid.h" enum { VIRTUAL_BUFFER_HASH_TABLE_SIZE = 1024 }; struct radv_amdgpu_cs { struct radeon_cmdbuf base; struct radv_amdgpu_winsys *ws; struct amdgpu_cs_ib_info ib; struct radeon_winsys_bo *ib_buffer; uint8_t *ib_mapped; unsigned max_num_buffers; unsigned num_buffers; struct drm_amdgpu_bo_list_entry *handles; struct radeon_winsys_bo **old_ib_buffers; unsigned num_old_ib_buffers; unsigned max_num_old_ib_buffers; unsigned *ib_size_ptr; VkResult status; bool is_chained; int buffer_hash_table[1024]; unsigned hw_ip; unsigned num_virtual_buffers; unsigned max_num_virtual_buffers; struct radeon_winsys_bo **virtual_buffers; int *virtual_buffer_hash_table; /* For chips that don't support chaining. */ struct radeon_cmdbuf *old_cs_buffers; unsigned num_old_cs_buffers; }; static inline struct radv_amdgpu_cs * radv_amdgpu_cs(struct radeon_cmdbuf *base) { return (struct radv_amdgpu_cs*)base; } static int ring_to_hw_ip(enum ring_type ring) { switch (ring) { case RING_GFX: return AMDGPU_HW_IP_GFX; case RING_DMA: return AMDGPU_HW_IP_DMA; case RING_COMPUTE: return AMDGPU_HW_IP_COMPUTE; default: unreachable("unsupported ring"); } } struct radv_amdgpu_cs_request { /** Specify flags with additional information */ uint64_t flags; /** Specify HW IP block type to which to send the IB. */ unsigned ip_type; /** IP instance index if there are several IPs of the same type. */ unsigned ip_instance; /** * Specify ring index of the IP. We could have several rings * in the same IP. E.g. 0 for SDMA0 and 1 for SDMA1. */ uint32_t ring; /** * BO list handles used by this request. */ struct drm_amdgpu_bo_list_entry *handles; uint32_t num_handles; /** * Number of dependencies this Command submission needs to * wait for before starting execution. */ uint32_t number_of_dependencies; /** * Array of dependencies which need to be met before * execution can start. */ struct amdgpu_cs_fence *dependencies; /** Number of IBs to submit in the field ibs. */ uint32_t number_of_ibs; /** * IBs to submit. Those IBs will be submit together as single entity */ struct amdgpu_cs_ib_info *ibs; /** * The returned sequence number for the command submission */ uint64_t seq_no; /** * The fence information */ struct amdgpu_cs_fence_info fence_info; }; static int radv_amdgpu_signal_sems(struct radv_amdgpu_ctx *ctx, uint32_t ip_type, uint32_t ring, struct radv_winsys_sem_info *sem_info); static int radv_amdgpu_cs_submit(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_cs_request *request, struct radv_winsys_sem_info *sem_info); static void radv_amdgpu_request_to_fence(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_fence *fence, struct radv_amdgpu_cs_request *req) { fence->fence.context = ctx->ctx; fence->fence.ip_type = req->ip_type; fence->fence.ip_instance = req->ip_instance; fence->fence.ring = req->ring; fence->fence.fence = req->seq_no; fence->user_ptr = (volatile uint64_t*)(ctx->fence_map + req->ip_type * MAX_RINGS_PER_TYPE + req->ring); } static struct radeon_winsys_fence *radv_amdgpu_create_fence() { struct radv_amdgpu_fence *fence = calloc(1, sizeof(struct radv_amdgpu_fence)); if (!fence) return NULL; fence->fence.fence = UINT64_MAX; return (struct radeon_winsys_fence*)fence; } static void radv_amdgpu_destroy_fence(struct radeon_winsys_fence *_fence) { struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; free(fence); } static void radv_amdgpu_reset_fence(struct radeon_winsys_fence *_fence) { struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; fence->fence.fence = UINT64_MAX; } static void radv_amdgpu_signal_fence(struct radeon_winsys_fence *_fence) { struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; fence->fence.fence = 0; } static bool radv_amdgpu_is_fence_waitable(struct radeon_winsys_fence *_fence) { struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; return fence->fence.fence < UINT64_MAX; } static bool radv_amdgpu_fence_wait(struct radeon_winsys *_ws, struct radeon_winsys_fence *_fence, bool absolute, uint64_t timeout) { struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; unsigned flags = absolute ? AMDGPU_QUERY_FENCE_TIMEOUT_IS_ABSOLUTE : 0; int r; uint32_t expired = 0; /* Special casing 0 and UINT64_MAX so that they work without user_ptr/fence.ctx */ if (fence->fence.fence == UINT64_MAX) return false; if (fence->fence.fence == 0) return true; if (fence->user_ptr) { if (*fence->user_ptr >= fence->fence.fence) return true; if (!absolute && !timeout) return false; } /* Now use the libdrm query. */ r = amdgpu_cs_query_fence_status(&fence->fence, timeout, flags, &expired); if (r) { fprintf(stderr, "amdgpu: radv_amdgpu_cs_query_fence_status failed.\n"); return false; } if (expired) return true; return false; } static bool radv_amdgpu_fences_wait(struct radeon_winsys *_ws, struct radeon_winsys_fence *const *_fences, uint32_t fence_count, bool wait_all, uint64_t timeout) { struct amdgpu_cs_fence *fences = malloc(sizeof(struct amdgpu_cs_fence) * fence_count); int r; uint32_t expired = 0, first = 0; if (!fences) return false; for (uint32_t i = 0; i < fence_count; ++i) fences[i] = ((struct radv_amdgpu_fence *)_fences[i])->fence; /* Now use the libdrm query. */ r = amdgpu_cs_wait_fences(fences, fence_count, wait_all, timeout, &expired, &first); free(fences); if (r) { fprintf(stderr, "amdgpu: amdgpu_cs_wait_fences failed.\n"); return false; } if (expired) return true; return false; } static void radv_amdgpu_cs_destroy(struct radeon_cmdbuf *rcs) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(rcs); if (cs->ib_buffer) cs->ws->base.buffer_destroy(cs->ib_buffer); else free(cs->base.buf); for (unsigned i = 0; i < cs->num_old_ib_buffers; ++i) cs->ws->base.buffer_destroy(cs->old_ib_buffers[i]); for (unsigned i = 0; i < cs->num_old_cs_buffers; ++i) { struct radeon_cmdbuf *rcs = &cs->old_cs_buffers[i]; free(rcs->buf); } free(cs->old_cs_buffers); free(cs->old_ib_buffers); free(cs->virtual_buffers); free(cs->virtual_buffer_hash_table); free(cs->handles); free(cs); } static void radv_amdgpu_init_cs(struct radv_amdgpu_cs *cs, enum ring_type ring_type) { for (int i = 0; i < ARRAY_SIZE(cs->buffer_hash_table); ++i) cs->buffer_hash_table[i] = -1; cs->hw_ip = ring_to_hw_ip(ring_type); } static struct radeon_cmdbuf * radv_amdgpu_cs_create(struct radeon_winsys *ws, enum ring_type ring_type) { struct radv_amdgpu_cs *cs; uint32_t ib_size = 20 * 1024 * 4; cs = calloc(1, sizeof(struct radv_amdgpu_cs)); if (!cs) return NULL; cs->ws = radv_amdgpu_winsys(ws); radv_amdgpu_init_cs(cs, ring_type); if (cs->ws->use_ib_bos) { cs->ib_buffer = ws->buffer_create(ws, ib_size, 0, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY | RADEON_FLAG_GTT_WC, RADV_BO_PRIORITY_CS); if (!cs->ib_buffer) { free(cs); return NULL; } cs->ib_mapped = ws->buffer_map(cs->ib_buffer); if (!cs->ib_mapped) { ws->buffer_destroy(cs->ib_buffer); free(cs); return NULL; } cs->ib.ib_mc_address = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va; cs->base.buf = (uint32_t *)cs->ib_mapped; cs->base.max_dw = ib_size / 4 - 4; cs->ib_size_ptr = &cs->ib.size; cs->ib.size = 0; ws->cs_add_buffer(&cs->base, cs->ib_buffer); } else { uint32_t *buf = malloc(16384); if (!buf) { free(cs); return NULL; } cs->base.buf = buf; cs->base.max_dw = 4096; } return &cs->base; } static void radv_amdgpu_cs_grow(struct radeon_cmdbuf *_cs, size_t min_size) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); if (cs->status != VK_SUCCESS) { cs->base.cdw = 0; return; } if (!cs->ws->use_ib_bos) { const uint64_t limit_dws = 0xffff8; uint64_t ib_dws = MAX2(cs->base.cdw + min_size, MIN2(cs->base.max_dw * 2, limit_dws)); /* The total ib size cannot exceed limit_dws dwords. */ if (ib_dws > limit_dws) { /* The maximum size in dwords has been reached, * try to allocate a new one. */ struct radeon_cmdbuf *old_cs_buffers = realloc(cs->old_cs_buffers, (cs->num_old_cs_buffers + 1) * sizeof(*cs->old_cs_buffers)); if (!old_cs_buffers) { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; cs->base.cdw = 0; return; } cs->old_cs_buffers = old_cs_buffers; /* Store the current one for submitting it later. */ cs->old_cs_buffers[cs->num_old_cs_buffers].cdw = cs->base.cdw; cs->old_cs_buffers[cs->num_old_cs_buffers].max_dw = cs->base.max_dw; cs->old_cs_buffers[cs->num_old_cs_buffers].buf = cs->base.buf; cs->num_old_cs_buffers++; /* Reset the cs, it will be re-allocated below. */ cs->base.cdw = 0; cs->base.buf = NULL; /* Re-compute the number of dwords to allocate. */ ib_dws = MAX2(cs->base.cdw + min_size, MIN2(cs->base.max_dw * 2, limit_dws)); if (ib_dws > limit_dws) { fprintf(stderr, "amdgpu: Too high number of " "dwords to allocate\n"); cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } } uint32_t *new_buf = realloc(cs->base.buf, ib_dws * 4); if (new_buf) { cs->base.buf = new_buf; cs->base.max_dw = ib_dws; } else { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; cs->base.cdw = 0; } return; } uint64_t ib_size = MAX2(min_size * 4 + 16, cs->base.max_dw * 4 * 2); /* max that fits in the chain size field. */ ib_size = MIN2(ib_size, 0xfffff); while (!cs->base.cdw || (cs->base.cdw & 7) != 4) radeon_emit(&cs->base, PKT3_NOP_PAD); *cs->ib_size_ptr |= cs->base.cdw + 4; if (cs->num_old_ib_buffers == cs->max_num_old_ib_buffers) { unsigned max_num_old_ib_buffers = MAX2(1, cs->max_num_old_ib_buffers * 2); struct radeon_winsys_bo **old_ib_buffers = realloc(cs->old_ib_buffers, max_num_old_ib_buffers * sizeof(void*)); if (!old_ib_buffers) { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } cs->max_num_old_ib_buffers = max_num_old_ib_buffers; cs->old_ib_buffers = old_ib_buffers; } cs->old_ib_buffers[cs->num_old_ib_buffers++] = cs->ib_buffer; cs->ib_buffer = cs->ws->base.buffer_create(&cs->ws->base, ib_size, 0, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY | RADEON_FLAG_GTT_WC, RADV_BO_PRIORITY_CS); if (!cs->ib_buffer) { cs->base.cdw = 0; cs->status = VK_ERROR_OUT_OF_DEVICE_MEMORY; cs->ib_buffer = cs->old_ib_buffers[--cs->num_old_ib_buffers]; } cs->ib_mapped = cs->ws->base.buffer_map(cs->ib_buffer); if (!cs->ib_mapped) { cs->ws->base.buffer_destroy(cs->ib_buffer); cs->base.cdw = 0; /* VK_ERROR_MEMORY_MAP_FAILED is not valid for vkEndCommandBuffer. */ cs->status = VK_ERROR_OUT_OF_DEVICE_MEMORY; cs->ib_buffer = cs->old_ib_buffers[--cs->num_old_ib_buffers]; } cs->ws->base.cs_add_buffer(&cs->base, cs->ib_buffer); radeon_emit(&cs->base, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0)); radeon_emit(&cs->base, radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va); radeon_emit(&cs->base, radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va >> 32); radeon_emit(&cs->base, S_3F2_CHAIN(1) | S_3F2_VALID(1)); cs->ib_size_ptr = cs->base.buf + cs->base.cdw - 1; cs->base.buf = (uint32_t *)cs->ib_mapped; cs->base.cdw = 0; cs->base.max_dw = ib_size / 4 - 4; } static VkResult radv_amdgpu_cs_finalize(struct radeon_cmdbuf *_cs) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); if (cs->ws->use_ib_bos) { while (!cs->base.cdw || (cs->base.cdw & 7) != 0) radeon_emit(&cs->base, PKT3_NOP_PAD); *cs->ib_size_ptr |= cs->base.cdw; cs->is_chained = false; } return cs->status; } static void radv_amdgpu_cs_reset(struct radeon_cmdbuf *_cs) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); cs->base.cdw = 0; cs->status = VK_SUCCESS; for (unsigned i = 0; i < cs->num_buffers; ++i) { unsigned hash = cs->handles[i].bo_handle & (ARRAY_SIZE(cs->buffer_hash_table) - 1); cs->buffer_hash_table[hash] = -1; } for (unsigned i = 0; i < cs->num_virtual_buffers; ++i) { unsigned hash = ((uintptr_t)cs->virtual_buffers[i] >> 6) & (VIRTUAL_BUFFER_HASH_TABLE_SIZE - 1); cs->virtual_buffer_hash_table[hash] = -1; } cs->num_buffers = 0; cs->num_virtual_buffers = 0; if (cs->ws->use_ib_bos) { cs->ws->base.cs_add_buffer(&cs->base, cs->ib_buffer); for (unsigned i = 0; i < cs->num_old_ib_buffers; ++i) cs->ws->base.buffer_destroy(cs->old_ib_buffers[i]); cs->num_old_ib_buffers = 0; cs->ib.ib_mc_address = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va; cs->ib_size_ptr = &cs->ib.size; cs->ib.size = 0; } else { for (unsigned i = 0; i < cs->num_old_cs_buffers; ++i) { struct radeon_cmdbuf *rcs = &cs->old_cs_buffers[i]; free(rcs->buf); } free(cs->old_cs_buffers); cs->old_cs_buffers = NULL; cs->num_old_cs_buffers = 0; } } static int radv_amdgpu_cs_find_buffer(struct radv_amdgpu_cs *cs, uint32_t bo) { unsigned hash = bo & (ARRAY_SIZE(cs->buffer_hash_table) - 1); int index = cs->buffer_hash_table[hash]; if (index == -1) return -1; if (cs->handles[index].bo_handle == bo) return index; for (unsigned i = 0; i < cs->num_buffers; ++i) { if (cs->handles[i].bo_handle == bo) { cs->buffer_hash_table[hash] = i; return i; } } return -1; } static void radv_amdgpu_cs_add_buffer_internal(struct radv_amdgpu_cs *cs, uint32_t bo, uint8_t priority) { unsigned hash; int index = radv_amdgpu_cs_find_buffer(cs, bo); if (index != -1) return; if (cs->num_buffers == cs->max_num_buffers) { unsigned new_count = MAX2(1, cs->max_num_buffers * 2); struct drm_amdgpu_bo_list_entry *new_entries = realloc(cs->handles, new_count * sizeof(struct drm_amdgpu_bo_list_entry)); if (new_entries) { cs->max_num_buffers = new_count; cs->handles = new_entries; } else { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } } cs->handles[cs->num_buffers].bo_handle = bo; cs->handles[cs->num_buffers].bo_priority = priority; hash = bo & (ARRAY_SIZE(cs->buffer_hash_table) - 1); cs->buffer_hash_table[hash] = cs->num_buffers; ++cs->num_buffers; } static void radv_amdgpu_cs_add_virtual_buffer(struct radeon_cmdbuf *_cs, struct radeon_winsys_bo *bo) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); unsigned hash = ((uintptr_t)bo >> 6) & (VIRTUAL_BUFFER_HASH_TABLE_SIZE - 1); if (!cs->virtual_buffer_hash_table) { int *virtual_buffer_hash_table = malloc(VIRTUAL_BUFFER_HASH_TABLE_SIZE * sizeof(int)); if (!virtual_buffer_hash_table) { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } cs->virtual_buffer_hash_table = virtual_buffer_hash_table; for (int i = 0; i < VIRTUAL_BUFFER_HASH_TABLE_SIZE; ++i) cs->virtual_buffer_hash_table[i] = -1; } if (cs->virtual_buffer_hash_table[hash] >= 0) { int idx = cs->virtual_buffer_hash_table[hash]; if (cs->virtual_buffers[idx] == bo) { return; } for (unsigned i = 0; i < cs->num_virtual_buffers; ++i) { if (cs->virtual_buffers[i] == bo) { cs->virtual_buffer_hash_table[hash] = i; return; } } } if(cs->max_num_virtual_buffers <= cs->num_virtual_buffers) { unsigned max_num_virtual_buffers = MAX2(2, cs->max_num_virtual_buffers * 2); struct radeon_winsys_bo **virtual_buffers = realloc(cs->virtual_buffers, sizeof(struct radv_amdgpu_virtual_virtual_buffer*) * max_num_virtual_buffers); if (!virtual_buffers) { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } cs->max_num_virtual_buffers = max_num_virtual_buffers; cs->virtual_buffers = virtual_buffers; } cs->virtual_buffers[cs->num_virtual_buffers] = bo; cs->virtual_buffer_hash_table[hash] = cs->num_virtual_buffers; ++cs->num_virtual_buffers; } static void radv_amdgpu_cs_add_buffer(struct radeon_cmdbuf *_cs, struct radeon_winsys_bo *_bo) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); struct radv_amdgpu_winsys_bo *bo = radv_amdgpu_winsys_bo(_bo); if (cs->status != VK_SUCCESS) return; if (bo->is_virtual) { radv_amdgpu_cs_add_virtual_buffer(_cs, _bo); return; } if (bo->base.is_local) return; radv_amdgpu_cs_add_buffer_internal(cs, bo->bo_handle, bo->priority); } static void radv_amdgpu_cs_execute_secondary(struct radeon_cmdbuf *_parent, struct radeon_cmdbuf *_child) { struct radv_amdgpu_cs *parent = radv_amdgpu_cs(_parent); struct radv_amdgpu_cs *child = radv_amdgpu_cs(_child); if (parent->status != VK_SUCCESS || child->status != VK_SUCCESS) return; for (unsigned i = 0; i < child->num_buffers; ++i) { radv_amdgpu_cs_add_buffer_internal(parent, child->handles[i].bo_handle, child->handles[i].bo_priority); } for (unsigned i = 0; i < child->num_virtual_buffers; ++i) { radv_amdgpu_cs_add_buffer(&parent->base, child->virtual_buffers[i]); } if (parent->ws->use_ib_bos) { if (parent->base.cdw + 4 > parent->base.max_dw) radv_amdgpu_cs_grow(&parent->base, 4); radeon_emit(&parent->base, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0)); radeon_emit(&parent->base, child->ib.ib_mc_address); radeon_emit(&parent->base, child->ib.ib_mc_address >> 32); radeon_emit(&parent->base, child->ib.size); } else { if (parent->base.cdw + child->base.cdw > parent->base.max_dw) radv_amdgpu_cs_grow(&parent->base, child->base.cdw); memcpy(parent->base.buf + parent->base.cdw, child->base.buf, 4 * child->base.cdw); parent->base.cdw += child->base.cdw; } } static VkResult radv_amdgpu_get_bo_list(struct radv_amdgpu_winsys *ws, struct radeon_cmdbuf **cs_array, unsigned count, struct radv_amdgpu_winsys_bo **extra_bo_array, unsigned num_extra_bo, struct radeon_cmdbuf *extra_cs, const struct radv_winsys_bo_list *radv_bo_list, unsigned *rnum_handles, struct drm_amdgpu_bo_list_entry **rhandles) { struct drm_amdgpu_bo_list_entry *handles = NULL; unsigned num_handles = 0; if (ws->debug_all_bos) { struct radv_amdgpu_winsys_bo *bo; handles = malloc(sizeof(handles[0]) * ws->num_buffers); if (!handles) { return VK_ERROR_OUT_OF_HOST_MEMORY; } LIST_FOR_EACH_ENTRY(bo, &ws->global_bo_list, global_list_item) { assert(num_handles < ws->num_buffers); handles[num_handles].bo_handle = bo->bo_handle; handles[num_handles].bo_priority = bo->priority; num_handles++; } } else if (count == 1 && !num_extra_bo && !extra_cs && !radv_bo_list && !radv_amdgpu_cs(cs_array[0])->num_virtual_buffers) { struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs*)cs_array[0]; if (cs->num_buffers == 0) return VK_SUCCESS; handles = malloc(sizeof(handles[0]) * cs->num_buffers); if (!handles) return VK_ERROR_OUT_OF_HOST_MEMORY; memcpy(handles, cs->handles, sizeof(handles[0]) * cs->num_buffers); num_handles = cs->num_buffers; } else { unsigned total_buffer_count = num_extra_bo; num_handles = num_extra_bo; for (unsigned i = 0; i < count; ++i) { struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs*)cs_array[i]; total_buffer_count += cs->num_buffers; for (unsigned j = 0; j < cs->num_virtual_buffers; ++j) total_buffer_count += radv_amdgpu_winsys_bo(cs->virtual_buffers[j])->bo_count; } if (extra_cs) { total_buffer_count += ((struct radv_amdgpu_cs*)extra_cs)->num_buffers; } if (radv_bo_list) { total_buffer_count += radv_bo_list->count; } if (total_buffer_count == 0) return VK_SUCCESS; handles = malloc(sizeof(handles[0]) * total_buffer_count); if (!handles) return VK_ERROR_OUT_OF_HOST_MEMORY; for (unsigned i = 0; i < num_extra_bo; i++) { handles[i].bo_handle = extra_bo_array[i]->bo_handle; handles[i].bo_priority = extra_bo_array[i]->priority; } for (unsigned i = 0; i < count + !!extra_cs; ++i) { struct radv_amdgpu_cs *cs; if (i == count) cs = (struct radv_amdgpu_cs*)extra_cs; else cs = (struct radv_amdgpu_cs*)cs_array[i]; if (!cs->num_buffers) continue; if (num_handles == 0 && !cs->num_virtual_buffers) { memcpy(handles, cs->handles, cs->num_buffers * sizeof(struct drm_amdgpu_bo_list_entry)); num_handles = cs->num_buffers; continue; } int unique_bo_so_far = num_handles; for (unsigned j = 0; j < cs->num_buffers; ++j) { bool found = false; for (unsigned k = 0; k < unique_bo_so_far; ++k) { if (handles[k].bo_handle == cs->handles[j].bo_handle) { found = true; break; } } if (!found) { handles[num_handles] = cs->handles[j]; ++num_handles; } } for (unsigned j = 0; j < cs->num_virtual_buffers; ++j) { struct radv_amdgpu_winsys_bo *virtual_bo = radv_amdgpu_winsys_bo(cs->virtual_buffers[j]); for(unsigned k = 0; k < virtual_bo->bo_count; ++k) { struct radv_amdgpu_winsys_bo *bo = virtual_bo->bos[k]; bool found = false; for (unsigned m = 0; m < num_handles; ++m) { if (handles[m].bo_handle == bo->bo_handle) { found = true; break; } } if (!found) { handles[num_handles].bo_handle = bo->bo_handle; handles[num_handles].bo_priority = bo->priority; ++num_handles; } } } } if (radv_bo_list) { unsigned unique_bo_so_far = num_handles; for (unsigned i = 0; i < radv_bo_list->count; ++i) { struct radv_amdgpu_winsys_bo *bo = radv_amdgpu_winsys_bo(radv_bo_list->bos[i]); bool found = false; for (unsigned j = 0; j < unique_bo_so_far; ++j) { if (bo->bo_handle == handles[j].bo_handle) { found = true; break; } } if (!found) { handles[num_handles].bo_handle = bo->bo_handle; handles[num_handles].bo_priority = bo->priority; ++num_handles; } } } } *rhandles = handles; *rnum_handles = num_handles; return VK_SUCCESS; } static struct amdgpu_cs_fence_info radv_set_cs_fence(struct radv_amdgpu_ctx *ctx, int ip_type, int ring) { struct amdgpu_cs_fence_info ret = {0}; if (ctx->fence_map) { ret.handle = radv_amdgpu_winsys_bo(ctx->fence_bo)->bo; ret.offset = (ip_type * MAX_RINGS_PER_TYPE + ring) * sizeof(uint64_t); } return ret; } static void radv_assign_last_submit(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_cs_request *request) { radv_amdgpu_request_to_fence(ctx, &ctx->last_submission[request->ip_type][request->ring], request); } static VkResult radv_amdgpu_winsys_cs_submit_chained(struct radeon_winsys_ctx *_ctx, int queue_idx, struct radv_winsys_sem_info *sem_info, const struct radv_winsys_bo_list *radv_bo_list, struct radeon_cmdbuf **cs_array, unsigned cs_count, struct radeon_cmdbuf *initial_preamble_cs, struct radeon_cmdbuf *continue_preamble_cs, struct radeon_winsys_fence *_fence) { struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx); struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; struct radv_amdgpu_cs *cs0 = radv_amdgpu_cs(cs_array[0]); struct radv_amdgpu_winsys *aws = cs0->ws; struct drm_amdgpu_bo_list_entry *handles = NULL; struct radv_amdgpu_cs_request request = {0}; struct amdgpu_cs_ib_info ibs[2]; unsigned number_of_ibs = 1; unsigned num_handles = 0; VkResult result; for (unsigned i = cs_count; i--;) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]); if (cs->is_chained) { *cs->ib_size_ptr -= 4; cs->is_chained = false; } if (i + 1 < cs_count) { struct radv_amdgpu_cs *next = radv_amdgpu_cs(cs_array[i + 1]); assert(cs->base.cdw + 4 <= cs->base.max_dw); cs->is_chained = true; *cs->ib_size_ptr += 4; cs->base.buf[cs->base.cdw + 0] = PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0); cs->base.buf[cs->base.cdw + 1] = next->ib.ib_mc_address; cs->base.buf[cs->base.cdw + 2] = next->ib.ib_mc_address >> 32; cs->base.buf[cs->base.cdw + 3] = S_3F2_CHAIN(1) | S_3F2_VALID(1) | next->ib.size; } } if (aws->debug_all_bos) u_rwlock_rdlock(&aws->global_bo_list_lock); /* Get the BO list. */ result = radv_amdgpu_get_bo_list(cs0->ws, cs_array, cs_count, NULL, 0, initial_preamble_cs, radv_bo_list, &num_handles, &handles); if (result != VK_SUCCESS) goto fail; /* Configure the CS request. */ if (initial_preamble_cs) { ibs[0] = radv_amdgpu_cs(initial_preamble_cs)->ib; ibs[1] = cs0->ib; number_of_ibs++; } else { ibs[0] = cs0->ib; } request.ip_type = cs0->hw_ip; request.ring = queue_idx; request.number_of_ibs = number_of_ibs; request.ibs = ibs; request.handles = handles; request.num_handles = num_handles; request.fence_info = radv_set_cs_fence(ctx, cs0->hw_ip, queue_idx); /* Submit the CS. */ result = radv_amdgpu_cs_submit(ctx, &request, sem_info); free(request.handles); if (result != VK_SUCCESS) goto fail; if (fence) radv_amdgpu_request_to_fence(ctx, fence, &request); radv_assign_last_submit(ctx, &request); fail: if (aws->debug_all_bos) u_rwlock_rdunlock(&aws->global_bo_list_lock); return result; } static VkResult radv_amdgpu_winsys_cs_submit_fallback(struct radeon_winsys_ctx *_ctx, int queue_idx, struct radv_winsys_sem_info *sem_info, const struct radv_winsys_bo_list *radv_bo_list, struct radeon_cmdbuf **cs_array, unsigned cs_count, struct radeon_cmdbuf *initial_preamble_cs, struct radeon_cmdbuf *continue_preamble_cs, struct radeon_winsys_fence *_fence) { struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx); struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; struct drm_amdgpu_bo_list_entry *handles = NULL; struct radv_amdgpu_cs_request request = {0}; struct amdgpu_cs_ib_info *ibs; struct radv_amdgpu_cs *cs0; struct radv_amdgpu_winsys *aws; unsigned num_handles = 0; unsigned number_of_ibs; VkResult result; assert(cs_count); cs0 = radv_amdgpu_cs(cs_array[0]); aws = cs0->ws; /* Compute the number of IBs for this submit. */ number_of_ibs = cs_count + !!initial_preamble_cs; if (aws->debug_all_bos) u_rwlock_rdlock(&aws->global_bo_list_lock); /* Get the BO list. */ result = radv_amdgpu_get_bo_list(cs0->ws, &cs_array[0], cs_count, NULL, 0, initial_preamble_cs, radv_bo_list, &num_handles, &handles); if (result != VK_SUCCESS) { goto fail; } ibs = malloc(number_of_ibs * sizeof(*ibs)); if (!ibs) { free(handles); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } /* Configure the CS request. */ if (initial_preamble_cs) ibs[0] = radv_amdgpu_cs(initial_preamble_cs)->ib; for (unsigned i = 0; i < cs_count; i++) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]); ibs[i + !!initial_preamble_cs] = cs->ib; if (cs->is_chained) { *cs->ib_size_ptr -= 4; cs->is_chained = false; } } request.ip_type = cs0->hw_ip; request.ring = queue_idx; request.handles = handles; request.num_handles = num_handles; request.number_of_ibs = number_of_ibs; request.ibs = ibs; request.fence_info = radv_set_cs_fence(ctx, cs0->hw_ip, queue_idx); /* Submit the CS. */ result = radv_amdgpu_cs_submit(ctx, &request, sem_info); free(request.handles); free(ibs); if (result != VK_SUCCESS) goto fail; if (fence) radv_amdgpu_request_to_fence(ctx, fence, &request); radv_assign_last_submit(ctx, &request); fail: if (aws->debug_all_bos) u_rwlock_rdunlock(&aws->global_bo_list_lock); return result; } static VkResult radv_amdgpu_winsys_cs_submit_sysmem(struct radeon_winsys_ctx *_ctx, int queue_idx, struct radv_winsys_sem_info *sem_info, const struct radv_winsys_bo_list *radv_bo_list, struct radeon_cmdbuf **cs_array, unsigned cs_count, struct radeon_cmdbuf *initial_preamble_cs, struct radeon_cmdbuf *continue_preamble_cs, struct radeon_winsys_fence *_fence) { struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx); struct radv_amdgpu_fence *fence = (struct radv_amdgpu_fence *)_fence; struct radv_amdgpu_cs *cs0 = radv_amdgpu_cs(cs_array[0]); struct radeon_winsys *ws = (struct radeon_winsys*)cs0->ws; struct radv_amdgpu_winsys *aws = cs0->ws; struct radv_amdgpu_cs_request request; uint32_t pad_word = PKT3_NOP_PAD; bool emit_signal_sem = sem_info->cs_emit_signal; VkResult result; if (radv_amdgpu_winsys(ws)->info.chip_class == GFX6) pad_word = 0x80000000; assert(cs_count); for (unsigned i = 0; i < cs_count;) { struct amdgpu_cs_ib_info *ibs; struct radeon_winsys_bo **bos; struct radeon_cmdbuf *preamble_cs = i ? continue_preamble_cs : initial_preamble_cs; struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]); struct drm_amdgpu_bo_list_entry *handles = NULL; unsigned num_handles = 0; unsigned number_of_ibs; uint32_t *ptr; unsigned cnt = 0; unsigned size = 0; unsigned pad_words = 0; /* Compute the number of IBs for this submit. */ number_of_ibs = cs->num_old_cs_buffers + 1; ibs = malloc(number_of_ibs * sizeof(*ibs)); if (!ibs) return VK_ERROR_OUT_OF_HOST_MEMORY; bos = malloc(number_of_ibs * sizeof(*bos)); if (!bos) { free(ibs); return VK_ERROR_OUT_OF_HOST_MEMORY; } if (number_of_ibs > 1) { /* Special path when the maximum size in dwords has * been reached because we need to handle more than one * IB per submit. */ struct radeon_cmdbuf **new_cs_array; unsigned idx = 0; new_cs_array = malloc(cs->num_old_cs_buffers * sizeof(*new_cs_array)); assert(new_cs_array); for (unsigned j = 0; j < cs->num_old_cs_buffers; j++) new_cs_array[idx++] = &cs->old_cs_buffers[j]; new_cs_array[idx++] = cs_array[i]; for (unsigned j = 0; j < number_of_ibs; j++) { struct radeon_cmdbuf *rcs = new_cs_array[j]; bool needs_preamble = preamble_cs && j == 0; unsigned size = 0; if (needs_preamble) size += preamble_cs->cdw; size += rcs->cdw; assert(size < 0xffff8); while (!size || (size & 7)) { size++; pad_words++; } bos[j] = ws->buffer_create(ws, 4 * size, 4096, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY, RADV_BO_PRIORITY_CS); ptr = ws->buffer_map(bos[j]); if (needs_preamble) { memcpy(ptr, preamble_cs->buf, preamble_cs->cdw * 4); ptr += preamble_cs->cdw; } memcpy(ptr, rcs->buf, 4 * rcs->cdw); ptr += rcs->cdw; for (unsigned k = 0; k < pad_words; ++k) *ptr++ = pad_word; ibs[j].size = size; ibs[j].ib_mc_address = radv_buffer_get_va(bos[j]); ibs[j].flags = 0; } cnt++; free(new_cs_array); } else { if (preamble_cs) size += preamble_cs->cdw; while (i + cnt < cs_count && 0xffff8 - size >= radv_amdgpu_cs(cs_array[i + cnt])->base.cdw) { size += radv_amdgpu_cs(cs_array[i + cnt])->base.cdw; ++cnt; } while (!size || (size & 7)) { size++; pad_words++; } assert(cnt); bos[0] = ws->buffer_create(ws, 4 * size, 4096, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY, RADV_BO_PRIORITY_CS); ptr = ws->buffer_map(bos[0]); if (preamble_cs) { memcpy(ptr, preamble_cs->buf, preamble_cs->cdw * 4); ptr += preamble_cs->cdw; } for (unsigned j = 0; j < cnt; ++j) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i + j]); memcpy(ptr, cs->base.buf, 4 * cs->base.cdw); ptr += cs->base.cdw; } for (unsigned j = 0; j < pad_words; ++j) *ptr++ = pad_word; ibs[0].size = size; ibs[0].ib_mc_address = radv_buffer_get_va(bos[0]); ibs[0].flags = 0; } if (aws->debug_all_bos) u_rwlock_rdlock(&aws->global_bo_list_lock); result = radv_amdgpu_get_bo_list(cs0->ws, &cs_array[i], cnt, (struct radv_amdgpu_winsys_bo **)bos, number_of_ibs, preamble_cs, radv_bo_list, &num_handles, &handles); if (result != VK_SUCCESS) { free(ibs); free(bos); if (aws->debug_all_bos) u_rwlock_rdunlock(&aws->global_bo_list_lock); return result; } memset(&request, 0, sizeof(request)); request.ip_type = cs0->hw_ip; request.ring = queue_idx; request.handles = handles; request.num_handles = num_handles; request.number_of_ibs = number_of_ibs; request.ibs = ibs; request.fence_info = radv_set_cs_fence(ctx, cs0->hw_ip, queue_idx); sem_info->cs_emit_signal = (i == cs_count - cnt) ? emit_signal_sem : false; result = radv_amdgpu_cs_submit(ctx, &request, sem_info); free(request.handles); if (aws->debug_all_bos) u_rwlock_rdunlock(&aws->global_bo_list_lock); for (unsigned j = 0; j < number_of_ibs; j++) { ws->buffer_destroy(bos[j]); } free(ibs); free(bos); if (result != VK_SUCCESS) return result; i += cnt; } if (fence) radv_amdgpu_request_to_fence(ctx, fence, &request); radv_assign_last_submit(ctx, &request); return VK_SUCCESS; } static VkResult radv_amdgpu_winsys_cs_submit(struct radeon_winsys_ctx *_ctx, int queue_idx, struct radeon_cmdbuf **cs_array, unsigned cs_count, struct radeon_cmdbuf *initial_preamble_cs, struct radeon_cmdbuf *continue_preamble_cs, struct radv_winsys_sem_info *sem_info, const struct radv_winsys_bo_list *bo_list, bool can_patch, struct radeon_winsys_fence *_fence) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[0]); struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx); VkResult result; assert(sem_info); if (!cs->ws->use_ib_bos) { result = radv_amdgpu_winsys_cs_submit_sysmem(_ctx, queue_idx, sem_info, bo_list, cs_array, cs_count, initial_preamble_cs, continue_preamble_cs, _fence); } else if (can_patch) { result = radv_amdgpu_winsys_cs_submit_chained(_ctx, queue_idx, sem_info, bo_list, cs_array, cs_count, initial_preamble_cs, continue_preamble_cs, _fence); } else { result = radv_amdgpu_winsys_cs_submit_fallback(_ctx, queue_idx, sem_info, bo_list, cs_array, cs_count, initial_preamble_cs, continue_preamble_cs, _fence); } radv_amdgpu_signal_sems(ctx, cs->hw_ip, queue_idx, sem_info); return result; } static void *radv_amdgpu_winsys_get_cpu_addr(void *_cs, uint64_t addr) { struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs *)_cs; void *ret = NULL; if (!cs->ib_buffer) return NULL; for (unsigned i = 0; i <= cs->num_old_ib_buffers; ++i) { struct radv_amdgpu_winsys_bo *bo; bo = (struct radv_amdgpu_winsys_bo*) (i == cs->num_old_ib_buffers ? cs->ib_buffer : cs->old_ib_buffers[i]); if (addr >= bo->base.va && addr - bo->base.va < bo->size) { if (amdgpu_bo_cpu_map(bo->bo, &ret) == 0) return (char *)ret + (addr - bo->base.va); } } if(cs->ws->debug_all_bos) { u_rwlock_rdlock(&cs->ws->global_bo_list_lock); list_for_each_entry(struct radv_amdgpu_winsys_bo, bo, &cs->ws->global_bo_list, global_list_item) { if (addr >= bo->base.va && addr - bo->base.va < bo->size) { if (amdgpu_bo_cpu_map(bo->bo, &ret) == 0) { u_rwlock_rdunlock(&cs->ws->global_bo_list_lock); return (char *)ret + (addr - bo->base.va); } } } u_rwlock_rdunlock(&cs->ws->global_bo_list_lock); } return ret; } static void radv_amdgpu_winsys_cs_dump(struct radeon_cmdbuf *_cs, FILE* file, const int *trace_ids, int trace_id_count) { struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs *)_cs; void *ib = cs->base.buf; int num_dw = cs->base.cdw; if (cs->ws->use_ib_bos) { ib = radv_amdgpu_winsys_get_cpu_addr(cs, cs->ib.ib_mc_address); num_dw = cs->ib.size; } assert(ib); ac_parse_ib(file, ib, num_dw, trace_ids, trace_id_count, "main IB", cs->ws->info.chip_class, radv_amdgpu_winsys_get_cpu_addr, cs); } static uint32_t radv_to_amdgpu_priority(enum radeon_ctx_priority radv_priority) { switch (radv_priority) { case RADEON_CTX_PRIORITY_REALTIME: return AMDGPU_CTX_PRIORITY_VERY_HIGH; case RADEON_CTX_PRIORITY_HIGH: return AMDGPU_CTX_PRIORITY_HIGH; case RADEON_CTX_PRIORITY_MEDIUM: return AMDGPU_CTX_PRIORITY_NORMAL; case RADEON_CTX_PRIORITY_LOW: return AMDGPU_CTX_PRIORITY_LOW; default: unreachable("Invalid context priority"); } } static VkResult radv_amdgpu_ctx_create(struct radeon_winsys *_ws, enum radeon_ctx_priority priority, struct radeon_winsys_ctx **rctx) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); struct radv_amdgpu_ctx *ctx = CALLOC_STRUCT(radv_amdgpu_ctx); uint32_t amdgpu_priority = radv_to_amdgpu_priority(priority); VkResult result; int r; if (!ctx) return VK_ERROR_OUT_OF_HOST_MEMORY; r = amdgpu_cs_ctx_create2(ws->dev, amdgpu_priority, &ctx->ctx); if (r && r == -EACCES) { result = VK_ERROR_NOT_PERMITTED_EXT; goto fail_create; } else if (r) { fprintf(stderr, "amdgpu: radv_amdgpu_cs_ctx_create2 failed. (%i)\n", r); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail_create; } ctx->ws = ws; assert(AMDGPU_HW_IP_NUM * MAX_RINGS_PER_TYPE * sizeof(uint64_t) <= 4096); ctx->fence_bo = ws->base.buffer_create(&ws->base, 4096, 8, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING, RADV_BO_PRIORITY_CS); if (!ctx->fence_bo) { result = VK_ERROR_OUT_OF_DEVICE_MEMORY; goto fail_alloc; } ctx->fence_map = (uint64_t *)ws->base.buffer_map(ctx->fence_bo); if (!ctx->fence_map) { result = VK_ERROR_OUT_OF_DEVICE_MEMORY; goto fail_map; } memset(ctx->fence_map, 0, 4096); *rctx = (struct radeon_winsys_ctx *)ctx; return VK_SUCCESS; fail_map: ws->base.buffer_destroy(ctx->fence_bo); fail_alloc: amdgpu_cs_ctx_free(ctx->ctx); fail_create: FREE(ctx); return result; } static void radv_amdgpu_ctx_destroy(struct radeon_winsys_ctx *rwctx) { struct radv_amdgpu_ctx *ctx = (struct radv_amdgpu_ctx *)rwctx; ctx->ws->base.buffer_destroy(ctx->fence_bo); amdgpu_cs_ctx_free(ctx->ctx); FREE(ctx); } static bool radv_amdgpu_ctx_wait_idle(struct radeon_winsys_ctx *rwctx, enum ring_type ring_type, int ring_index) { struct radv_amdgpu_ctx *ctx = (struct radv_amdgpu_ctx *)rwctx; int ip_type = ring_to_hw_ip(ring_type); if (ctx->last_submission[ip_type][ring_index].fence.fence) { uint32_t expired; int ret = amdgpu_cs_query_fence_status(&ctx->last_submission[ip_type][ring_index].fence, 1000000000ull, 0, &expired); if (ret || !expired) return false; } return true; } static struct radeon_winsys_sem *radv_amdgpu_create_sem(struct radeon_winsys *_ws) { struct amdgpu_cs_fence *sem = CALLOC_STRUCT(amdgpu_cs_fence); if (!sem) return NULL; return (struct radeon_winsys_sem *)sem; } static void radv_amdgpu_destroy_sem(struct radeon_winsys_sem *_sem) { struct amdgpu_cs_fence *sem = (struct amdgpu_cs_fence *)_sem; FREE(sem); } static int radv_amdgpu_signal_sems(struct radv_amdgpu_ctx *ctx, uint32_t ip_type, uint32_t ring, struct radv_winsys_sem_info *sem_info) { for (unsigned i = 0; i < sem_info->signal.sem_count; i++) { struct amdgpu_cs_fence *sem = (struct amdgpu_cs_fence *)(sem_info->signal.sem)[i]; if (sem->context) return -EINVAL; *sem = ctx->last_submission[ip_type][ring].fence; } return 0; } static void *radv_amdgpu_cs_alloc_syncobj_chunk(struct radv_winsys_sem_counts *counts, const uint32_t *syncobj_override, struct drm_amdgpu_cs_chunk *chunk, int chunk_id) { const uint32_t *src = syncobj_override ? syncobj_override : counts->syncobj; struct drm_amdgpu_cs_chunk_sem *syncobj = malloc(sizeof(struct drm_amdgpu_cs_chunk_sem) * counts->syncobj_count); if (!syncobj) return NULL; for (unsigned i = 0; i < counts->syncobj_count; i++) { struct drm_amdgpu_cs_chunk_sem *sem = &syncobj[i]; sem->handle = src[i]; } chunk->chunk_id = chunk_id; chunk->length_dw = sizeof(struct drm_amdgpu_cs_chunk_sem) / 4 * counts->syncobj_count; chunk->chunk_data = (uint64_t)(uintptr_t)syncobj; return syncobj; } static void * radv_amdgpu_cs_alloc_timeline_syncobj_chunk(struct radv_winsys_sem_counts *counts, const uint32_t *syncobj_override, struct drm_amdgpu_cs_chunk *chunk, int chunk_id) { const uint32_t *src = syncobj_override ? syncobj_override : counts->syncobj; struct drm_amdgpu_cs_chunk_syncobj *syncobj = malloc(sizeof(struct drm_amdgpu_cs_chunk_syncobj) * (counts->syncobj_count + counts->timeline_syncobj_count)); if (!syncobj) return NULL; for (unsigned i = 0; i < counts->syncobj_count; i++) { struct drm_amdgpu_cs_chunk_syncobj *sem = &syncobj[i]; sem->handle = src[i]; sem->flags = 0; sem->point = 0; } for (unsigned i = 0; i < counts->timeline_syncobj_count; i++) { struct drm_amdgpu_cs_chunk_syncobj *sem = &syncobj[i + counts->syncobj_count]; sem->handle = counts->syncobj[i + counts->syncobj_count]; sem->flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT; sem->point = counts->points[i]; } chunk->chunk_id = chunk_id; chunk->length_dw = sizeof(struct drm_amdgpu_cs_chunk_syncobj) / 4 * (counts->syncobj_count + counts->timeline_syncobj_count); chunk->chunk_data = (uint64_t)(uintptr_t)syncobj; return syncobj; } static int radv_amdgpu_cache_alloc_syncobjs(struct radv_amdgpu_winsys *ws, unsigned count, uint32_t *dst) { pthread_mutex_lock(&ws->syncobj_lock); if (count > ws->syncobj_capacity) { if (ws->syncobj_capacity > UINT32_MAX / 2) goto fail; unsigned new_capacity = MAX2(count, ws->syncobj_capacity * 2); uint32_t *n = realloc(ws->syncobj, new_capacity * sizeof(*ws->syncobj)); if (!n) goto fail; ws->syncobj_capacity = new_capacity; ws->syncobj = n; } while(ws->syncobj_count < count) { int r = amdgpu_cs_create_syncobj(ws->dev, ws->syncobj + ws->syncobj_count); if (r) goto fail; ++ws->syncobj_count; } for (unsigned i = 0; i < count; ++i) dst[i] = ws->syncobj[--ws->syncobj_count]; pthread_mutex_unlock(&ws->syncobj_lock); return 0; fail: pthread_mutex_unlock(&ws->syncobj_lock); return -ENOMEM; } static void radv_amdgpu_cache_free_syncobjs(struct radv_amdgpu_winsys *ws, unsigned count, uint32_t *src) { pthread_mutex_lock(&ws->syncobj_lock); uint32_t cache_count = MIN2(count, UINT32_MAX - ws->syncobj_count); if (cache_count + ws->syncobj_count > ws->syncobj_capacity) { unsigned new_capacity = MAX2(ws->syncobj_count + cache_count, ws->syncobj_capacity * 2); uint32_t* n = realloc(ws->syncobj, new_capacity * sizeof(*ws->syncobj)); if (n) { ws->syncobj_capacity = new_capacity; ws->syncobj = n; } } for (unsigned i = 0; i < count; ++i) { if (ws->syncobj_count < ws->syncobj_capacity) ws->syncobj[ws->syncobj_count++] = src[i]; else amdgpu_cs_destroy_syncobj(ws->dev, src[i]); } pthread_mutex_unlock(&ws->syncobj_lock); } static int radv_amdgpu_cs_prepare_syncobjs(struct radv_amdgpu_winsys *ws, struct radv_winsys_sem_counts *counts, uint32_t **out_syncobjs) { int r = 0; if (!ws->info.has_timeline_syncobj || !counts->syncobj_count) { *out_syncobjs = NULL; return 0; } *out_syncobjs = malloc(counts->syncobj_count * sizeof(**out_syncobjs)); if (!*out_syncobjs) return -ENOMEM; r = radv_amdgpu_cache_alloc_syncobjs(ws, counts->syncobj_count, *out_syncobjs); if (r) return r; for (unsigned i = 0; i < counts->syncobj_count; ++i) { r = amdgpu_cs_syncobj_transfer(ws->dev, (*out_syncobjs)[i], 0, counts->syncobj[i], 0, DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT); if (r) goto fail; } r = amdgpu_cs_syncobj_reset(ws->dev, counts->syncobj, counts->syncobj_reset_count); if (r) goto fail; return 0; fail: radv_amdgpu_cache_free_syncobjs(ws, counts->syncobj_count, *out_syncobjs); free(*out_syncobjs); *out_syncobjs = NULL; return r; } static VkResult radv_amdgpu_cs_submit(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_cs_request *request, struct radv_winsys_sem_info *sem_info) { int r; int num_chunks; int size; bool user_fence; struct drm_amdgpu_cs_chunk *chunks; struct drm_amdgpu_cs_chunk_data *chunk_data; struct drm_amdgpu_cs_chunk_dep *sem_dependencies = NULL; bool use_bo_list_create = ctx->ws->info.drm_minor < 27; struct drm_amdgpu_bo_list_in bo_list_in; void *wait_syncobj = NULL, *signal_syncobj = NULL; uint32_t *in_syncobjs = NULL; int i; struct amdgpu_cs_fence *sem; uint32_t bo_list = 0; VkResult result = VK_SUCCESS; user_fence = (request->fence_info.handle != NULL); size = request->number_of_ibs + (user_fence ? 2 : 1) + (!use_bo_list_create ? 1 : 0) + 3; chunks = malloc(sizeof(chunks[0]) * size); if (!chunks) return VK_ERROR_OUT_OF_HOST_MEMORY; size = request->number_of_ibs + (user_fence ? 1 : 0); chunk_data = malloc(sizeof(chunk_data[0]) * size); if (!chunk_data) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto error_out; } num_chunks = request->number_of_ibs; for (i = 0; i < request->number_of_ibs; i++) { struct amdgpu_cs_ib_info *ib; chunks[i].chunk_id = AMDGPU_CHUNK_ID_IB; chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4; chunks[i].chunk_data = (uint64_t)(uintptr_t)&chunk_data[i]; ib = &request->ibs[i]; chunk_data[i].ib_data._pad = 0; chunk_data[i].ib_data.va_start = ib->ib_mc_address; chunk_data[i].ib_data.ib_bytes = ib->size * 4; chunk_data[i].ib_data.ip_type = request->ip_type; chunk_data[i].ib_data.ip_instance = request->ip_instance; chunk_data[i].ib_data.ring = request->ring; chunk_data[i].ib_data.flags = ib->flags; } if (user_fence) { i = num_chunks++; chunks[i].chunk_id = AMDGPU_CHUNK_ID_FENCE; chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_fence) / 4; chunks[i].chunk_data = (uint64_t)(uintptr_t)&chunk_data[i]; amdgpu_cs_chunk_fence_info_to_data(&request->fence_info, &chunk_data[i]); } if ((sem_info->wait.syncobj_count || sem_info->wait.timeline_syncobj_count) && sem_info->cs_emit_wait) { r = radv_amdgpu_cs_prepare_syncobjs(ctx->ws, &sem_info->wait, &in_syncobjs); if (r) goto error_out; if (ctx->ws->info.has_timeline_syncobj) { wait_syncobj = radv_amdgpu_cs_alloc_timeline_syncobj_chunk(&sem_info->wait, in_syncobjs, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT); } else { wait_syncobj = radv_amdgpu_cs_alloc_syncobj_chunk(&sem_info->wait, in_syncobjs, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_IN); } if (!wait_syncobj) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto error_out; } num_chunks++; if (sem_info->wait.sem_count == 0) sem_info->cs_emit_wait = false; } if (sem_info->wait.sem_count && sem_info->cs_emit_wait) { sem_dependencies = malloc(sizeof(sem_dependencies[0]) * sem_info->wait.sem_count); if (!sem_dependencies) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto error_out; } int sem_count = 0; for (unsigned j = 0; j < sem_info->wait.sem_count; j++) { sem = (struct amdgpu_cs_fence *)sem_info->wait.sem[j]; if (!sem->context) continue; struct drm_amdgpu_cs_chunk_dep *dep = &sem_dependencies[sem_count++]; amdgpu_cs_chunk_fence_to_dep(sem, dep); sem->context = NULL; } i = num_chunks++; /* dependencies chunk */ chunks[i].chunk_id = AMDGPU_CHUNK_ID_DEPENDENCIES; chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_dep) / 4 * sem_count; chunks[i].chunk_data = (uint64_t)(uintptr_t)sem_dependencies; sem_info->cs_emit_wait = false; } if ((sem_info->signal.syncobj_count || sem_info->signal.timeline_syncobj_count) && sem_info->cs_emit_signal) { if (ctx->ws->info.has_timeline_syncobj) { signal_syncobj = radv_amdgpu_cs_alloc_timeline_syncobj_chunk(&sem_info->signal, NULL, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL); } else { signal_syncobj = radv_amdgpu_cs_alloc_syncobj_chunk(&sem_info->signal, NULL, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_OUT); } if (!signal_syncobj) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto error_out; } num_chunks++; } if (use_bo_list_create) { /* Legacy path creating the buffer list handle and passing it * to the CS ioctl. */ r = amdgpu_bo_list_create_raw(ctx->ws->dev, request->num_handles, request->handles, &bo_list); if (r) { if (r == -ENOMEM) { fprintf(stderr, "amdgpu: Not enough memory for buffer list creation.\n"); result = VK_ERROR_OUT_OF_HOST_MEMORY; } else { fprintf(stderr, "amdgpu: buffer list creation failed (%d).\n", r); result = VK_ERROR_UNKNOWN; } goto error_out; } } else { /* Standard path passing the buffer list via the CS ioctl. */ bo_list_in.operation = ~0; bo_list_in.list_handle = ~0; bo_list_in.bo_number = request->num_handles; bo_list_in.bo_info_size = sizeof(struct drm_amdgpu_bo_list_entry); bo_list_in.bo_info_ptr = (uint64_t)(uintptr_t)request->handles; chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_BO_HANDLES; chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_bo_list_in) / 4; chunks[num_chunks].chunk_data = (uintptr_t)&bo_list_in; num_chunks++; } r = amdgpu_cs_submit_raw2(ctx->ws->dev, ctx->ctx, bo_list, num_chunks, chunks, &request->seq_no); if (r) { if (r == -ENOMEM) { fprintf(stderr, "amdgpu: Not enough memory for command submission.\n"); result = VK_ERROR_OUT_OF_HOST_MEMORY; } else if (r == -ECANCELED) { fprintf(stderr, "amdgpu: The CS has been cancelled because the context is lost.\n"); result = VK_ERROR_DEVICE_LOST; } else { fprintf(stderr, "amdgpu: The CS has been rejected, " "see dmesg for more information (%i).\n", r); result = VK_ERROR_UNKNOWN; } } if (bo_list) amdgpu_bo_list_destroy_raw(ctx->ws->dev, bo_list); error_out: if (in_syncobjs) { radv_amdgpu_cache_free_syncobjs(ctx->ws, sem_info->wait.syncobj_count, in_syncobjs); free(in_syncobjs); } free(chunks); free(chunk_data); free(sem_dependencies); free(wait_syncobj); free(signal_syncobj); return result; } static int radv_amdgpu_create_syncobj(struct radeon_winsys *_ws, bool create_signaled, uint32_t *handle) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); uint32_t flags = 0; if (create_signaled) flags |= DRM_SYNCOBJ_CREATE_SIGNALED; return amdgpu_cs_create_syncobj2(ws->dev, flags, handle); } static void radv_amdgpu_destroy_syncobj(struct radeon_winsys *_ws, uint32_t handle) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); amdgpu_cs_destroy_syncobj(ws->dev, handle); } static void radv_amdgpu_reset_syncobj(struct radeon_winsys *_ws, uint32_t handle) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); amdgpu_cs_syncobj_reset(ws->dev, &handle, 1); } static void radv_amdgpu_signal_syncobj(struct radeon_winsys *_ws, uint32_t handle, uint64_t point) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); if (point) amdgpu_cs_syncobj_timeline_signal(ws->dev, &handle, &point, 1); else amdgpu_cs_syncobj_signal(ws->dev, &handle, 1); } static VkResult radv_amdgpu_query_syncobj(struct radeon_winsys *_ws, uint32_t handle, uint64_t *point) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); int ret = amdgpu_cs_syncobj_query(ws->dev, &handle, point, 1); if (ret == 0) return VK_SUCCESS; else if (ret == -ENOMEM) return VK_ERROR_OUT_OF_HOST_MEMORY; else { /* Remaining error are driver internal issues: EFAULT for * dangling pointers and ENOENT for non-existing syncobj. */ fprintf(stderr, "amdgpu: internal error in radv_amdgpu_query_syncobj. (%d)\n", ret); return VK_ERROR_UNKNOWN; } } static bool radv_amdgpu_wait_syncobj(struct radeon_winsys *_ws, const uint32_t *handles, uint32_t handle_count, bool wait_all, uint64_t timeout) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); uint32_t tmp; /* The timeouts are signed, while vulkan timeouts are unsigned. */ timeout = MIN2(timeout, INT64_MAX); int ret = amdgpu_cs_syncobj_wait(ws->dev, (uint32_t*)handles, handle_count, timeout, DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT | (wait_all ? DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL : 0), &tmp); if (ret == 0) { return true; } else if (ret == -ETIME) { return false; } else { fprintf(stderr, "amdgpu: radv_amdgpu_wait_syncobj failed!\nerrno: %d\n", errno); return false; } } static bool radv_amdgpu_wait_timeline_syncobj(struct radeon_winsys *_ws, const uint32_t *handles, const uint64_t *points, uint32_t handle_count, bool wait_all, bool available, uint64_t timeout) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); /* The timeouts are signed, while vulkan timeouts are unsigned. */ timeout = MIN2(timeout, INT64_MAX); int ret = amdgpu_cs_syncobj_timeline_wait(ws->dev, (uint32_t*)handles, (uint64_t*)points, handle_count, timeout, DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT | (wait_all ? DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL : 0) | (available ? DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE : 0), NULL); if (ret == 0) { return true; } else if (ret == -ETIME) { return false; } else { fprintf(stderr, "amdgpu: radv_amdgpu_wait_syncobj failed! (%d)\n", errno); return false; } } static int radv_amdgpu_export_syncobj(struct radeon_winsys *_ws, uint32_t syncobj, int *fd) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); return amdgpu_cs_export_syncobj(ws->dev, syncobj, fd); } static int radv_amdgpu_import_syncobj(struct radeon_winsys *_ws, int fd, uint32_t *syncobj) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); return amdgpu_cs_import_syncobj(ws->dev, fd, syncobj); } static int radv_amdgpu_export_syncobj_to_sync_file(struct radeon_winsys *_ws, uint32_t syncobj, int *fd) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); return amdgpu_cs_syncobj_export_sync_file(ws->dev, syncobj, fd); } static int radv_amdgpu_import_syncobj_from_sync_file(struct radeon_winsys *_ws, uint32_t syncobj, int fd) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); return amdgpu_cs_syncobj_import_sync_file(ws->dev, syncobj, fd); } void radv_amdgpu_cs_init_functions(struct radv_amdgpu_winsys *ws) { ws->base.ctx_create = radv_amdgpu_ctx_create; ws->base.ctx_destroy = radv_amdgpu_ctx_destroy; ws->base.ctx_wait_idle = radv_amdgpu_ctx_wait_idle; ws->base.cs_create = radv_amdgpu_cs_create; ws->base.cs_destroy = radv_amdgpu_cs_destroy; ws->base.cs_grow = radv_amdgpu_cs_grow; ws->base.cs_finalize = radv_amdgpu_cs_finalize; ws->base.cs_reset = radv_amdgpu_cs_reset; ws->base.cs_add_buffer = radv_amdgpu_cs_add_buffer; ws->base.cs_execute_secondary = radv_amdgpu_cs_execute_secondary; ws->base.cs_submit = radv_amdgpu_winsys_cs_submit; ws->base.cs_dump = radv_amdgpu_winsys_cs_dump; ws->base.create_fence = radv_amdgpu_create_fence; ws->base.destroy_fence = radv_amdgpu_destroy_fence; ws->base.reset_fence = radv_amdgpu_reset_fence; ws->base.signal_fence = radv_amdgpu_signal_fence; ws->base.is_fence_waitable = radv_amdgpu_is_fence_waitable; ws->base.create_sem = radv_amdgpu_create_sem; ws->base.destroy_sem = radv_amdgpu_destroy_sem; ws->base.create_syncobj = radv_amdgpu_create_syncobj; ws->base.destroy_syncobj = radv_amdgpu_destroy_syncobj; ws->base.reset_syncobj = radv_amdgpu_reset_syncobj; ws->base.signal_syncobj = radv_amdgpu_signal_syncobj; ws->base.query_syncobj = radv_amdgpu_query_syncobj; ws->base.wait_syncobj = radv_amdgpu_wait_syncobj; ws->base.wait_timeline_syncobj = radv_amdgpu_wait_timeline_syncobj; ws->base.export_syncobj = radv_amdgpu_export_syncobj; ws->base.import_syncobj = radv_amdgpu_import_syncobj; ws->base.export_syncobj_to_sync_file = radv_amdgpu_export_syncobj_to_sync_file; ws->base.import_syncobj_from_sync_file = radv_amdgpu_import_syncobj_from_sync_file; ws->base.fence_wait = radv_amdgpu_fence_wait; ws->base.fences_wait = radv_amdgpu_fences_wait; }