/* * Copyright © 2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "nir_deref.h" #include "util/u_dynarray.h" /** * Elimination of dead writes based on derefs. * * Dead writes are stores and copies that write to a deref, which then gets * another write before it was used (read or sourced for a copy). Those * writes can be removed since they don't affect anything. * * For derefs that refer to a memory area that can be read after the program, * the last write is considered used. The presence of certain instructions * may also cause writes to be considered used, e.g. memory barrier (in this case * the value must be written as other thread might use it). * * The write mask for store instructions is considered, so it is possible that * a store is removed because of the combination of other stores overwritten * its value. */ /* Entry for unused_writes arrays. */ struct write_entry { /* If NULL indicates the entry is free to be reused. */ nir_intrinsic_instr *intrin; nir_component_mask_t mask; nir_deref_instr *dst; }; static void clear_unused_for_modes(struct util_dynarray *unused_writes, nir_variable_mode modes) { util_dynarray_foreach_reverse(unused_writes, struct write_entry, entry) { if (nir_deref_mode_may_be(entry->dst, modes)) *entry = util_dynarray_pop(unused_writes, struct write_entry); } } static void clear_unused_for_read(struct util_dynarray *unused_writes, nir_deref_instr *src) { util_dynarray_foreach_reverse(unused_writes, struct write_entry, entry) { if (nir_compare_derefs(src, entry->dst) & nir_derefs_may_alias_bit) *entry = util_dynarray_pop(unused_writes, struct write_entry); } } static bool update_unused_writes(struct util_dynarray *unused_writes, nir_intrinsic_instr *intrin, nir_deref_instr *dst, nir_component_mask_t mask) { bool progress = false; /* This pass assumes that destination of copies and stores are derefs that * end in a vector or scalar (it is OK to have wildcards or indirects for * arrays). */ assert(glsl_type_is_vector_or_scalar(dst->type)); /* Find writes that are unused and can be removed. */ util_dynarray_foreach_reverse(unused_writes, struct write_entry, entry) { nir_deref_compare_result comp = nir_compare_derefs(dst, entry->dst); if (comp & nir_derefs_a_contains_b_bit) { entry->mask &= ~mask; if (entry->mask == 0) { nir_instr_remove(&entry->intrin->instr); *entry = util_dynarray_pop(unused_writes, struct write_entry); progress = true; } } } /* Add the new write to the unused array. */ struct write_entry new_entry = { .intrin = intrin, .mask = mask, .dst = dst, }; util_dynarray_append(unused_writes, struct write_entry, new_entry); return progress; } static bool remove_dead_write_vars_local(void *mem_ctx, nir_block *block) { bool progress = false; struct util_dynarray unused_writes; util_dynarray_init(&unused_writes, mem_ctx); nir_foreach_instr_safe(instr, block) { if (instr->type == nir_instr_type_call) { clear_unused_for_modes(&unused_writes, nir_var_shader_out | nir_var_shader_temp | nir_var_function_temp | nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global); continue; } if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_control_barrier: case nir_intrinsic_group_memory_barrier: case nir_intrinsic_memory_barrier: { clear_unused_for_modes(&unused_writes, nir_var_shader_out | nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global); break; } case nir_intrinsic_memory_barrier_buffer: clear_unused_for_modes(&unused_writes, nir_var_mem_ssbo | nir_var_mem_global); break; case nir_intrinsic_memory_barrier_shared: clear_unused_for_modes(&unused_writes, nir_var_mem_shared); break; case nir_intrinsic_memory_barrier_tcs_patch: clear_unused_for_modes(&unused_writes, nir_var_shader_out); break; case nir_intrinsic_scoped_barrier: { if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_RELEASE) { clear_unused_for_modes(&unused_writes, nir_intrinsic_memory_modes(intrin)); } break; } case nir_intrinsic_emit_vertex: case nir_intrinsic_emit_vertex_with_counter: { clear_unused_for_modes(&unused_writes, nir_var_shader_out); break; } case nir_intrinsic_load_deref: { nir_deref_instr *src = nir_src_as_deref(intrin->src[0]); clear_unused_for_read(&unused_writes, src); break; } case nir_intrinsic_store_deref: { nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]); if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE) { /* Consider a volatile write to also be a sort of read. This * prevents us from deleting a non-volatile write just before a * volatile write thanks to a non-volatile write afterwards. It's * quite the corner case, but this should be safer and more * predictable for the programmer than allowing two non-volatile * writes to be combined with a volatile write between them. */ clear_unused_for_read(&unused_writes, dst); break; } nir_component_mask_t mask = nir_intrinsic_write_mask(intrin); progress |= update_unused_writes(&unused_writes, intrin, dst, mask); break; } case nir_intrinsic_copy_deref: { nir_deref_instr *src = nir_src_as_deref(intrin->src[1]); nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]); if (nir_intrinsic_dst_access(intrin) & ACCESS_VOLATILE) { clear_unused_for_read(&unused_writes, src); clear_unused_for_read(&unused_writes, dst); break; } /* Self-copy is removed. */ if (nir_compare_derefs(src, dst) & nir_derefs_equal_bit) { nir_instr_remove(instr); progress = true; break; } clear_unused_for_read(&unused_writes, src); nir_component_mask_t mask = (1 << glsl_get_vector_elements(dst->type)) - 1; progress |= update_unused_writes(&unused_writes, intrin, dst, mask); break; } default: break; } } /* All unused writes at the end of the block are kept, since we can't be * sure they'll be overwritten or not with local analysis only. */ return progress; } static bool remove_dead_write_vars_impl(void *mem_ctx, nir_function_impl *impl) { bool progress = false; nir_metadata_require(impl, nir_metadata_block_index); nir_foreach_block(block, impl) progress |= remove_dead_write_vars_local(mem_ctx, block); if (progress) { nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); } else { nir_metadata_preserve(impl, nir_metadata_all); } return progress; } bool nir_opt_dead_write_vars(nir_shader *shader) { void *mem_ctx = ralloc_context(NULL); bool progress = false; nir_foreach_function(function, shader) { if (!function->impl) continue; progress |= remove_dead_write_vars_impl(mem_ctx, function->impl); } ralloc_free(mem_ctx); return progress; }