/* * Copyright (C) 2014 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "util/u_atomic.h" #include "util/u_string.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/format/u_format.h" #include "drm/freedreno_drmif.h" #include "ir3_shader.h" #include "ir3_compiler.h" #include "ir3_nir.h" #include "disasm.h" int ir3_glsl_type_size(const struct glsl_type *type, bool bindless) { return glsl_count_attribute_slots(type, false); } /* for vertex shader, the inputs are loaded into registers before the shader * is executed, so max_regs from the shader instructions might not properly * reflect the # of registers actually used, especially in case passthrough * varyings. * * Likewise, for fragment shader, we can have some regs which are passed * input values but never touched by the resulting shader (ie. as result * of dead code elimination or simply because we don't know how to turn * the reg off. */ static void fixup_regfootprint(struct ir3_shader_variant *v) { unsigned i; for (i = 0; i < v->inputs_count; i++) { /* skip frag inputs fetch via bary.f since their reg's are * not written by gpu before shader starts (and in fact the * regid's might not even be valid) */ if (v->inputs[i].bary) continue; /* ignore high regs that are global to all threads in a warp * (they exist by default) (a5xx+) */ if (v->inputs[i].regid >= regid(48,0)) continue; if (v->inputs[i].compmask) { unsigned n = util_last_bit(v->inputs[i].compmask) - 1; int32_t regid = v->inputs[i].regid + n; if (v->inputs[i].half) { if (!v->mergedregs) { v->info.max_half_reg = MAX2(v->info.max_half_reg, regid >> 2); } else { v->info.max_reg = MAX2(v->info.max_reg, regid >> 3); } } else { v->info.max_reg = MAX2(v->info.max_reg, regid >> 2); } } } for (i = 0; i < v->outputs_count; i++) { /* for ex, VS shaders with tess don't have normal varying outs: */ if (!VALIDREG(v->outputs[i].regid)) continue; int32_t regid = v->outputs[i].regid + 3; if (v->outputs[i].half) { if (!v->mergedregs) { v->info.max_half_reg = MAX2(v->info.max_half_reg, regid >> 2); } else { v->info.max_reg = MAX2(v->info.max_reg, regid >> 3); } } else { v->info.max_reg = MAX2(v->info.max_reg, regid >> 2); } } for (i = 0; i < v->num_sampler_prefetch; i++) { unsigned n = util_last_bit(v->sampler_prefetch[i].wrmask) - 1; int32_t regid = v->sampler_prefetch[i].dst + n; if (v->sampler_prefetch[i].half_precision) { if (!v->mergedregs) { v->info.max_half_reg = MAX2(v->info.max_half_reg, regid >> 2); } else { v->info.max_reg = MAX2(v->info.max_reg, regid >> 3); } } else { v->info.max_reg = MAX2(v->info.max_reg, regid >> 2); } } } /* wrapper for ir3_assemble() which does some info fixup based on * shader state. Non-static since used by ir3_cmdline too. */ void * ir3_shader_assemble(struct ir3_shader_variant *v) { const struct ir3_compiler *compiler = v->shader->compiler; void *bin; bin = ir3_assemble(v); if (!bin) return NULL; /* NOTE: if relative addressing is used, we set constlen in * the compiler (to worst-case value) since we don't know in * the assembler what the max addr reg value can be: */ v->constlen = MAX2(v->constlen, v->info.max_const + 1); /* On a4xx and newer, constlen must be a multiple of 16 dwords even though * uploads are in units of 4 dwords. Round it up here to make calculations * regarding the shared constlen simpler. */ if (compiler->gpu_id >= 400) v->constlen = align(v->constlen, 4); fixup_regfootprint(v); return bin; } static void assemble_variant(struct ir3_shader_variant *v) { v->bin = ir3_shader_assemble(v); if (shader_debug_enabled(v->shader->type)) { fprintf(stdout, "Native code for unnamed %s shader %s:\n", ir3_shader_stage(v), v->shader->nir->info.name); if (v->shader->type == MESA_SHADER_FRAGMENT) fprintf(stdout, "SIMD0\n"); ir3_shader_disasm(v, v->bin, stdout); } /* no need to keep the ir around beyond this point: */ ir3_destroy(v->ir); v->ir = NULL; } static bool compile_variant(struct ir3_shader_variant *v) { int ret = ir3_compile_shader_nir(v->shader->compiler, v); if (ret) { _debug_printf("compile failed! (%s:%s)", v->shader->nir->info.name, v->shader->nir->info.label); return false; } assemble_variant(v); if (!v->bin) { _debug_printf("assemble failed! (%s:%s)", v->shader->nir->info.name, v->shader->nir->info.label); return false; } return true; } /* * For creating normal shader variants, 'nonbinning' is NULL. For * creating binning pass shader, it is link to corresponding normal * (non-binning) variant. */ static struct ir3_shader_variant * alloc_variant(struct ir3_shader *shader, const struct ir3_shader_key *key, struct ir3_shader_variant *nonbinning) { void *mem_ctx = shader; /* hang the binning variant off it's non-binning counterpart instead * of the shader, to simplify the error cleanup paths */ if (nonbinning) mem_ctx = nonbinning; struct ir3_shader_variant *v = rzalloc_size(mem_ctx, sizeof(*v)); if (!v) return NULL; v->id = ++shader->variant_count; v->shader = shader; v->binning_pass = !!nonbinning; v->nonbinning = nonbinning; v->key = *key; v->type = shader->type; v->mergedregs = shader->compiler->gpu_id >= 600; if (!v->binning_pass) v->const_state = rzalloc_size(v, sizeof(*v->const_state)); return v; } static bool needs_binning_variant(struct ir3_shader_variant *v) { if ((v->type == MESA_SHADER_VERTEX) && ir3_has_binning_vs(&v->key)) return true; return false; } static struct ir3_shader_variant * create_variant(struct ir3_shader *shader, const struct ir3_shader_key *key) { struct ir3_shader_variant *v = alloc_variant(shader, key, NULL); if (!v) goto fail; if (needs_binning_variant(v)) { v->binning = alloc_variant(shader, key, v); if (!v->binning) goto fail; } if (ir3_disk_cache_retrieve(shader->compiler, v)) return v; if (!shader->nir_finalized) { ir3_nir_post_finalize(shader->compiler, shader->nir); if (ir3_shader_debug & IR3_DBG_DISASM) { printf("dump nir%d: type=%d", shader->id, shader->type); nir_print_shader(shader->nir, stdout); } shader->nir_finalized = true; } if (!compile_variant(v)) goto fail; if (needs_binning_variant(v) && !compile_variant(v->binning)) goto fail; ir3_disk_cache_store(shader->compiler, v); return v; fail: ralloc_free(v); return NULL; } static inline struct ir3_shader_variant * shader_variant(struct ir3_shader *shader, const struct ir3_shader_key *key) { struct ir3_shader_variant *v; for (v = shader->variants; v; v = v->next) if (ir3_shader_key_equal(key, &v->key)) return v; return NULL; } struct ir3_shader_variant * ir3_shader_get_variant(struct ir3_shader *shader, const struct ir3_shader_key *key, bool binning_pass, bool *created) { mtx_lock(&shader->variants_lock); struct ir3_shader_variant *v = shader_variant(shader, key); if (!v) { /* compile new variant if it doesn't exist already: */ v = create_variant(shader, key); if (v) { v->next = shader->variants; shader->variants = v; *created = true; } } if (v && binning_pass) { v = v->binning; assert(v); } mtx_unlock(&shader->variants_lock); return v; } void ir3_shader_destroy(struct ir3_shader *shader) { ralloc_free(shader->nir); mtx_destroy(&shader->variants_lock); ralloc_free(shader); } /** * Creates a bitmask of the used bits of the shader key by this particular * shader. Used by the gallium driver to skip state-dependent recompiles when * possible. */ static void ir3_setup_used_key(struct ir3_shader *shader) { nir_shader *nir = shader->nir; struct shader_info *info = &nir->info; struct ir3_shader_key *key = &shader->key_mask; /* This key flag is just used to make for a cheaper ir3_shader_key_equal * check in the common case. */ key->has_per_samp = true; key->safe_constlen = true; /* When clip/cull distances are natively supported, we only use * ucp_enables to determine whether to lower legacy clip planes to * gl_ClipDistance. */ if (info->stage != MESA_SHADER_FRAGMENT || !shader->compiler->has_clip_cull) key->ucp_enables = 0xff; if (info->stage == MESA_SHADER_FRAGMENT) { key->fsaturate_s = ~0; key->fsaturate_t = ~0; key->fsaturate_r = ~0; key->fastc_srgb = ~0; key->fsamples = ~0; if (info->inputs_read & VARYING_BITS_COLOR) { key->rasterflat = true; key->color_two_side = true; } if (info->inputs_read & VARYING_BIT_LAYER) { key->layer_zero = true; } if (info->inputs_read & VARYING_BIT_VIEWPORT) { key->view_zero = true; } if ((info->outputs_written & ~(FRAG_RESULT_DEPTH | FRAG_RESULT_STENCIL | FRAG_RESULT_SAMPLE_MASK)) != 0) { key->fclamp_color = true; } /* Only used for deciding on behavior of * nir_intrinsic_load_barycentric_sample */ key->msaa = info->fs.uses_sample_qualifier; } else { key->tessellation = ~0; key->has_gs = true; if (info->outputs_written & VARYING_BITS_COLOR) key->vclamp_color = true; if (info->stage == MESA_SHADER_VERTEX) { key->vsaturate_s = ~0; key->vsaturate_t = ~0; key->vsaturate_r = ~0; key->vastc_srgb = ~0; key->vsamples = ~0; } } } /* Given an array of constlen's, decrease some of them so that the sum stays * within "combined_limit" while trying to fairly share the reduction. Returns * a bitfield of which stages should be trimmed. */ static uint32_t trim_constlens(unsigned *constlens, unsigned first_stage, unsigned last_stage, unsigned combined_limit, unsigned safe_limit) { unsigned cur_total = 0; for (unsigned i = first_stage; i <= last_stage; i++) { cur_total += constlens[i]; } unsigned max_stage = 0; unsigned max_const = 0; uint32_t trimmed = 0; while (cur_total > combined_limit) { for (unsigned i = first_stage; i <= last_stage; i++) { if (constlens[i] >= max_const) { max_stage = i; max_const = constlens[i]; } } assert(max_const > safe_limit); trimmed |= 1 << max_stage; cur_total = cur_total - max_const + safe_limit; constlens[max_stage] = safe_limit; } return trimmed; } /* Figures out which stages in the pipeline to use the "safe" constlen for, in * order to satisfy all shared constlen limits. */ uint32_t ir3_trim_constlen(struct ir3_shader_variant **variants, const struct ir3_compiler *compiler) { unsigned constlens[MESA_SHADER_STAGES] = {}; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (variants[i]) constlens[i] = variants[i]->constlen; } uint32_t trimmed = 0; STATIC_ASSERT(MESA_SHADER_STAGES <= 8 * sizeof(trimmed)); /* There are two shared limits to take into account, the geometry limit on * a6xx and the total limit. The frag limit on a6xx only matters for a * single stage, so it's always satisfied with the first variant. */ if (compiler->gpu_id >= 600) { trimmed |= trim_constlens(constlens, MESA_SHADER_VERTEX, MESA_SHADER_GEOMETRY, compiler->max_const_geom, compiler->max_const_safe); } trimmed |= trim_constlens(constlens, MESA_SHADER_VERTEX, MESA_SHADER_FRAGMENT, compiler->max_const_pipeline, compiler->max_const_safe); return trimmed; } struct ir3_shader * ir3_shader_from_nir(struct ir3_compiler *compiler, nir_shader *nir, unsigned reserved_user_consts, struct ir3_stream_output_info *stream_output) { struct ir3_shader *shader = rzalloc_size(NULL, sizeof(*shader)); mtx_init(&shader->variants_lock, mtx_plain); shader->compiler = compiler; shader->id = p_atomic_inc_return(&shader->compiler->shader_count); shader->type = nir->info.stage; if (stream_output) memcpy(&shader->stream_output, stream_output, sizeof(shader->stream_output)); shader->num_reserved_user_consts = reserved_user_consts; shader->nir = nir; ir3_disk_cache_init_shader_key(compiler, shader); ir3_setup_used_key(shader); return shader; } static void dump_reg(FILE *out, const char *name, uint32_t r) { if (r != regid(63,0)) { const char *reg_type = (r & HALF_REG_ID) ? "hr" : "r"; fprintf(out, "; %s: %s%d.%c\n", name, reg_type, (r & ~HALF_REG_ID) >> 2, "xyzw"[r & 0x3]); } } static void dump_output(FILE *out, struct ir3_shader_variant *so, unsigned slot, const char *name) { uint32_t regid; regid = ir3_find_output_regid(so, slot); dump_reg(out, name, regid); } static const char * input_name(struct ir3_shader_variant *so, int i) { if (so->inputs[i].sysval) { return gl_system_value_name(so->inputs[i].slot); } else if (so->type == MESA_SHADER_VERTEX) { return gl_vert_attrib_name(so->inputs[i].slot); } else { return gl_varying_slot_name(so->inputs[i].slot); } } static const char * output_name(struct ir3_shader_variant *so, int i) { if (so->type == MESA_SHADER_FRAGMENT) { return gl_frag_result_name(so->outputs[i].slot); } else { switch (so->outputs[i].slot) { case VARYING_SLOT_GS_HEADER_IR3: return "GS_HEADER"; case VARYING_SLOT_GS_VERTEX_FLAGS_IR3: return "GS_VERTEX_FLAGS"; case VARYING_SLOT_TCS_HEADER_IR3: return "TCS_HEADER"; default: return gl_varying_slot_name(so->outputs[i].slot); } } } void ir3_shader_disasm(struct ir3_shader_variant *so, uint32_t *bin, FILE *out) { struct ir3 *ir = so->ir; struct ir3_register *reg; const char *type = ir3_shader_stage(so); uint8_t regid; unsigned i; foreach_input_n (instr, i, ir) { reg = instr->regs[0]; regid = reg->num; fprintf(out, "@in(%sr%d.%c)\tin%d", (reg->flags & IR3_REG_HALF) ? "h" : "", (regid >> 2), "xyzw"[regid & 0x3], i); if (reg->wrmask > 0x1) fprintf(out, " (wrmask=0x%x)", reg->wrmask); fprintf(out, "\n"); } /* print pre-dispatch texture fetches: */ for (i = 0; i < so->num_sampler_prefetch; i++) { const struct ir3_sampler_prefetch *fetch = &so->sampler_prefetch[i]; fprintf(out, "@tex(%sr%d.%c)\tsrc=%u, samp=%u, tex=%u, wrmask=0x%x, cmd=%u\n", fetch->half_precision ? "h" : "", fetch->dst >> 2, "xyzw"[fetch->dst & 0x3], fetch->src, fetch->samp_id, fetch->tex_id, fetch->wrmask, fetch->cmd); } foreach_output_n (instr, i, ir) { reg = instr->regs[0]; regid = reg->num; fprintf(out, "@out(%sr%d.%c)\tout%d", (reg->flags & IR3_REG_HALF) ? "h" : "", (regid >> 2), "xyzw"[regid & 0x3], i); if (reg->wrmask > 0x1) fprintf(out, " (wrmask=0x%x)", reg->wrmask); fprintf(out, "\n"); } const struct ir3_const_state *const_state = ir3_const_state(so); for (i = 0; i < DIV_ROUND_UP(const_state->immediates_count, 4); i++) { fprintf(out, "@const(c%d.x)\t", const_state->offsets.immediate + i); fprintf(out, "0x%08x, 0x%08x, 0x%08x, 0x%08x\n", const_state->immediates[i * 4 + 0], const_state->immediates[i * 4 + 1], const_state->immediates[i * 4 + 2], const_state->immediates[i * 4 + 3]); } disasm_a3xx(bin, so->info.sizedwords, 0, out, ir->compiler->gpu_id); fprintf(out, "; %s: outputs:", type); for (i = 0; i < so->outputs_count; i++) { uint8_t regid = so->outputs[i].regid; const char *reg_type = so->outputs[i].half ? "hr" : "r"; fprintf(out, " %s%d.%c (%s)", reg_type, (regid >> 2), "xyzw"[regid & 0x3], output_name(so, i)); } fprintf(out, "\n"); fprintf(out, "; %s: inputs:", type); for (i = 0; i < so->inputs_count; i++) { uint8_t regid = so->inputs[i].regid; fprintf(out, " r%d.%c (%s slot=%d cm=%x,il=%u,b=%u)", (regid >> 2), "xyzw"[regid & 0x3], input_name(so, i), so->inputs[i].slot, so->inputs[i].compmask, so->inputs[i].inloc, so->inputs[i].bary); } fprintf(out, "\n"); /* print generic shader info: */ fprintf(out, "; %s prog %d/%d: %u instr, %u nops, %u non-nops, %u mov, %u cov, %u dwords\n", type, so->shader->id, so->id, so->info.instrs_count, so->info.nops_count, so->info.instrs_count - so->info.nops_count, so->info.mov_count, so->info.cov_count, so->info.sizedwords); fprintf(out, "; %s prog %d/%d: %u last-baryf, %d half, %d full, %u constlen\n", type, so->shader->id, so->id, so->info.last_baryf, so->info.max_half_reg + 1, so->info.max_reg + 1, so->constlen); fprintf(out, "; %s prog %d/%d: %u cat0, %u cat1, %u cat2, %u cat3, %u cat4, %u cat5, %u cat6, %u cat7, \n", type, so->shader->id, so->id, so->info.instrs_per_cat[0], so->info.instrs_per_cat[1], so->info.instrs_per_cat[2], so->info.instrs_per_cat[3], so->info.instrs_per_cat[4], so->info.instrs_per_cat[5], so->info.instrs_per_cat[6], so->info.instrs_per_cat[7]); fprintf(out, "; %s prog %d/%d: %u sstall, %u (ss), %u (sy), %d max_sun, %d loops\n", type, so->shader->id, so->id, so->info.sstall, so->info.ss, so->info.sy, so->max_sun, so->loops); /* print shader type specific info: */ switch (so->type) { case MESA_SHADER_VERTEX: dump_output(out, so, VARYING_SLOT_POS, "pos"); dump_output(out, so, VARYING_SLOT_PSIZ, "psize"); break; case MESA_SHADER_FRAGMENT: dump_reg(out, "pos (ij_pixel)", ir3_find_sysval_regid(so, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)); dump_reg(out, "pos (ij_centroid)", ir3_find_sysval_regid(so, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID)); dump_reg(out, "pos (ij_size)", ir3_find_sysval_regid(so, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE)); dump_output(out, so, FRAG_RESULT_DEPTH, "posz"); if (so->color0_mrt) { dump_output(out, so, FRAG_RESULT_COLOR, "color"); } else { dump_output(out, so, FRAG_RESULT_DATA0, "data0"); dump_output(out, so, FRAG_RESULT_DATA1, "data1"); dump_output(out, so, FRAG_RESULT_DATA2, "data2"); dump_output(out, so, FRAG_RESULT_DATA3, "data3"); dump_output(out, so, FRAG_RESULT_DATA4, "data4"); dump_output(out, so, FRAG_RESULT_DATA5, "data5"); dump_output(out, so, FRAG_RESULT_DATA6, "data6"); dump_output(out, so, FRAG_RESULT_DATA7, "data7"); } dump_reg(out, "fragcoord", ir3_find_sysval_regid(so, SYSTEM_VALUE_FRAG_COORD)); dump_reg(out, "fragface", ir3_find_sysval_regid(so, SYSTEM_VALUE_FRONT_FACE)); break; default: /* TODO */ break; } fprintf(out, "\n"); } uint64_t ir3_shader_outputs(const struct ir3_shader *so) { return so->nir->info.outputs_written; }