/************************************************************************** * * Copyright 2009 VMware, Inc. * Copyright 2007 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Code generate the whole fragment pipeline. * * The fragment pipeline consists of the following stages: * - early depth test * - fragment shader * - alpha test * - depth/stencil test * - blending * * This file has only the glue to assemble the fragment pipeline. The actual * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we * muster the LLVM JIT execution engine to create a function that follows an * established binary interface and that can be called from C directly. * * A big source of complexity here is that we often want to run different * stages with different precisions and data types and precisions. For example, * the fragment shader needs typically to be done in floats, but the * depth/stencil test and blending is better done in the type that most closely * matches the depth/stencil and color buffer respectively. * * Since the width of a SIMD vector register stays the same regardless of the * element type, different types imply different number of elements, so we must * code generate more instances of the stages with larger types to be able to * feed/consume the stages with smaller types. * * @author Jose Fonseca */ #include #include "pipe/p_defines.h" #include "util/u_inlines.h" #include "util/u_memory.h" #include "util/u_pointer.h" #include "util/format/u_format.h" #include "util/u_dump.h" #include "util/u_string.h" #include "util/simple_list.h" #include "util/u_dual_blend.h" #include "util/os_time.h" #include "pipe/p_shader_tokens.h" #include "draw/draw_context.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_scan.h" #include "tgsi/tgsi_parse.h" #include "gallivm/lp_bld_type.h" #include "gallivm/lp_bld_const.h" #include "gallivm/lp_bld_conv.h" #include "gallivm/lp_bld_init.h" #include "gallivm/lp_bld_intr.h" #include "gallivm/lp_bld_logic.h" #include "gallivm/lp_bld_tgsi.h" #include "gallivm/lp_bld_nir.h" #include "gallivm/lp_bld_swizzle.h" #include "gallivm/lp_bld_flow.h" #include "gallivm/lp_bld_debug.h" #include "gallivm/lp_bld_arit.h" #include "gallivm/lp_bld_bitarit.h" #include "gallivm/lp_bld_pack.h" #include "gallivm/lp_bld_format.h" #include "gallivm/lp_bld_quad.h" #include "gallivm/lp_bld_gather.h" #include "lp_bld_alpha.h" #include "lp_bld_blend.h" #include "lp_bld_depth.h" #include "lp_bld_interp.h" #include "lp_context.h" #include "lp_debug.h" #include "lp_perf.h" #include "lp_setup.h" #include "lp_state.h" #include "lp_tex_sample.h" #include "lp_flush.h" #include "lp_state_fs.h" #include "lp_rast.h" #include "nir/nir_to_tgsi_info.h" #include "lp_screen.h" #include "compiler/nir/nir_serialize.h" #include "util/mesa-sha1.h" /** Fragment shader number (for debugging) */ static unsigned fs_no = 0; static void load_unswizzled_block(struct gallivm_state *gallivm, LLVMValueRef base_ptr, LLVMValueRef stride, unsigned block_width, unsigned block_height, LLVMValueRef* dst, struct lp_type dst_type, unsigned dst_count, unsigned dst_alignment, LLVMValueRef x_offset, LLVMValueRef y_offset, bool fb_fetch_twiddle); /** * Checks if a format description is an arithmetic format * * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5. */ static inline boolean is_arithmetic_format(const struct util_format_description *format_desc) { boolean arith = false; unsigned i; for (i = 0; i < format_desc->nr_channels; ++i) { arith |= format_desc->channel[i].size != format_desc->channel[0].size; arith |= (format_desc->channel[i].size % 8) != 0; } return arith; } /** * Checks if this format requires special handling due to required expansion * to floats for blending, and furthermore has "natural" packed AoS -> unpacked * SoA conversion. */ static inline boolean format_expands_to_float_soa(const struct util_format_description *format_desc) { if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT || format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) { return true; } return false; } /** * Retrieves the type representing the memory layout for a format * * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte */ static inline void lp_mem_type_from_format_desc(const struct util_format_description *format_desc, struct lp_type* type) { unsigned i; unsigned chan; if (format_expands_to_float_soa(format_desc)) { /* just make this a uint with width of block */ type->floating = false; type->fixed = false; type->sign = false; type->norm = false; type->width = format_desc->block.bits; type->length = 1; return; } for (i = 0; i < 4; i++) if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) break; chan = i; memset(type, 0, sizeof(struct lp_type)); type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT; type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED; type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED; type->norm = format_desc->channel[chan].normalized; if (is_arithmetic_format(format_desc)) { type->width = 0; type->length = 1; for (i = 0; i < format_desc->nr_channels; ++i) { type->width += format_desc->channel[i].size; } } else { type->width = format_desc->channel[chan].size; type->length = format_desc->nr_channels; } } /** * Expand the relevant bits of mask_input to a n*4-dword mask for the * n*four pixels in n 2x2 quads. This will set the n*four elements of the * quad mask vector to 0 or ~0. * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid * quad arguments with fs length 8. * * \param first_quad which quad(s) of the quad group to test, in [0,3] * \param mask_input bitwise mask for the whole 4x4 stamp */ static LLVMValueRef generate_quad_mask(struct gallivm_state *gallivm, struct lp_type fs_type, unsigned first_quad, unsigned sample, LLVMValueRef mask_input) /* int64 */ { LLVMBuilderRef builder = gallivm->builder; struct lp_type mask_type; LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef bits[16]; LLVMValueRef mask, bits_vec; int shift, i; /* * XXX: We'll need a different path for 16 x u8 */ assert(fs_type.width == 32); assert(fs_type.length <= ARRAY_SIZE(bits)); mask_type = lp_int_type(fs_type); /* * mask_input >>= (quad * 4) */ switch (first_quad) { case 0: shift = 0; break; case 1: assert(fs_type.length == 4); shift = 2; break; case 2: shift = 8; break; case 3: assert(fs_type.length == 4); shift = 10; break; default: assert(0); shift = 0; } mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), ""); mask_input = LLVMBuildTrunc(builder, mask_input, i32t, ""); mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), ""); mask_input = LLVMBuildLShr(builder, mask_input, LLVMConstInt(i32t, shift, 0), ""); /* * mask = { mask_input & (1 << i), for i in [0,3] } */ mask = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, mask_type), mask_input); for (i = 0; i < fs_type.length / 4; i++) { unsigned j = 2 * (i % 2) + (i / 2) * 8; bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0); bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0); bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0); bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0); } bits_vec = LLVMConstVector(bits, fs_type.length); mask = LLVMBuildAnd(builder, mask, bits_vec, ""); /* * mask = mask == bits ? ~0 : 0 */ mask = lp_build_compare(gallivm, mask_type, PIPE_FUNC_EQUAL, mask, bits_vec); return mask; } #define EARLY_DEPTH_TEST 0x1 #define LATE_DEPTH_TEST 0x2 #define EARLY_DEPTH_WRITE 0x4 #define LATE_DEPTH_WRITE 0x8 static int find_output_by_semantic( const struct tgsi_shader_info *info, unsigned semantic, unsigned index ) { int i; for (i = 0; i < info->num_outputs; i++) if (info->output_semantic_name[i] == semantic && info->output_semantic_index[i] == index) return i; return -1; } /** * Fetch the specified lp_jit_viewport structure for a given viewport_index. */ static LLVMValueRef lp_llvm_viewport(LLVMValueRef context_ptr, struct gallivm_state *gallivm, LLVMValueRef viewport_index) { LLVMBuilderRef builder = gallivm->builder; LLVMValueRef ptr; LLVMValueRef res; struct lp_type viewport_type = lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS); ptr = lp_jit_context_viewports(gallivm, context_ptr); ptr = LLVMBuildPointerCast(builder, ptr, LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), ""); res = lp_build_pointer_get(builder, ptr, viewport_index); return res; } static LLVMValueRef lp_build_depth_clamp(struct gallivm_state *gallivm, LLVMBuilderRef builder, struct lp_type type, LLVMValueRef context_ptr, LLVMValueRef thread_data_ptr, LLVMValueRef z) { LLVMValueRef viewport, min_depth, max_depth; LLVMValueRef viewport_index; struct lp_build_context f32_bld; assert(type.floating); lp_build_context_init(&f32_bld, gallivm, type); /* * Assumes clamping of the viewport index will occur in setup/gs. Value * is passed through the rasterization stage via lp_rast_shader_inputs. * * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping * semantics. */ viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm, thread_data_ptr); /* * Load the min and max depth from the lp_jit_context.viewports * array of lp_jit_viewport structures. */ viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index); /* viewports[viewport_index].min_depth */ min_depth = LLVMBuildExtractElement(builder, viewport, lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), ""); min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth); /* viewports[viewport_index].max_depth */ max_depth = LLVMBuildExtractElement(builder, viewport, lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), ""); max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth); /* * Clamp to the min and max depth values for the given viewport. */ return lp_build_clamp(&f32_bld, z, min_depth, max_depth); } static void lp_build_sample_alpha_to_coverage(struct gallivm_state *gallivm, struct lp_type type, unsigned coverage_samples, LLVMValueRef num_loop, LLVMValueRef loop_counter, LLVMValueRef coverage_mask_store, LLVMValueRef alpha) { struct lp_build_context bld; LLVMBuilderRef builder = gallivm->builder; float step = 1.0 / coverage_samples; lp_build_context_init(&bld, gallivm, type); for (unsigned s = 0; s < coverage_samples; s++) { LLVMValueRef alpha_ref_value = lp_build_const_vec(gallivm, type, step * s); LLVMValueRef test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value); LLVMValueRef s_mask_idx = LLVMBuildMul(builder, lp_build_const_int32(gallivm, s), num_loop, ""); s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_counter, ""); LLVMValueRef s_mask_ptr = LLVMBuildGEP(builder, coverage_mask_store, &s_mask_idx, 1, ""); LLVMValueRef s_mask = LLVMBuildLoad(builder, s_mask_ptr, ""); s_mask = LLVMBuildAnd(builder, s_mask, test, ""); LLVMBuildStore(builder, s_mask, s_mask_ptr); } }; struct lp_build_fs_llvm_iface { struct lp_build_fs_iface base; struct lp_build_interp_soa_context *interp; struct lp_build_for_loop_state *loop_state; LLVMValueRef mask_store; LLVMValueRef sample_id; LLVMValueRef color_ptr_ptr; LLVMValueRef color_stride_ptr; LLVMValueRef color_sample_stride_ptr; const struct lp_fragment_shader_variant_key *key; }; static LLVMValueRef fs_interp(const struct lp_build_fs_iface *iface, struct lp_build_context *bld, unsigned attrib, unsigned chan, bool centroid, bool sample, LLVMValueRef attrib_indir, LLVMValueRef offsets[2]) { struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface; struct lp_build_interp_soa_context *interp = fs_iface->interp; unsigned loc = TGSI_INTERPOLATE_LOC_CENTER; if (centroid) loc = TGSI_INTERPOLATE_LOC_CENTROID; if (sample) loc = TGSI_INTERPOLATE_LOC_SAMPLE; return lp_build_interp_soa(interp, bld->gallivm, fs_iface->loop_state->counter, fs_iface->mask_store, attrib, chan, loc, attrib_indir, offsets); } static void fs_fb_fetch(const struct lp_build_fs_iface *iface, struct lp_build_context *bld, unsigned cbuf, LLVMValueRef result[4]) { struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface; struct gallivm_state *gallivm = bld->gallivm; LLVMBuilderRef builder = gallivm->builder; const struct lp_fragment_shader_variant_key *key = fs_iface->key; LLVMValueRef index = lp_build_const_int32(gallivm, cbuf); LLVMValueRef color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_ptr_ptr, &index, 1, ""), ""); LLVMValueRef stride = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_stride_ptr, &index, 1, ""), ""); LLVMValueRef dst[4 * 4]; enum pipe_format cbuf_format = key->cbuf_format[cbuf]; const struct util_format_description* out_format_desc = util_format_description(cbuf_format); struct lp_type dst_type; unsigned block_size = bld->type.length; unsigned block_height = key->resource_1d ? 1 : 2; unsigned block_width = block_size / block_height; lp_mem_type_from_format_desc(out_format_desc, &dst_type); struct lp_type blend_type; memset(&blend_type, 0, sizeof blend_type); blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ uint32_t dst_alignment; /* * Compute the alignment of the destination pointer in bytes * We fetch 1-4 pixels, if the format has pot alignment then those fetches * are always aligned by MIN2(16, fetch_width) except for buffers (not * 1d tex but can't distinguish here) so need to stick with per-pixel * alignment in this case. */ if (key->resource_1d) { dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8); } else { dst_alignment = dst_type.length * dst_type.width / 8; } /* Force power-of-two alignment by extracting only the least-significant-bit */ dst_alignment = 1 << (ffs(dst_alignment) - 1); /* * Resource base and stride pointers are aligned to 16 bytes, so that's * the maximum alignment we can guarantee */ dst_alignment = MIN2(16, dst_alignment); LLVMTypeRef blend_vec_type = lp_build_vec_type(gallivm, blend_type); color_ptr = LLVMBuildBitCast(builder, color_ptr, LLVMPointerType(blend_vec_type, 0), ""); if (key->multisample) { LLVMValueRef sample_stride = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_sample_stride_ptr, &index, 1, ""), ""); LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, fs_iface->sample_id, ""); color_ptr = LLVMBuildGEP(builder, color_ptr, &sample_offset, 1, ""); } /* fragment shader executes on 4x4 blocks. depending on vector width it can execute 2 or 4 iterations. * only move to the next row once the top row has completed 8 wide 1 iteration, 4 wide 2 iterations */ LLVMValueRef x_offset = NULL, y_offset = NULL; if (!key->resource_1d) { LLVMValueRef counter = fs_iface->loop_state->counter; if (block_size == 4) { x_offset = LLVMBuildShl(builder, LLVMBuildAnd(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), ""), lp_build_const_int32(gallivm, 1), ""); counter = LLVMBuildLShr(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), ""); } y_offset = LLVMBuildMul(builder, counter, lp_build_const_int32(gallivm, 2), ""); } load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height, dst, dst_type, block_size, dst_alignment, x_offset, y_offset, true); for (unsigned i = 0; i < block_size; i++) { dst[i] = LLVMBuildBitCast(builder, dst[i], LLVMInt32TypeInContext(gallivm->context), ""); } LLVMValueRef packed = lp_build_gather_values(gallivm, dst, block_size); struct lp_type texel_type = bld->type; if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB && out_format_desc->channel[0].pure_integer) { if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) { texel_type = lp_type_int_vec(bld->type.width, bld->type.width * bld->type.length); } else if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) { texel_type = lp_type_uint_vec(bld->type.width, bld->type.width * bld->type.length); } } lp_build_unpack_rgba_soa(gallivm, out_format_desc, texel_type, packed, result); } /** * Generate the fragment shader, depth/stencil test, and alpha tests. */ static void generate_fs_loop(struct gallivm_state *gallivm, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key, LLVMBuilderRef builder, struct lp_type type, LLVMValueRef context_ptr, LLVMValueRef sample_pos_array, LLVMValueRef num_loop, struct lp_build_interp_soa_context *interp, const struct lp_build_sampler_soa *sampler, const struct lp_build_image_soa *image, LLVMValueRef mask_store, LLVMValueRef (*out_color)[4], LLVMValueRef depth_base_ptr, LLVMValueRef depth_stride, LLVMValueRef depth_sample_stride, LLVMValueRef color_ptr_ptr, LLVMValueRef color_stride_ptr, LLVMValueRef color_sample_stride_ptr, LLVMValueRef facing, LLVMValueRef thread_data_ptr) { const struct util_format_description *zs_format_desc = NULL; const struct tgsi_token *tokens = shader->base.tokens; struct lp_type int_type = lp_int_type(type); LLVMTypeRef vec_type, int_vec_type; LLVMValueRef mask_ptr = NULL, mask_val = NULL; LLVMValueRef consts_ptr, num_consts_ptr; LLVMValueRef ssbo_ptr, num_ssbo_ptr; LLVMValueRef z; LLVMValueRef z_value, s_value; LLVMValueRef z_fb, s_fb; LLVMValueRef depth_ptr; LLVMValueRef stencil_refs[2]; LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS]; LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples); struct lp_build_for_loop_state loop_state, sample_loop_state; struct lp_build_mask_context mask; /* * TODO: figure out if simple_shader optimization is really worthwile to * keep. Disabled because it may hide some real bugs in the (depth/stencil) * code since tests tend to take another codepath than real shaders. */ boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 && shader->info.base.num_inputs < 3 && shader->info.base.num_instructions < 8) && 0; const boolean dual_source_blend = key->blend.rt[0].blend_enable && util_blend_state_is_dual(&key->blend, 0); const bool post_depth_coverage = shader->info.base.properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE]; unsigned attrib; unsigned chan; unsigned cbuf; unsigned depth_mode; struct lp_bld_tgsi_system_values system_values; memset(&system_values, 0, sizeof(system_values)); /* truncate then sign extend. */ system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), ""); system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), ""); if (key->depth.enabled || key->stencil[0].enabled) { zs_format_desc = util_format_description(key->zsbuf_format); assert(zs_format_desc); if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE; else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) { if (shader->info.base.writes_memory) depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE; else if (key->alpha.enabled || key->blend.alpha_to_coverage || shader->info.base.uses_kill || shader->info.base.writes_samplemask) { /* With alpha test and kill, can do the depth test early * and hopefully eliminate some quads. But need to do a * special deferred depth write once the final mask value * is known. This only works though if there's either no * stencil test or the stencil value isn't written. */ if (key->stencil[0].enabled && (key->stencil[0].writemask || (key->stencil[1].enabled && key->stencil[1].writemask))) depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE; else depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE; } else depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE; } else { depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE; } if (!(key->depth.enabled && key->depth.writemask) && !(key->stencil[0].enabled && (key->stencil[0].writemask || (key->stencil[1].enabled && key->stencil[1].writemask)))) depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE); } else { depth_mode = 0; } vec_type = lp_build_vec_type(gallivm, type); int_vec_type = lp_build_vec_type(gallivm, int_type); stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr); stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr); /* convert scalar stencil refs into vectors */ stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]); stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]); consts_ptr = lp_jit_context_constants(gallivm, context_ptr); num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr); ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr); num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr); memset(outputs, 0, sizeof outputs); /* Allocate color storage for each fragment sample */ LLVMValueRef color_store_size = num_loop; if (key->min_samples > 1) color_store_size = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, key->min_samples), ""); for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { out_color[cbuf][chan] = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, type), color_store_size, "color"); } } if (dual_source_blend) { assert(key->nr_cbufs <= 1); for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { out_color[1][chan] = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, type), color_store_size, "color1"); } } lp_build_for_loop_begin(&loop_state, gallivm, lp_build_const_int32(gallivm, 0), LLVMIntULT, num_loop, lp_build_const_int32(gallivm, 1)); LLVMValueRef sample_mask_in; if (key->multisample) { sample_mask_in = lp_build_const_int_vec(gallivm, type, 0); /* create shader execution mask by combining all sample masks. */ for (unsigned s = 0; s < key->coverage_samples; s++) { LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), ""); s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, ""); LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx); if (s == 0) mask_val = s_mask; else mask_val = LLVMBuildOr(builder, s_mask, mask_val, ""); LLVMValueRef mask_in = LLVMBuildAnd(builder, s_mask, lp_build_const_int_vec(gallivm, type, (1 << s)), ""); sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, ""); } } else { sample_mask_in = lp_build_const_int_vec(gallivm, type, 1); mask_ptr = LLVMBuildGEP(builder, mask_store, &loop_state.counter, 1, "mask_ptr"); mask_val = LLVMBuildLoad(builder, mask_ptr, ""); LLVMValueRef mask_in = LLVMBuildAnd(builder, mask_val, lp_build_const_int_vec(gallivm, type, 1), ""); sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, ""); } /* 'mask' will control execution based on quad's pixel alive/killed state */ lp_build_mask_begin(&mask, gallivm, type, mask_val); if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader) lp_build_mask_check(&mask); /* Create storage for recombining sample masks after early Z pass. */ LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth"); LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or); /* Create storage for post depth sample mask */ LLVMValueRef post_depth_sample_mask_in = NULL; if (post_depth_coverage) post_depth_sample_mask_in = lp_build_alloca(gallivm, int_vec_type, "post_depth_sample_mask_in"); LLVMValueRef s_mask = NULL, s_mask_ptr = NULL; LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL; LLVMValueRef z_fb_store = NULL, s_fb_store = NULL; LLVMTypeRef z_type = NULL, z_fb_type = NULL; /* Run early depth once per sample */ if (key->multisample) { if (zs_format_desc) { struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length); struct lp_type z_type = zs_type; struct lp_type s_type = zs_type; if (zs_format_desc->block.bits < type.width) z_type.width = type.width; if (zs_format_desc->block.bits == 8) s_type.width = type.width; else if (zs_format_desc->block.bits > 32) { z_type.width = z_type.width / 2; s_type.width = s_type.width / 2; s_type.floating = 0; } z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type), zs_samples, "z_sample_store"); s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type), zs_samples, "s_sample_store"); z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type), zs_samples, "z_fb_store"); s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type), zs_samples, "s_fb_store"); } lp_build_for_loop_begin(&sample_loop_state, gallivm, lp_build_const_int32(gallivm, 0), LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples), lp_build_const_int32(gallivm, 1)); LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""); s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, ""); s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, ""); s_mask = LLVMBuildLoad(builder, s_mask_ptr, ""); s_mask = LLVMBuildAnd(builder, s_mask, mask_val, ""); } /* for multisample Z needs to be interpolated at sample points for testing. */ lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL); z = interp->pos[2]; depth_ptr = depth_base_ptr; if (key->multisample) { LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, ""); depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, ""); } if (depth_mode & EARLY_DEPTH_TEST) { /* * Clamp according to ARB_depth_clamp semantics. */ if (key->depth_clamp) { z = lp_build_depth_clamp(gallivm, builder, type, context_ptr, thread_data_ptr, z); } lp_build_depth_stencil_load_swizzled(gallivm, type, zs_format_desc, key->resource_1d, depth_ptr, depth_stride, &z_fb, &s_fb, loop_state.counter); lp_build_depth_stencil_test(gallivm, &key->depth, key->stencil, type, zs_format_desc, key->multisample ? NULL : &mask, &s_mask, stencil_refs, z, z_fb, s_fb, facing, &z_value, &s_value, !simple_shader && !key->multisample); if (depth_mode & EARLY_DEPTH_WRITE) { lp_build_depth_stencil_write_swizzled(gallivm, type, zs_format_desc, key->resource_1d, NULL, NULL, NULL, loop_state.counter, depth_ptr, depth_stride, z_value, s_value); } /* * Note mask check if stencil is enabled must be after ds write not after * stencil test otherwise new stencil values may not get written if all * fragments got killed by depth/stencil test. */ if (!simple_shader && key->stencil[0].enabled && !key->multisample) lp_build_mask_check(&mask); if (key->multisample) { z_fb_type = LLVMTypeOf(z_fb); z_type = LLVMTypeOf(z_value); lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), "")); lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), "")); lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb); lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb); } } if (key->multisample) { /* * Store the post-early Z coverage mask. * Recombine the resulting coverage masks post early Z into the fragment * shader execution mask. */ LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, ""); tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, ""); LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or); if (post_depth_coverage) { LLVMValueRef mask_bit_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, ""); LLVMValueRef post_depth_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, ""); mask_bit_idx = LLVMBuildAnd(builder, s_mask, lp_build_broadcast(gallivm, int_vec_type, mask_bit_idx), ""); post_depth_mask_in = LLVMBuildOr(builder, post_depth_mask_in, mask_bit_idx, ""); LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in); } LLVMBuildStore(builder, s_mask, s_mask_ptr); lp_build_for_loop_end(&sample_loop_state); /* recombined all the coverage masks in the shader exec mask. */ tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, ""); lp_build_mask_update(&mask, tmp_s_mask_or); if (key->min_samples == 1) { /* for multisample Z needs to be re interpolated at pixel center */ lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL); z = interp->pos[2]; lp_build_mask_update(&mask, tmp_s_mask_or); } } else { if (post_depth_coverage) { LLVMValueRef post_depth_mask_in = LLVMBuildAnd(builder, lp_build_mask_value(&mask), lp_build_const_int_vec(gallivm, type, 1), ""); LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in); } } LLVMValueRef out_sample_mask_storage = NULL; if (shader->info.base.writes_samplemask) { out_sample_mask_storage = lp_build_alloca(gallivm, int_vec_type, "write_mask"); if (key->min_samples > 1) LLVMBuildStore(builder, LLVMConstNull(int_vec_type), out_sample_mask_storage); } if (post_depth_coverage) { system_values.sample_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, ""); } else system_values.sample_mask_in = sample_mask_in; if (key->multisample && key->min_samples > 1) { lp_build_for_loop_begin(&sample_loop_state, gallivm, lp_build_const_int32(gallivm, 0), LLVMIntULT, lp_build_const_int32(gallivm, key->min_samples), lp_build_const_int32(gallivm, 1)); LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""); s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, ""); s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, ""); s_mask = LLVMBuildLoad(builder, s_mask_ptr, ""); lp_build_mask_force(&mask, s_mask); lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, sample_loop_state.counter); system_values.sample_id = sample_loop_state.counter; system_values.sample_mask_in = LLVMBuildAnd(builder, system_values.sample_mask_in, lp_build_broadcast(gallivm, int_vec_type, LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "")), ""); } else { system_values.sample_id = lp_build_const_int32(gallivm, 0); } system_values.sample_pos = sample_pos_array; lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, mask_store, sample_loop_state.counter); struct lp_build_fs_llvm_iface fs_iface = { .base.interp_fn = fs_interp, .base.fb_fetch = fs_fb_fetch, .interp = interp, .loop_state = &loop_state, .sample_id = system_values.sample_id, .mask_store = mask_store, .color_ptr_ptr = color_ptr_ptr, .color_stride_ptr = color_stride_ptr, .color_sample_stride_ptr = color_sample_stride_ptr, .key = key, }; struct lp_build_tgsi_params params; memset(¶ms, 0, sizeof(params)); params.type = type; params.mask = &mask; params.fs_iface = &fs_iface.base; params.consts_ptr = consts_ptr; params.const_sizes_ptr = num_consts_ptr; params.system_values = &system_values; params.inputs = interp->inputs; params.context_ptr = context_ptr; params.thread_data_ptr = thread_data_ptr; params.sampler = sampler; params.info = &shader->info.base; params.ssbo_ptr = ssbo_ptr; params.ssbo_sizes_ptr = num_ssbo_ptr; params.image = image; /* Build the actual shader */ if (shader->base.type == PIPE_SHADER_IR_TGSI) lp_build_tgsi_soa(gallivm, tokens, ¶ms, outputs); else lp_build_nir_soa(gallivm, shader->base.ir.nir, ¶ms, outputs); /* Alpha test */ if (key->alpha.enabled) { int color0 = find_output_by_semantic(&shader->info.base, TGSI_SEMANTIC_COLOR, 0); if (color0 != -1 && outputs[color0][3]) { const struct util_format_description *cbuf_format_desc; LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha"); LLVMValueRef alpha_ref_value; alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr); alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value); cbuf_format_desc = util_format_description(key->cbuf_format[0]); lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc, &mask, alpha, alpha_ref_value, (depth_mode & LATE_DEPTH_TEST) != 0); } } /* Emulate Alpha to Coverage with Alpha test */ if (key->blend.alpha_to_coverage) { int color0 = find_output_by_semantic(&shader->info.base, TGSI_SEMANTIC_COLOR, 0); if (color0 != -1 && outputs[color0][3]) { LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha"); if (!key->multisample) { lp_build_alpha_to_coverage(gallivm, type, &mask, alpha, (depth_mode & LATE_DEPTH_TEST) != 0); } else { lp_build_sample_alpha_to_coverage(gallivm, type, key->coverage_samples, num_loop, loop_state.counter, mask_store, alpha); } } } if (key->blend.alpha_to_one && key->multisample) { for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) { unsigned cbuf = shader->info.base.output_semantic_index[attrib]; if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) && ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend))) if (outputs[cbuf][3]) { LLVMBuildStore(builder, lp_build_const_vec(gallivm, type, 1.0), outputs[cbuf][3]); } } } if (shader->info.base.writes_samplemask) { LLVMValueRef output_smask = NULL; int smaski = find_output_by_semantic(&shader->info.base, TGSI_SEMANTIC_SAMPLEMASK, 0); struct lp_build_context smask_bld; lp_build_context_init(&smask_bld, gallivm, int_type); assert(smaski >= 0); output_smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask"); output_smask = LLVMBuildBitCast(builder, output_smask, smask_bld.vec_type, ""); if (!key->multisample && key->no_ms_sample_mask_out) { output_smask = lp_build_and(&smask_bld, output_smask, smask_bld.one); output_smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, output_smask, smask_bld.zero); lp_build_mask_update(&mask, output_smask); } if (key->min_samples > 1) { /* only the bit corresponding to this sample is to be used. */ LLVMValueRef tmp_mask = LLVMBuildLoad(builder, out_sample_mask_storage, "tmp_mask"); LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, ""); LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, lp_build_broadcast(gallivm, int_vec_type, out_smask_idx), ""); output_smask = LLVMBuildOr(builder, tmp_mask, smask_bit, ""); } LLVMBuildStore(builder, output_smask, out_sample_mask_storage); } /* Color write - per fragment sample */ for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) { unsigned cbuf = shader->info.base.output_semantic_index[attrib]; if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) && ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend))) { for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { if(outputs[attrib][chan]) { /* XXX: just initialize outputs to point at colors[] and * skip this. */ LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], ""); LLVMValueRef color_ptr; LLVMValueRef color_idx = loop_state.counter; if (key->min_samples > 1) color_idx = LLVMBuildAdd(builder, color_idx, LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), ""); color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan], &color_idx, 1, ""); lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]); LLVMBuildStore(builder, out, color_ptr); } } } } if (key->multisample && key->min_samples > 1) { LLVMBuildStore(builder, lp_build_mask_value(&mask), s_mask_ptr); lp_build_for_loop_end(&sample_loop_state); } if (key->multisample) { /* execute depth test for each sample */ lp_build_for_loop_begin(&sample_loop_state, gallivm, lp_build_const_int32(gallivm, 0), LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples), lp_build_const_int32(gallivm, 1)); /* load the per-sample coverage mask */ LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""); s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, ""); s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, ""); /* combine the execution mask post fragment shader with the coverage mask. */ s_mask = LLVMBuildLoad(builder, s_mask_ptr, ""); if (key->min_samples == 1) s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), ""); /* if the shader writes sample mask use that */ if (shader->info.base.writes_samplemask) { LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, ""); out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx); LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, ""); LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, ""); LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), ""); smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, ""); s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, ""); } } depth_ptr = depth_base_ptr; if (key->multisample) { LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, ""); depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, ""); } /* Late Z test */ if (depth_mode & LATE_DEPTH_TEST) { int pos0 = find_output_by_semantic(&shader->info.base, TGSI_SEMANTIC_POSITION, 0); int s_out = find_output_by_semantic(&shader->info.base, TGSI_SEMANTIC_STENCIL, 0); if (pos0 != -1 && outputs[pos0][2]) { z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z"); } else { if (key->multisample) { lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL); z = interp->pos[2]; } } /* * Clamp according to ARB_depth_clamp semantics. */ if (key->depth_clamp) { z = lp_build_depth_clamp(gallivm, builder, type, context_ptr, thread_data_ptr, z); } if (s_out != -1 && outputs[s_out][1]) { /* there's only one value, and spec says to discard additional bits */ LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255); stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s"); stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, ""); stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, ""); stencil_refs[1] = stencil_refs[0]; } lp_build_depth_stencil_load_swizzled(gallivm, type, zs_format_desc, key->resource_1d, depth_ptr, depth_stride, &z_fb, &s_fb, loop_state.counter); lp_build_depth_stencil_test(gallivm, &key->depth, key->stencil, type, zs_format_desc, key->multisample ? NULL : &mask, &s_mask, stencil_refs, z, z_fb, s_fb, facing, &z_value, &s_value, !simple_shader); /* Late Z write */ if (depth_mode & LATE_DEPTH_WRITE) { lp_build_depth_stencil_write_swizzled(gallivm, type, zs_format_desc, key->resource_1d, NULL, NULL, NULL, loop_state.counter, depth_ptr, depth_stride, z_value, s_value); } } else if ((depth_mode & EARLY_DEPTH_TEST) && (depth_mode & LATE_DEPTH_WRITE)) { /* Need to apply a reduced mask to the depth write. Reload the * depth value, update from zs_value with the new mask value and * write that out. */ if (key->multisample) { z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");; s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter); z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, ""); s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter); } lp_build_depth_stencil_write_swizzled(gallivm, type, zs_format_desc, key->resource_1d, key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter, depth_ptr, depth_stride, z_value, s_value); } if (key->occlusion_count) { LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr); lp_build_name(counter, "counter"); lp_build_occlusion_count(gallivm, type, key->multisample ? s_mask : lp_build_mask_value(&mask), counter); } if (key->multisample) { /* store the sample mask for this loop */ LLVMBuildStore(builder, s_mask, s_mask_ptr); lp_build_for_loop_end(&sample_loop_state); } mask_val = lp_build_mask_end(&mask); if (!key->multisample) LLVMBuildStore(builder, mask_val, mask_ptr); lp_build_for_loop_end(&loop_state); } /** * This function will reorder pixels from the fragment shader SoA to memory layout AoS * * Fragment Shader outputs pixels in small 2x2 blocks * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ... * * However in memory pixels are stored in rows * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ... * * @param type fragment shader type (4x or 8x float) * @param num_fs number of fs_src * @param is_1d whether we're outputting to a 1d resource * @param dst_channels number of output channels * @param fs_src output from fragment shader * @param dst pointer to store result * @param pad_inline is channel padding inline or at end of row * @return the number of dsts */ static int generate_fs_twiddle(struct gallivm_state *gallivm, struct lp_type type, unsigned num_fs, unsigned dst_channels, LLVMValueRef fs_src[][4], LLVMValueRef* dst, bool pad_inline) { LLVMValueRef src[16]; bool swizzle_pad; bool twiddle; bool split; unsigned pixels = type.length / 4; unsigned reorder_group; unsigned src_channels; unsigned src_count; unsigned i; src_channels = dst_channels < 3 ? dst_channels : 4; src_count = num_fs * src_channels; assert(pixels == 2 || pixels == 1); assert(num_fs * src_channels <= ARRAY_SIZE(src)); /* * Transpose from SoA -> AoS */ for (i = 0; i < num_fs; ++i) { lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]); } /* * Pick transformation options */ swizzle_pad = false; twiddle = false; split = false; reorder_group = 0; if (dst_channels == 1) { twiddle = true; if (pixels == 2) { split = true; } } else if (dst_channels == 2) { if (pixels == 1) { reorder_group = 1; } } else if (dst_channels > 2) { if (pixels == 1) { reorder_group = 2; } else { twiddle = true; } if (!pad_inline && dst_channels == 3 && pixels > 1) { swizzle_pad = true; } } /* * Split the src in half */ if (split) { for (i = num_fs; i > 0; --i) { src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4); src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4); } src_count *= 2; type.length = 4; } /* * Ensure pixels are in memory order */ if (reorder_group) { /* Twiddle pixels by reordering the array, e.g.: * * src_count = 8 -> 0 2 1 3 4 6 5 7 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15 */ const unsigned reorder_sw[] = { 0, 2, 1, 3 }; for (i = 0; i < src_count; ++i) { unsigned group = i / reorder_group; unsigned block = (group / 4) * 4 * reorder_group; unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group); dst[i] = src[j]; } } else if (twiddle) { /* Twiddle pixels across elements of array */ /* * XXX: we should avoid this in some cases, but would need to tell * lp_build_conv to reorder (or deal with it ourselves). */ lp_bld_quad_twiddle(gallivm, type, src, src_count, dst); } else { /* Do nothing */ memcpy(dst, src, sizeof(LLVMValueRef) * src_count); } /* * Moves any padding between pixels to the end * e.g. RGBXRGBX -> RGBRGBXX */ if (swizzle_pad) { unsigned char swizzles[16]; unsigned elems = pixels * dst_channels; for (i = 0; i < type.length; ++i) { if (i < elems) swizzles[i] = i % dst_channels + (i / dst_channels) * 4; else swizzles[i] = LP_BLD_SWIZZLE_DONTCARE; } for (i = 0; i < src_count; ++i) { dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length); } } return src_count; } /* * Untwiddle and transpose, much like the above. * However, this is after conversion, so we get packed vectors. * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data, * the vectors will look like: * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may * be swizzled here). Extending to 16bit should be trivial. * Should also be extended to handle twice wide vectors with AVX2... */ static void fs_twiddle_transpose(struct gallivm_state *gallivm, struct lp_type type, LLVMValueRef *src, unsigned src_count, LLVMValueRef *dst) { unsigned i, j; struct lp_type type64, type16, type32; LLVMTypeRef type64_t, type8_t, type16_t, type32_t; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef tmp[4], shuf[8]; for (j = 0; j < 2; j++) { shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0); shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2); shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1); shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3); } assert(src_count == 4 || src_count == 2 || src_count == 1); assert(type.width == 8); assert(type.length == 16); type8_t = lp_build_vec_type(gallivm, type); type64 = type; type64.length /= 8; type64.width *= 8; type64_t = lp_build_vec_type(gallivm, type64); type16 = type; type16.length /= 2; type16.width *= 2; type16_t = lp_build_vec_type(gallivm, type16); type32 = type; type32.length /= 4; type32.width *= 4; type32_t = lp_build_vec_type(gallivm, type32); lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp); if (src_count == 1) { /* transpose was no-op, just untwiddle */ LLVMValueRef shuf_vec; shuf_vec = LLVMConstVector(shuf, 8); tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, ""); tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, ""); dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, ""); } else if (src_count == 2) { LLVMValueRef shuf_vec; shuf_vec = LLVMConstVector(shuf, 4); for (i = 0; i < 2; i++) { tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, ""); tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, ""); dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, ""); } } else { for (j = 0; j < 2; j++) { LLVMValueRef lo, hi, lo2, hi2; /* * Note that if we only really have 3 valid channels (rgb) * and we don't need alpha we could substitute a undef here * for the respective channel (causing llvm to drop conversion * for alpha). */ /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */ lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, ""); hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, ""); lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0); hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1); dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, ""); dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, ""); } } } /** * Load an unswizzled block of pixels from memory */ static void load_unswizzled_block(struct gallivm_state *gallivm, LLVMValueRef base_ptr, LLVMValueRef stride, unsigned block_width, unsigned block_height, LLVMValueRef* dst, struct lp_type dst_type, unsigned dst_count, unsigned dst_alignment, LLVMValueRef x_offset, LLVMValueRef y_offset, bool fb_fetch_twiddle) { LLVMBuilderRef builder = gallivm->builder; unsigned row_size = dst_count / block_height; unsigned i; /* Ensure block exactly fits into dst */ assert((block_width * block_height) % dst_count == 0); for (i = 0; i < dst_count; ++i) { unsigned x = i % row_size; unsigned y = i / row_size; if (block_height == 2 && dst_count == 8 && fb_fetch_twiddle) { /* remap the raw slots into the fragment shader execution mode. */ /* this math took me way too long to work out, I'm sure it's overkill. */ x = (i & 1) + ((i >> 2) << 1); y = (i & 2) >> 1; } LLVMValueRef x_val; if (x_offset) { x_val = lp_build_const_int32(gallivm, x); if (x_offset) x_val = LLVMBuildAdd(builder, x_val, x_offset, ""); x_val = LLVMBuildMul(builder, x_val, lp_build_const_int32(gallivm, (dst_type.width / 8) * dst_type.length), ""); } else x_val = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length); LLVMValueRef bx = x_val; LLVMValueRef y_val = lp_build_const_int32(gallivm, y); if (y_offset) y_val = LLVMBuildAdd(builder, y_val, y_offset, ""); LLVMValueRef by = LLVMBuildMul(builder, y_val, stride, ""); LLVMValueRef gep[2]; LLVMValueRef dst_ptr; gep[0] = lp_build_const_int32(gallivm, 0); gep[1] = LLVMBuildAdd(builder, bx, by, ""); dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, ""); dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), ""); dst[i] = LLVMBuildLoad(builder, dst_ptr, ""); LLVMSetAlignment(dst[i], dst_alignment); } } /** * Store an unswizzled block of pixels to memory */ static void store_unswizzled_block(struct gallivm_state *gallivm, LLVMValueRef base_ptr, LLVMValueRef stride, unsigned block_width, unsigned block_height, LLVMValueRef* src, struct lp_type src_type, unsigned src_count, unsigned src_alignment) { LLVMBuilderRef builder = gallivm->builder; unsigned row_size = src_count / block_height; unsigned i; /* Ensure src exactly fits into block */ assert((block_width * block_height) % src_count == 0); for (i = 0; i < src_count; ++i) { unsigned x = i % row_size; unsigned y = i / row_size; LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length); LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, ""); LLVMValueRef gep[2]; LLVMValueRef src_ptr; gep[0] = lp_build_const_int32(gallivm, 0); gep[1] = LLVMBuildAdd(builder, bx, by, ""); src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, ""); src_ptr = LLVMBuildBitCast(builder, src_ptr, LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), ""); src_ptr = LLVMBuildStore(builder, src[i], src_ptr); LLVMSetAlignment(src_ptr, src_alignment); } } /** * Retrieves the type for a format which is usable in the blending code. * * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte */ static inline void lp_blend_type_from_format_desc(const struct util_format_description *format_desc, struct lp_type* type) { unsigned i; unsigned chan; if (format_expands_to_float_soa(format_desc)) { /* always use ordinary floats for blending */ type->floating = true; type->fixed = false; type->sign = true; type->norm = false; type->width = 32; type->length = 4; return; } for (i = 0; i < 4; i++) if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) break; chan = i; memset(type, 0, sizeof(struct lp_type)); type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT; type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED; type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED; type->norm = format_desc->channel[chan].normalized; type->width = format_desc->channel[chan].size; type->length = format_desc->nr_channels; for (i = 1; i < format_desc->nr_channels; ++i) { if (format_desc->channel[i].size > type->width) type->width = format_desc->channel[i].size; } if (type->floating) { type->width = 32; } else { if (type->width <= 8) { type->width = 8; } else if (type->width <= 16) { type->width = 16; } else { type->width = 32; } } if (is_arithmetic_format(format_desc) && type->length == 3) { type->length = 4; } } /** * Scale a normalized value from src_bits to dst_bits. * * The exact calculation is * * dst = iround(src * dst_mask / src_mask) * * or with integer rounding * * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask) * * where * * src_mask = (1 << src_bits) - 1 * dst_mask = (1 << dst_bits) - 1 * * but we try to avoid division and multiplication through shifts. */ static inline LLVMValueRef scale_bits(struct gallivm_state *gallivm, int src_bits, int dst_bits, LLVMValueRef src, struct lp_type src_type) { LLVMBuilderRef builder = gallivm->builder; LLVMValueRef result = src; if (dst_bits < src_bits) { int delta_bits = src_bits - dst_bits; if (delta_bits <= dst_bits) { /* * Approximate the rescaling with a single shift. * * This gives the wrong rounding. */ result = LLVMBuildLShr(builder, src, lp_build_const_int_vec(gallivm, src_type, delta_bits), ""); } else { /* * Try more accurate rescaling. */ /* * Drop the least significant bits to make space for the multiplication. * * XXX: A better approach would be to use a wider integer type as intermediate. But * this is enough to convert alpha from 16bits -> 2 when rendering to * PIPE_FORMAT_R10G10B10A2_UNORM. */ result = LLVMBuildLShr(builder, src, lp_build_const_int_vec(gallivm, src_type, dst_bits), ""); result = LLVMBuildMul(builder, result, lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1), ""); /* * Add a rounding term before the division. * * TODO: Handle signed integers too. */ if (!src_type.sign) { result = LLVMBuildAdd(builder, result, lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))), ""); } /* * Approximate the division by src_mask with a src_bits shift. * * Given the src has already been shifted by dst_bits, all we need * to do is to shift by the difference. */ result = LLVMBuildLShr(builder, result, lp_build_const_int_vec(gallivm, src_type, delta_bits), ""); } } else if (dst_bits > src_bits) { /* Scale up bits */ int db = dst_bits - src_bits; /* Shift left by difference in bits */ result = LLVMBuildShl(builder, src, lp_build_const_int_vec(gallivm, src_type, db), ""); if (db <= src_bits) { /* Enough bits in src to fill the remainder */ LLVMValueRef lower = LLVMBuildLShr(builder, src, lp_build_const_int_vec(gallivm, src_type, src_bits - db), ""); result = LLVMBuildOr(builder, result, lower, ""); } else if (db > src_bits) { /* Need to repeatedly copy src bits to fill remainder in dst */ unsigned n; for (n = src_bits; n < dst_bits; n *= 2) { LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n); result = LLVMBuildOr(builder, result, LLVMBuildLShr(builder, result, shuv, ""), ""); } } } return result; } /** * If RT is a smallfloat (needing denorms) format */ static inline int have_smallfloat_format(struct lp_type dst_type, enum pipe_format format) { return ((dst_type.floating && dst_type.width != 32) || /* due to format handling hacks this format doesn't have floating set * here (and actually has width set to 32 too) so special case this. */ (format == PIPE_FORMAT_R11G11B10_FLOAT)); } /** * Convert from memory format to blending format * * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending */ static void convert_to_blend_type(struct gallivm_state *gallivm, unsigned block_size, const struct util_format_description *src_fmt, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef* src, // and dst unsigned num_srcs) { LLVMValueRef *dst = src; LLVMBuilderRef builder = gallivm->builder; struct lp_type blend_type; struct lp_type mem_type; unsigned i, j; unsigned pixels = block_size / num_srcs; bool is_arith; /* * full custom path for packed floats and srgb formats - none of the later * functions would do anything useful, and given the lp_type representation they * can't be fixed. Should really have some SoA blend path for these kind of * formats rather than hacking them in here. */ if (format_expands_to_float_soa(src_fmt)) { LLVMValueRef tmpsrc[4]; /* * This is pretty suboptimal for this case blending in SoA would be much * better, since conversion gets us SoA values so need to convert back. */ assert(src_type.width == 32 || src_type.width == 16); assert(dst_type.floating); assert(dst_type.width == 32); assert(dst_type.length % 4 == 0); assert(num_srcs % 4 == 0); if (src_type.width == 16) { /* expand 4x16bit values to 4x32bit */ struct lp_type type32x4 = src_type; LLVMTypeRef ltype32x4; unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4; type32x4.width = 32; ltype32x4 = lp_build_vec_type(gallivm, type32x4); for (i = 0; i < num_fetch; i++) { src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, ""); } src_type.width = 32; } for (i = 0; i < 4; i++) { tmpsrc[i] = src[i]; } for (i = 0; i < num_srcs / 4; i++) { LLVMValueRef tmpsoa[4]; LLVMValueRef tmps = tmpsrc[i]; if (dst_type.length == 8) { LLVMValueRef shuffles[8]; unsigned j; /* fetch was 4 values but need 8-wide output values */ tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2); /* * for 8-wide aos transpose would give us wrong order not matching * incoming converted fs values and mask. ARGH. */ for (j = 0; j < 4; j++) { shuffles[j] = lp_build_const_int32(gallivm, j * 2); shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1); } tmps = LLVMBuildShuffleVector(builder, tmps, tmps, LLVMConstVector(shuffles, 8), ""); } if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) { lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa); } else { lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa); } lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]); } return; } lp_mem_type_from_format_desc(src_fmt, &mem_type); lp_blend_type_from_format_desc(src_fmt, &blend_type); /* Is the format arithmetic */ is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length; is_arith &= !(mem_type.width == 16 && mem_type.floating); /* Pad if necessary */ if (!is_arith && src_type.length < dst_type.length) { for (i = 0; i < num_srcs; ++i) { dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length); } src_type.length = dst_type.length; } /* Special case for half-floats */ if (mem_type.width == 16 && mem_type.floating) { assert(blend_type.width == 32 && blend_type.floating); lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst); is_arith = false; } if (!is_arith) { return; } src_type.width = blend_type.width * blend_type.length; blend_type.length *= pixels; src_type.length *= pixels / (src_type.length / mem_type.length); for (i = 0; i < num_srcs; ++i) { LLVMValueRef chans[4]; LLVMValueRef res = NULL; dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), ""); for (j = 0; j < src_fmt->nr_channels; ++j) { unsigned mask = 0; unsigned sa = src_fmt->channel[j].shift; #if UTIL_ARCH_LITTLE_ENDIAN unsigned from_lsb = j; #else unsigned from_lsb = src_fmt->nr_channels - j - 1; #endif mask = (1 << src_fmt->channel[j].size) - 1; /* Extract bits from source */ chans[j] = LLVMBuildLShr(builder, dst[i], lp_build_const_int_vec(gallivm, src_type, sa), ""); chans[j] = LLVMBuildAnd(builder, chans[j], lp_build_const_int_vec(gallivm, src_type, mask), ""); /* Scale bits */ if (src_type.norm) { chans[j] = scale_bits(gallivm, src_fmt->channel[j].size, blend_type.width, chans[j], src_type); } /* Insert bits into correct position */ chans[j] = LLVMBuildShl(builder, chans[j], lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width), ""); if (j == 0) { res = chans[j]; } else { res = LLVMBuildOr(builder, res, chans[j], ""); } } dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), ""); } } /** * Convert from blending format to memory format * * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory */ static void convert_from_blend_type(struct gallivm_state *gallivm, unsigned block_size, const struct util_format_description *src_fmt, struct lp_type src_type, struct lp_type dst_type, LLVMValueRef* src, // and dst unsigned num_srcs) { LLVMValueRef* dst = src; unsigned i, j, k; struct lp_type mem_type; struct lp_type blend_type; LLVMBuilderRef builder = gallivm->builder; unsigned pixels = block_size / num_srcs; bool is_arith; /* * full custom path for packed floats and srgb formats - none of the later * functions would do anything useful, and given the lp_type representation they * can't be fixed. Should really have some SoA blend path for these kind of * formats rather than hacking them in here. */ if (format_expands_to_float_soa(src_fmt)) { /* * This is pretty suboptimal for this case blending in SoA would be much * better - we need to transpose the AoS values back to SoA values for * conversion/packing. */ assert(src_type.floating); assert(src_type.width == 32); assert(src_type.length % 4 == 0); assert(dst_type.width == 32 || dst_type.width == 16); for (i = 0; i < num_srcs / 4; i++) { LLVMValueRef tmpsoa[4], tmpdst; lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa); /* really really need SoA here */ if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) { tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa); } else { tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt, src_type, tmpsoa); } if (src_type.length == 8) { LLVMValueRef tmpaos, shuffles[8]; unsigned j; /* * for 8-wide aos transpose has given us wrong order not matching * output order. HMPF. Also need to split the output values manually. */ for (j = 0; j < 4; j++) { shuffles[j * 2] = lp_build_const_int32(gallivm, j); shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4); } tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst, LLVMConstVector(shuffles, 8), ""); src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4); src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4); } else { src[i] = tmpdst; } } if (dst_type.width == 16) { struct lp_type type16x8 = dst_type; struct lp_type type32x4 = dst_type; LLVMTypeRef ltype16x4, ltypei64, ltypei128; unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4; type16x8.length = 8; type32x4.width = 32; ltypei128 = LLVMIntTypeInContext(gallivm->context, 128); ltypei64 = LLVMIntTypeInContext(gallivm->context, 64); ltype16x4 = lp_build_vec_type(gallivm, dst_type); /* We could do vector truncation but it doesn't generate very good code */ for (i = 0; i < num_fetch; i++) { src[i] = lp_build_pack2(gallivm, type32x4, type16x8, src[i], lp_build_zero(gallivm, type32x4)); src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, ""); src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, ""); src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, ""); } } return; } lp_mem_type_from_format_desc(src_fmt, &mem_type); lp_blend_type_from_format_desc(src_fmt, &blend_type); is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length); /* Special case for half-floats */ if (mem_type.width == 16 && mem_type.floating) { int length = dst_type.length; assert(blend_type.width == 32 && blend_type.floating); dst_type.length = src_type.length; lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst); dst_type.length = length; is_arith = false; } /* Remove any padding */ if (!is_arith && (src_type.length % mem_type.length)) { src_type.length -= (src_type.length % mem_type.length); for (i = 0; i < num_srcs; ++i) { dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length); } } /* No bit arithmetic to do */ if (!is_arith) { return; } src_type.length = pixels; src_type.width = blend_type.length * blend_type.width; dst_type.length = pixels; for (i = 0; i < num_srcs; ++i) { LLVMValueRef chans[4]; LLVMValueRef res = NULL; dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), ""); for (j = 0; j < src_fmt->nr_channels; ++j) { unsigned mask = 0; unsigned sa = src_fmt->channel[j].shift; unsigned sz_a = src_fmt->channel[j].size; #if UTIL_ARCH_LITTLE_ENDIAN unsigned from_lsb = j; #else unsigned from_lsb = src_fmt->nr_channels - j - 1; #endif assert(blend_type.width > src_fmt->channel[j].size); for (k = 0; k < blend_type.width; ++k) { mask |= 1 << k; } /* Extract bits */ chans[j] = LLVMBuildLShr(builder, dst[i], lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width), ""); chans[j] = LLVMBuildAnd(builder, chans[j], lp_build_const_int_vec(gallivm, src_type, mask), ""); /* Scale down bits */ if (src_type.norm) { chans[j] = scale_bits(gallivm, blend_type.width, src_fmt->channel[j].size, chans[j], src_type); } else if (!src_type.floating && sz_a < blend_type.width) { LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1); LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, ""); chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], ""); } /* Insert bits */ chans[j] = LLVMBuildShl(builder, chans[j], lp_build_const_int_vec(gallivm, src_type, sa), ""); sa += src_fmt->channel[j].size; if (j == 0) { res = chans[j]; } else { res = LLVMBuildOr(builder, res, chans[j], ""); } } assert (dst_type.width != 24); dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), ""); } } /** * Convert alpha to same blend type as src */ static void convert_alpha(struct gallivm_state *gallivm, struct lp_type row_type, struct lp_type alpha_type, const unsigned block_size, const unsigned block_height, const unsigned src_count, const unsigned dst_channels, const bool pad_inline, LLVMValueRef* src_alpha) { LLVMBuilderRef builder = gallivm->builder; unsigned i, j; unsigned length = row_type.length; row_type.length = alpha_type.length; /* Twiddle the alpha to match pixels */ lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha); /* * TODO this should use single lp_build_conv call for * src_count == 1 && dst_channels == 1 case (dropping the concat below) */ for (i = 0; i < block_height; ++i) { lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1); } alpha_type = row_type; row_type.length = length; /* If only one channel we can only need the single alpha value per pixel */ if (src_count == 1 && dst_channels == 1) { lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count); } else { /* If there are more srcs than rows then we need to split alpha up */ if (src_count > block_height) { for (i = src_count; i > 0; --i) { unsigned pixels = block_size / src_count; unsigned idx = i - 1; src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4], (idx * pixels) % 4, pixels); } } /* If there is a src for each pixel broadcast the alpha across whole row */ if (src_count == block_size) { for (i = 0; i < src_count; ++i) { src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]); } } else { unsigned pixels = block_size / src_count; unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels; unsigned alpha_span = 1; LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH]; /* Check if we need 2 src_alphas for our shuffles */ if (pixels > alpha_type.length) { alpha_span = 2; } /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */ for (j = 0; j < row_type.length; ++j) { if (j < pixels * channels) { shuffles[j] = lp_build_const_int32(gallivm, j / channels); } else { shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context)); } } for (i = 0; i < src_count; ++i) { unsigned idx1 = i, idx2 = i; if (alpha_span > 1){ idx1 *= alpha_span; idx2 = idx1 + 1; } src_alpha[i] = LLVMBuildShuffleVector(builder, src_alpha[idx1], src_alpha[idx2], LLVMConstVector(shuffles, row_type.length), ""); } } } } /** * Generates the blend function for unswizzled colour buffers * Also generates the read & write from colour buffer */ static void generate_unswizzled_blend(struct gallivm_state *gallivm, unsigned rt, struct lp_fragment_shader_variant *variant, enum pipe_format out_format, unsigned int num_fs, struct lp_type fs_type, LLVMValueRef* fs_mask, LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4], LLVMValueRef context_ptr, LLVMValueRef color_ptr, LLVMValueRef stride, unsigned partial_mask, boolean do_branch) { const unsigned alpha_channel = 3; const unsigned block_width = LP_RASTER_BLOCK_SIZE; const unsigned block_height = LP_RASTER_BLOCK_SIZE; const unsigned block_size = block_width * block_height; const unsigned lp_integer_vector_width = 128; LLVMBuilderRef builder = gallivm->builder; LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS]; LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS]; LLVMValueRef src_alpha[4 * 4]; LLVMValueRef src1_alpha[4 * 4] = { NULL }; LLVMValueRef src_mask[4 * 4]; LLVMValueRef src[4 * 4]; LLVMValueRef src1[4 * 4]; LLVMValueRef dst[4 * 4]; LLVMValueRef blend_color; LLVMValueRef blend_alpha; LLVMValueRef i32_zero; LLVMValueRef check_mask; LLVMValueRef undef_src_val; struct lp_build_mask_context mask_ctx; struct lp_type mask_type; struct lp_type blend_type; struct lp_type row_type; struct lp_type dst_type; struct lp_type ls_type; unsigned char swizzle[TGSI_NUM_CHANNELS]; unsigned vector_width; unsigned src_channels = TGSI_NUM_CHANNELS; unsigned dst_channels; unsigned dst_count; unsigned src_count; unsigned i, j; const struct util_format_description* out_format_desc = util_format_description(out_format); unsigned dst_alignment; bool pad_inline = is_arithmetic_format(out_format_desc); bool has_alpha = false; const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable && util_blend_state_is_dual(&variant->key.blend, 0); const boolean is_1d = variant->key.resource_1d; boolean twiddle_after_convert = FALSE; unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs; LLVMValueRef fpstate = 0; /* Get type from output format */ lp_blend_type_from_format_desc(out_format_desc, &row_type); lp_mem_type_from_format_desc(out_format_desc, &dst_type); /* * Technically this code should go into lp_build_smallfloat_to_float * and lp_build_float_to_smallfloat but due to the * http://llvm.org/bugs/show_bug.cgi?id=6393 * llvm reorders the mxcsr intrinsics in a way that breaks the code. * So the ordering is important here and there shouldn't be any * llvm ir instrunctions in this function before * this, otherwise half-float format conversions won't work * (again due to llvm bug #6393). */ if (have_smallfloat_format(dst_type, out_format)) { /* We need to make sure that denorms are ok for half float conversions */ fpstate = lp_build_fpstate_get(gallivm); lp_build_fpstate_set_denorms_zero(gallivm, FALSE); } mask_type = lp_int32_vec4_type(); mask_type.length = fs_type.length; for (i = num_fs; i < num_fullblock_fs; i++) { fs_mask[i] = lp_build_zero(gallivm, mask_type); } /* Do not bother executing code when mask is empty.. */ if (do_branch) { check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type)); for (i = 0; i < num_fullblock_fs; ++i) { check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], ""); } lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask); lp_build_mask_check(&mask_ctx); } partial_mask |= !variant->opaque; i32_zero = lp_build_const_int32(gallivm, 0); undef_src_val = lp_build_undef(gallivm, fs_type); row_type.length = fs_type.length; vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width; /* Compute correct swizzle and count channels */ memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS); dst_channels = 0; for (i = 0; i < TGSI_NUM_CHANNELS; ++i) { /* Ensure channel is used */ if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) { continue; } /* Ensure not already written to (happens in case with GL_ALPHA) */ if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) { continue; } /* Ensure we havn't already found all channels */ if (dst_channels >= out_format_desc->nr_channels) { continue; } swizzle[out_format_desc->swizzle[i]] = i; ++dst_channels; if (i == alpha_channel) { has_alpha = true; } } if (format_expands_to_float_soa(out_format_desc)) { /* * the code above can't work for layout_other * for srgb it would sort of work but we short-circuit swizzles, etc. * as that is done as part of unpack / pack. */ dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */ has_alpha = true; swizzle[0] = 0; swizzle[1] = 1; swizzle[2] = 2; swizzle[3] = 3; pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */ } /* If 3 channels then pad to include alpha for 4 element transpose */ if (dst_channels == 3) { assert (!has_alpha); for (i = 0; i < TGSI_NUM_CHANNELS; i++) { if (swizzle[i] > TGSI_NUM_CHANNELS) swizzle[i] = 3; } if (out_format_desc->nr_channels == 4) { dst_channels = 4; /* * We use alpha from the color conversion, not separate one. * We had to include it for transpose, hence it will get converted * too (albeit when doing transpose after conversion, that would * no longer be the case necessarily). * (It works only with 4 channel dsts, e.g. rgbx formats, because * otherwise we really have padding, not alpha, included.) */ has_alpha = true; } } /* * Load shader output */ for (i = 0; i < num_fullblock_fs; ++i) { /* Always load alpha for use in blending */ LLVMValueRef alpha; if (i < num_fs) { alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], ""); } else { alpha = undef_src_val; } /* Load each channel */ for (j = 0; j < dst_channels; ++j) { assert(swizzle[j] < 4); if (i < num_fs) { fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], ""); } else { fs_src[i][j] = undef_src_val; } } /* If 3 channels then pad to include alpha for 4 element transpose */ /* * XXX If we include that here maybe could actually use it instead of * separate alpha for blending? * (Difficult though we actually convert pad channels, not alpha.) */ if (dst_channels == 3 && !has_alpha) { fs_src[i][3] = alpha; } /* We split the row_mask and row_alpha as we want 128bit interleave */ if (fs_type.length == 8) { src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels); src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels); src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels); src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels); } else { src_mask[i] = fs_mask[i]; src_alpha[i] = alpha; } } if (dual_source_blend) { /* same as above except different src/dst, skip masks and comments... */ for (i = 0; i < num_fullblock_fs; ++i) { LLVMValueRef alpha; if (i < num_fs) { alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], ""); } else { alpha = undef_src_val; } for (j = 0; j < dst_channels; ++j) { assert(swizzle[j] < 4); if (i < num_fs) { fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], ""); } else { fs_src1[i][j] = undef_src_val; } } if (dst_channels == 3 && !has_alpha) { fs_src1[i][3] = alpha; } if (fs_type.length == 8) { src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels); src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels); } else { src1_alpha[i] = alpha; } } } if (util_format_is_pure_integer(out_format)) { /* * In this case fs_type was really ints or uints disguised as floats, * fix that up now. */ fs_type.floating = 0; fs_type.sign = dst_type.sign; for (i = 0; i < num_fullblock_fs; ++i) { for (j = 0; j < dst_channels; ++j) { fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j], lp_build_vec_type(gallivm, fs_type), ""); } if (dst_channels == 3 && !has_alpha) { fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3], lp_build_vec_type(gallivm, fs_type), ""); } } } /* * We actually should generally do conversion first (for non-1d cases) * when the blend format is 8 or 16 bits. The reason is obvious, * there's 2 or 4 times less vectors to deal with for the interleave... * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit * unpack only with 128bit vectors). * Note: for 16bit sizes really need matching pack conversion code */ if (!is_1d && dst_channels != 3 && dst_type.width == 8) { twiddle_after_convert = TRUE; } /* * Pixel twiddle from fragment shader order to memory order */ if (!twiddle_after_convert) { src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels, fs_src, src, pad_inline); if (dual_source_blend) { generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels, fs_src1, src1, pad_inline); } } else { src_count = num_fullblock_fs * dst_channels; /* * We reorder things a bit here, so the cases for 4-wide and 8-wide * (AVX) turn out the same later when untwiddling/transpose (albeit * for true AVX2 path untwiddle needs to be different). * For now just order by colors first (so we can use unpack later). */ for (j = 0; j < num_fullblock_fs; j++) { for (i = 0; i < dst_channels; i++) { src[i*num_fullblock_fs + j] = fs_src[j][i]; if (dual_source_blend) { src1[i*num_fullblock_fs + j] = fs_src1[j][i]; } } } } src_channels = dst_channels < 3 ? dst_channels : 4; if (src_count != num_fullblock_fs * src_channels) { unsigned ds = src_count / (num_fullblock_fs * src_channels); row_type.length /= ds; fs_type.length = row_type.length; } blend_type = row_type; mask_type.length = 4; /* Convert src to row_type */ if (dual_source_blend) { struct lp_type old_row_type = row_type; lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src); src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1); } else { src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src); } /* If the rows are not an SSE vector, combine them to become SSE size! */ if ((row_type.width * row_type.length) % 128) { unsigned bits = row_type.width * row_type.length; unsigned combined; assert(src_count >= (vector_width / bits)); dst_count = src_count / (vector_width / bits); combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count); if (dual_source_blend) { lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count); } row_type.length *= combined; src_count /= combined; bits = row_type.width * row_type.length; assert(bits == 128 || bits == 256); } if (twiddle_after_convert) { fs_twiddle_transpose(gallivm, row_type, src, src_count, src); if (dual_source_blend) { fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1); } } /* * Blend Colour conversion */ blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr); blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), ""); blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), ""); /* Convert */ lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1); if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) { /* * since blending is done with floats, there was no conversion. * However, the rules according to fixed point renderbuffers still * apply, that is we must clamp inputs to 0.0/1.0. * (This would apply to separate alpha conversion too but we currently * force has_alpha to be true.) * TODO: should skip this with "fake" blend, since post-blend conversion * will clamp anyway. * TODO: could also skip this if fragment color clamping is enabled. We * don't support it natively so it gets baked into the shader however, so * can't really tell here. */ struct lp_build_context f32_bld; assert(row_type.floating); lp_build_context_init(&f32_bld, gallivm, row_type); for (i = 0; i < src_count; i++) { src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]); } if (dual_source_blend) { for (i = 0; i < src_count; i++) { src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]); } } /* probably can't be different than row_type but better safe than sorry... */ lp_build_context_init(&f32_bld, gallivm, blend_type); blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one); } /* Extract alpha */ blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3)); /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */ pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width; if (pad_inline) { /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */ blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length); } else { /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */ blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length); } /* * Mask conversion */ lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]); if (src_count < block_height) { lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count); } else if (src_count > block_height) { for (i = src_count; i > 0; --i) { unsigned pixels = block_size / src_count; unsigned idx = i - 1; src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4], (idx * pixels) % 4, pixels); } } assert(mask_type.width == 32); for (i = 0; i < src_count; ++i) { unsigned pixels = block_size / src_count; unsigned pixel_width = row_type.width * dst_channels; if (pixel_width == 24) { mask_type.width = 8; mask_type.length = vector_width / mask_type.width; } else { mask_type.length = pixels; mask_type.width = row_type.width * dst_channels; /* * If mask_type width is smaller than 32bit, this doesn't quite * generate the most efficient code (could use some pack). */ src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), ""); mask_type.length *= dst_channels; mask_type.width /= dst_channels; } src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), ""); src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length); } /* * Alpha conversion */ if (!has_alpha) { struct lp_type alpha_type = fs_type; alpha_type.length = 4; convert_alpha(gallivm, row_type, alpha_type, block_size, block_height, src_count, dst_channels, pad_inline, src_alpha); if (dual_source_blend) { convert_alpha(gallivm, row_type, alpha_type, block_size, block_height, src_count, dst_channels, pad_inline, src1_alpha); } } /* * Load dst from memory */ if (src_count < block_height) { dst_count = block_height; } else { dst_count = src_count; } dst_type.length *= block_size / dst_count; if (format_expands_to_float_soa(out_format_desc)) { /* * we need multiple values at once for the conversion, so can as well * load them vectorized here too instead of concatenating later. * (Still need concatenation later for 8-wide vectors). */ dst_count = block_height; dst_type.length = block_width; } /* * Compute the alignment of the destination pointer in bytes * We fetch 1-4 pixels, if the format has pot alignment then those fetches * are always aligned by MIN2(16, fetch_width) except for buffers (not * 1d tex but can't distinguish here) so need to stick with per-pixel * alignment in this case. */ if (is_1d) { dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8); } else { dst_alignment = dst_type.length * dst_type.width / 8; } /* Force power-of-two alignment by extracting only the least-significant-bit */ dst_alignment = 1 << (ffs(dst_alignment) - 1); /* * Resource base and stride pointers are aligned to 16 bytes, so that's * the maximum alignment we can guarantee */ dst_alignment = MIN2(16, dst_alignment); ls_type = dst_type; if (dst_count > src_count) { if ((dst_type.width == 8 || dst_type.width == 16) && util_is_power_of_two_or_zero(dst_type.length) && dst_type.length * dst_type.width < 128) { /* * Never try to load values as 4xi8 which we will then * concatenate to larger vectors. This gives llvm a real * headache (the problem is the type legalizer (?) will * try to load that as 4xi8 zext to 4xi32 to fill the vector, * then the shuffles to concatenate are more or less impossible * - llvm is easily capable of generating a sequence of 32 * pextrb/pinsrb instructions for that. Albeit it appears to * be fixed in llvm 4.0. So, load and concatenate with 32bit * width to avoid the trouble (16bit seems not as bad, llvm * probably recognizes the load+shuffle as only one shuffle * is necessary, but we can do just the same anyway). */ ls_type.length = dst_type.length * dst_type.width / 32; ls_type.width = 32; } } if (is_1d) { load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1, dst, ls_type, dst_count / 4, dst_alignment, NULL, NULL, false); for (i = dst_count / 4; i < dst_count; i++) { dst[i] = lp_build_undef(gallivm, ls_type); } } else { load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height, dst, ls_type, dst_count, dst_alignment, NULL, NULL, false); } /* * Convert from dst/output format to src/blending format. * * This is necessary as we can only read 1 row from memory at a time, * so the minimum dst_count will ever be at this point is 4. * * With, for example, R8 format you can have all 16 pixels in a 128 bit vector, * this will take the 4 dsts and combine them into 1 src so we can perform blending * on all 16 pixels in that single vector at once. */ if (dst_count > src_count) { if (ls_type.length != dst_type.length && ls_type.length == 1) { LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type); LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1); for (i = 0; i < dst_count; i++) { dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, ""); } } lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count); if (ls_type.length != dst_type.length) { struct lp_type tmp_type = dst_type; tmp_type.length = dst_type.length * 4 / src_count; for (i = 0; i < src_count; i++) { dst[i] = LLVMBuildBitCast(builder, dst[i], lp_build_vec_type(gallivm, tmp_type), ""); } } } /* * Blending */ /* XXX this is broken for RGB8 formats - * they get expanded from 12 to 16 elements (to include alpha) * by convert_to_blend_type then reduced to 15 instead of 12 * by convert_from_blend_type (a simple fix though breaks A8...). * R16G16B16 also crashes differently however something going wrong * inside llvm handling npot vector sizes seemingly. * It seems some cleanup could be done here (like skipping conversion/blend * when not needed). */ convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count); /* * FIXME: Really should get logic ops / masks out of generic blend / row * format. Logic ops will definitely not work on the blend float format * used for SRGB here and I think OpenGL expects this to work as expected * (that is incoming values converted to srgb then logic op applied). */ for (i = 0; i < src_count; ++i) { dst[i] = lp_build_blend_aos(gallivm, &variant->key.blend, out_format, row_type, rt, src[i], has_alpha ? NULL : src_alpha[i], src1[i], has_alpha ? NULL : src1_alpha[i], dst[i], partial_mask ? src_mask[i] : NULL, blend_color, has_alpha ? NULL : blend_alpha, swizzle, pad_inline ? 4 : dst_channels); } convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count); /* Split the blend rows back to memory rows */ if (dst_count > src_count) { row_type.length = dst_type.length * (dst_count / src_count); if (src_count == 1) { dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2); dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2); row_type.length /= 2; src_count *= 2; } dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2); dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2); dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2); dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2); row_type.length /= 2; src_count *= 2; } /* * Store blend result to memory */ if (is_1d) { store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1, dst, dst_type, dst_count / 4, dst_alignment); } else { store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height, dst, dst_type, dst_count, dst_alignment); } if (have_smallfloat_format(dst_type, out_format)) { lp_build_fpstate_set(gallivm, fpstate); } if (do_branch) { lp_build_mask_end(&mask_ctx); } } /** * Generate the runtime callable function for the whole fragment pipeline. * Note that the function which we generate operates on a block of 16 * pixels at at time. The block contains 2x2 quads. Each quad contains * 2x2 pixels. */ static void generate_fragment(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, struct lp_fragment_shader_variant *variant, unsigned partial_mask) { struct gallivm_state *gallivm = variant->gallivm; struct lp_fragment_shader_variant_key *key = &variant->key; struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS]; char func_name[64]; struct lp_type fs_type; struct lp_type blend_type; LLVMTypeRef fs_elem_type; LLVMTypeRef blend_vec_type; LLVMTypeRef arg_types[15]; LLVMTypeRef func_type; LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context); LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context); LLVMValueRef context_ptr; LLVMValueRef x; LLVMValueRef y; LLVMValueRef a0_ptr; LLVMValueRef dadx_ptr; LLVMValueRef dady_ptr; LLVMValueRef color_ptr_ptr; LLVMValueRef stride_ptr; LLVMValueRef color_sample_stride_ptr; LLVMValueRef depth_ptr; LLVMValueRef depth_stride; LLVMValueRef depth_sample_stride; LLVMValueRef mask_input; LLVMValueRef thread_data_ptr; LLVMBasicBlockRef block; LLVMBuilderRef builder; struct lp_build_sampler_soa *sampler; struct lp_build_image_soa *image; struct lp_build_interp_soa_context interp; LLVMValueRef fs_mask[(16 / 4) * LP_MAX_SAMPLES]; LLVMValueRef fs_out_color[LP_MAX_SAMPLES][PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4]; LLVMValueRef function; LLVMValueRef facing; unsigned num_fs; unsigned i; unsigned chan; unsigned cbuf; boolean cbuf0_write_all; const boolean dual_source_blend = key->blend.rt[0].blend_enable && util_blend_state_is_dual(&key->blend, 0); assert(lp_native_vector_width / 32 >= 4); /* Adjust color input interpolation according to flatshade state: */ memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]); for (i = 0; i < shader->info.base.num_inputs; i++) { if (inputs[i].interp == LP_INTERP_COLOR) { if (key->flatshade) inputs[i].interp = LP_INTERP_CONSTANT; else inputs[i].interp = LP_INTERP_PERSPECTIVE; } } /* check if writes to cbuf[0] are to be copied to all cbufs */ cbuf0_write_all = shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS]; /* TODO: actually pick these based on the fs and color buffer * characteristics. */ memset(&fs_type, 0, sizeof fs_type); fs_type.floating = TRUE; /* floating point values */ fs_type.sign = TRUE; /* values are signed */ fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ fs_type.width = 32; /* 32-bit float */ fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */ memset(&blend_type, 0, sizeof blend_type); blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ /* * Generate the function prototype. Any change here must be reflected in * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. */ fs_elem_type = lp_build_elem_type(gallivm, fs_type); blend_vec_type = lp_build_vec_type(gallivm, blend_type); snprintf(func_name, sizeof(func_name), "fs_variant_%s", partial_mask ? "partial" : "whole"); arg_types[0] = variant->jit_context_ptr_type; /* context */ arg_types[1] = int32_type; /* x */ arg_types[2] = int32_type; /* y */ arg_types[3] = int32_type; /* facing */ arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */ arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */ arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */ arg_types[7] = LLVMPointerType(LLVMPointerType(int8_type, 0), 0); /* color */ arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */ arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */ arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */ arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */ arg_types[12] = int32_type; /* depth_stride */ arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */ arg_types[14] = int32_type; /* depth sample stride */ func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context), arg_types, ARRAY_SIZE(arg_types), 0); function = LLVMAddFunction(gallivm->module, func_name, func_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); variant->function[partial_mask] = function; /* XXX: need to propagate noalias down into color param now we are * passing a pointer-to-pointer? */ for(i = 0; i < ARRAY_SIZE(arg_types); ++i) if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS); if (variant->gallivm->cache->data_size) return; context_ptr = LLVMGetParam(function, 0); x = LLVMGetParam(function, 1); y = LLVMGetParam(function, 2); facing = LLVMGetParam(function, 3); a0_ptr = LLVMGetParam(function, 4); dadx_ptr = LLVMGetParam(function, 5); dady_ptr = LLVMGetParam(function, 6); color_ptr_ptr = LLVMGetParam(function, 7); depth_ptr = LLVMGetParam(function, 8); mask_input = LLVMGetParam(function, 9); thread_data_ptr = LLVMGetParam(function, 10); stride_ptr = LLVMGetParam(function, 11); depth_stride = LLVMGetParam(function, 12); color_sample_stride_ptr = LLVMGetParam(function, 13); depth_sample_stride = LLVMGetParam(function, 14); lp_build_name(context_ptr, "context"); lp_build_name(x, "x"); lp_build_name(y, "y"); lp_build_name(a0_ptr, "a0"); lp_build_name(dadx_ptr, "dadx"); lp_build_name(dady_ptr, "dady"); lp_build_name(color_ptr_ptr, "color_ptr_ptr"); lp_build_name(depth_ptr, "depth"); lp_build_name(mask_input, "mask_input"); lp_build_name(thread_data_ptr, "thread_data"); lp_build_name(stride_ptr, "stride_ptr"); lp_build_name(depth_stride, "depth_stride"); lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr"); lp_build_name(depth_sample_stride, "depth_sample_stride"); /* * Function body */ block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry"); builder = gallivm->builder; assert(builder); LLVMPositionBuilderAtEnd(builder, block); /* * Must not count ps invocations if there's a null shader. * (It would be ok to count with null shader if there's d/s tests, * but only if there's d/s buffers too, which is different * to implicit rasterization disable which must not depend * on the d/s buffers.) * Could use popcount on mask, but pixel accuracy is not required. * Could disable if there's no stats query, but maybe not worth it. */ if (shader->info.base.num_instructions > 1) { LLVMValueRef invocs, val; invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr); val = LLVMBuildLoad(builder, invocs, ""); val = LLVMBuildAdd(builder, val, LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0), "invoc_count"); LLVMBuildStore(builder, val, invocs); } /* code generated texture sampling */ sampler = lp_llvm_sampler_soa_create(key->samplers, key->nr_samplers); image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key), key->nr_images); num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */ /* for 1d resources only run "upper half" of stamp */ if (key->resource_1d) num_fs /= 2; { LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs); LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type); LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples); LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type, num_loop_samp, "mask_store"); LLVMTypeRef flt_type = LLVMFloatTypeInContext(gallivm->context); LLVMValueRef glob_sample_pos = LLVMAddGlobal(gallivm->module, LLVMArrayType(flt_type, key->coverage_samples * 2), ""); LLVMValueRef sample_pos_array; if (key->multisample && key->coverage_samples == 4) { LLVMValueRef sample_pos_arr[8]; for (unsigned i = 0; i < 4; i++) { sample_pos_arr[i * 2] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][0]); sample_pos_arr[i * 2 + 1] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][1]); } sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 8); } else { LLVMValueRef sample_pos_arr[2]; sample_pos_arr[0] = LLVMConstReal(flt_type, 0.5); sample_pos_arr[1] = LLVMConstReal(flt_type, 0.5); sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 2); } LLVMSetInitializer(glob_sample_pos, sample_pos_array); LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS]; boolean pixel_center_integer = shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER]; /* * The shader input interpolation info is not explicitely baked in the * shader key, but everything it derives from (TGSI, and flatshade) is * already included in the shader key. */ lp_build_interp_soa_init(&interp, gallivm, shader->info.base.num_inputs, inputs, pixel_center_integer, key->coverage_samples, glob_sample_pos, num_loop, key->depth_clamp, builder, fs_type, a0_ptr, dadx_ptr, dady_ptr, x, y); for (i = 0; i < num_fs; i++) { if (key->multisample) { LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), ""); /* * For multisampling, extract the per-sample mask from the incoming 64-bit mask, * store to the per sample mask storage. Or all of them together to generate * the fragment shader mask. (sample shading TODO). * Take the incoming state coverage mask into account. */ for (unsigned s = 0; s < key->coverage_samples; s++) { LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs)); LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, "sample_mask_ptr"); LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type, i*fs_type.length/4, s, mask_input); LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), ""); LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), ""); smask_bit = LLVMBuildSExt(builder, cmp, int32_type, ""); smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit); s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, ""); LLVMBuildStore(builder, s_mask, sample_mask_ptr); } } else { LLVMValueRef mask; LLVMValueRef indexi = lp_build_const_int32(gallivm, i); LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store, &indexi, 1, "mask_ptr"); if (partial_mask) { mask = generate_quad_mask(gallivm, fs_type, i*fs_type.length/4, 0, mask_input); } else { mask = lp_build_const_int_vec(gallivm, fs_type, ~0); } LLVMBuildStore(builder, mask, mask_ptr); } } generate_fs_loop(gallivm, shader, key, builder, fs_type, context_ptr, glob_sample_pos, num_loop, &interp, sampler, image, mask_store, /* output */ color_store, depth_ptr, depth_stride, depth_sample_stride, color_ptr_ptr, stride_ptr, color_sample_stride_ptr, facing, thread_data_ptr); for (i = 0; i < num_fs; i++) { LLVMValueRef ptr; for (unsigned s = 0; s < key->coverage_samples; s++) { int idx = (i + (s * num_fs)); LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx); ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, ""); fs_mask[idx] = LLVMBuildLoad(builder, ptr, "smask"); } for (unsigned s = 0; s < key->min_samples; s++) { /* This is fucked up need to reorganize things */ int idx = s * num_fs + i; LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx); for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { ptr = LLVMBuildGEP(builder, color_store[cbuf * !cbuf0_write_all][chan], &sindexi, 1, ""); fs_out_color[s][cbuf][chan][i] = ptr; } } if (dual_source_blend) { /* only support one dual source blend target hence always use output 1 */ for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { ptr = LLVMBuildGEP(builder, color_store[1][chan], &sindexi, 1, ""); fs_out_color[s][1][chan][i] = ptr; } } } } } sampler->destroy(sampler); image->destroy(image); /* Loop over color outputs / color buffers to do blending. */ for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) { LLVMValueRef color_ptr; LLVMValueRef stride; LLVMValueRef sample_stride = NULL; LLVMValueRef index = lp_build_const_int32(gallivm, cbuf); boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled || key->alpha.enabled) && !shader->info.base.uses_kill); color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""), ""); stride = LLVMBuildLoad(builder, LLVMBuildGEP(builder, stride_ptr, &index, 1, ""), ""); if (key->multisample) sample_stride = LLVMBuildLoad(builder, LLVMBuildGEP(builder, color_sample_stride_ptr, &index, 1, ""), ""); for (unsigned s = 0; s < key->cbuf_nr_samples[cbuf]; s++) { unsigned mask_idx = num_fs * (key->multisample ? s : 0); unsigned out_idx = key->min_samples == 1 ? 0 : s; LLVMValueRef out_ptr = color_ptr;; if (key->multisample) { LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, lp_build_const_int32(gallivm, s), ""); out_ptr = LLVMBuildGEP(builder, out_ptr, &sample_offset, 1, ""); } out_ptr = LLVMBuildBitCast(builder, out_ptr, LLVMPointerType(blend_vec_type, 0), ""); lp_build_name(out_ptr, "color_ptr%d", cbuf); generate_unswizzled_blend(gallivm, cbuf, variant, key->cbuf_format[cbuf], num_fs, fs_type, &fs_mask[mask_idx], fs_out_color[out_idx], context_ptr, out_ptr, stride, partial_mask, do_branch); } } } LLVMBuildRetVoid(builder); gallivm_verify_function(gallivm, function); } static void dump_fs_variant_key(struct lp_fragment_shader_variant_key *key) { unsigned i; debug_printf("fs variant %p:\n", (void *) key); if (key->flatshade) { debug_printf("flatshade = 1\n"); } if (key->multisample) { debug_printf("multisample = 1\n"); debug_printf("coverage samples = %d\n", key->coverage_samples); debug_printf("min samples = %d\n", key->min_samples); } for (i = 0; i < key->nr_cbufs; ++i) { debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i])); debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]); } if (key->depth.enabled || key->stencil[0].enabled) { debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format)); debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples); } if (key->depth.enabled) { debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE)); debug_printf("depth.writemask = %u\n", key->depth.writemask); } for (i = 0; i < 2; ++i) { if (key->stencil[i].enabled) { debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE)); debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE)); debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE)); debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE)); debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask); debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask); } } if (key->alpha.enabled) { debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE)); } if (key->occlusion_count) { debug_printf("occlusion_count = 1\n"); } if (key->blend.logicop_enable) { debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE)); } else if (key->blend.rt[0].blend_enable) { debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE)); debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE)); debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE)); debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE)); debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE)); debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE)); } debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask); if (key->blend.alpha_to_coverage) { debug_printf("blend.alpha_to_coverage is enabled\n"); } for (i = 0; i < key->nr_samplers; ++i) { const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state; debug_printf("sampler[%u] = \n", i); debug_printf(" .wrap = %s %s %s\n", util_str_tex_wrap(sampler->wrap_s, TRUE), util_str_tex_wrap(sampler->wrap_t, TRUE), util_str_tex_wrap(sampler->wrap_r, TRUE)); debug_printf(" .min_img_filter = %s\n", util_str_tex_filter(sampler->min_img_filter, TRUE)); debug_printf(" .min_mip_filter = %s\n", util_str_tex_mipfilter(sampler->min_mip_filter, TRUE)); debug_printf(" .mag_img_filter = %s\n", util_str_tex_filter(sampler->mag_img_filter, TRUE)); if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE)); debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords); debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal); debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero); debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod); debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod); } for (i = 0; i < key->nr_sampler_views; ++i) { const struct lp_static_texture_state *texture = &key->samplers[i].texture_state; debug_printf("texture[%u] = \n", i); debug_printf(" .format = %s\n", util_format_name(texture->format)); debug_printf(" .target = %s\n", util_str_tex_target(texture->target, TRUE)); debug_printf(" .level_zero_only = %u\n", texture->level_zero_only); debug_printf(" .pot = %u %u %u\n", texture->pot_width, texture->pot_height, texture->pot_depth); } struct lp_image_static_state *images = lp_fs_variant_key_images(key); for (i = 0; i < key->nr_images; ++i) { const struct lp_static_texture_state *image = &images[i].image_state; debug_printf("image[%u] = \n", i); debug_printf(" .format = %s\n", util_format_name(image->format)); debug_printf(" .target = %s\n", util_str_tex_target(image->target, TRUE)); debug_printf(" .level_zero_only = %u\n", image->level_zero_only); debug_printf(" .pot = %u %u %u\n", image->pot_width, image->pot_height, image->pot_depth); } } void lp_debug_fs_variant(struct lp_fragment_shader_variant *variant) { debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n", variant->shader->no, variant->no); if (variant->shader->base.type == PIPE_SHADER_IR_TGSI) tgsi_dump(variant->shader->base.tokens, 0); else nir_print_shader(variant->shader->base.ir.nir, stderr); dump_fs_variant_key(&variant->key); debug_printf("variant->opaque = %u\n", variant->opaque); debug_printf("\n"); } static void lp_fs_get_ir_cache_key(struct lp_fragment_shader_variant *variant, unsigned char ir_sha1_cache_key[20]) { struct blob blob = { 0 }; unsigned ir_size; void *ir_binary; blob_init(&blob); nir_serialize(&blob, variant->shader->base.ir.nir, true); ir_binary = blob.data; ir_size = blob.size; struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); _mesa_sha1_update(&ctx, &variant->key, variant->shader->variant_key_size); _mesa_sha1_update(&ctx, ir_binary, ir_size); _mesa_sha1_final(&ctx, ir_sha1_cache_key); blob_finish(&blob); } /** * Generate a new fragment shader variant from the shader code and * other state indicated by the key. */ static struct lp_fragment_shader_variant * generate_variant(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); struct lp_fragment_shader_variant *variant; const struct util_format_description *cbuf0_format_desc = NULL; boolean fullcolormask; char module_name[64]; unsigned char ir_sha1_cache_key[20]; struct lp_cached_code cached = { 0 }; bool needs_caching = false; variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key); if (!variant) return NULL; memset(variant, 0, sizeof(*variant)); snprintf(module_name, sizeof(module_name), "fs%u_variant%u", shader->no, shader->variants_created); pipe_reference_init(&variant->reference, 1); lp_fs_reference(lp, &variant->shader, shader); memcpy(&variant->key, key, shader->variant_key_size); if (shader->base.ir.nir) { lp_fs_get_ir_cache_key(variant, ir_sha1_cache_key); lp_disk_cache_find_shader(screen, &cached, ir_sha1_cache_key); if (!cached.data_size) needs_caching = true; } variant->gallivm = gallivm_create(module_name, lp->context, &cached); if (!variant->gallivm) { FREE(variant); return NULL; } variant->list_item_global.base = variant; variant->list_item_local.base = variant; variant->no = shader->variants_created++; /* * Determine whether we are touching all channels in the color buffer. */ fullcolormask = FALSE; if (key->nr_cbufs == 1) { cbuf0_format_desc = util_format_description(key->cbuf_format[0]); fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask); } variant->opaque = !key->blend.logicop_enable && !key->blend.rt[0].blend_enable && fullcolormask && !key->stencil[0].enabled && !key->alpha.enabled && !key->multisample && !key->blend.alpha_to_coverage && !key->depth.enabled && !shader->info.base.uses_kill && !shader->info.base.writes_samplemask ? TRUE : FALSE; if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) { lp_debug_fs_variant(variant); } lp_jit_init_types(variant); if (variant->jit_function[RAST_EDGE_TEST] == NULL) generate_fragment(lp, shader, variant, RAST_EDGE_TEST); if (variant->jit_function[RAST_WHOLE] == NULL) { if (variant->opaque) { /* Specialized shader, which doesn't need to read the color buffer. */ generate_fragment(lp, shader, variant, RAST_WHOLE); } } /* * Compile everything */ gallivm_compile_module(variant->gallivm); variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module); if (variant->function[RAST_EDGE_TEST]) { variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func) gallivm_jit_function(variant->gallivm, variant->function[RAST_EDGE_TEST]); } if (variant->function[RAST_WHOLE]) { variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func) gallivm_jit_function(variant->gallivm, variant->function[RAST_WHOLE]); } else if (!variant->jit_function[RAST_WHOLE]) { variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST]; } if (needs_caching) { lp_disk_cache_insert_shader(screen, &cached, ir_sha1_cache_key); } gallivm_free_ir(variant->gallivm); return variant; } static void * llvmpipe_create_fs_state(struct pipe_context *pipe, const struct pipe_shader_state *templ) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct lp_fragment_shader *shader; int nr_samplers; int nr_sampler_views; int nr_images; int i; shader = CALLOC_STRUCT(lp_fragment_shader); if (!shader) return NULL; pipe_reference_init(&shader->reference, 1); shader->no = fs_no++; make_empty_list(&shader->variants); shader->base.type = templ->type; if (templ->type == PIPE_SHADER_IR_TGSI) { /* get/save the summary info for this shader */ lp_build_tgsi_info(templ->tokens, &shader->info); /* we need to keep a local copy of the tokens */ shader->base.tokens = tgsi_dup_tokens(templ->tokens); } else { shader->base.ir.nir = templ->ir.nir; nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true); } shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ); if (shader->draw_data == NULL) { FREE((void *) shader->base.tokens); FREE(shader); return NULL; } nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1; nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1; nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1; shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images); for (i = 0; i < shader->info.base.num_inputs; i++) { shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i]; shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i]; shader->inputs[i].location = shader->info.base.input_interpolate_loc[i]; switch (shader->info.base.input_interpolate[i]) { case TGSI_INTERPOLATE_CONSTANT: shader->inputs[i].interp = LP_INTERP_CONSTANT; break; case TGSI_INTERPOLATE_LINEAR: shader->inputs[i].interp = LP_INTERP_LINEAR; break; case TGSI_INTERPOLATE_PERSPECTIVE: shader->inputs[i].interp = LP_INTERP_PERSPECTIVE; break; case TGSI_INTERPOLATE_COLOR: shader->inputs[i].interp = LP_INTERP_COLOR; break; default: assert(0); break; } switch (shader->info.base.input_semantic_name[i]) { case TGSI_SEMANTIC_FACE: shader->inputs[i].interp = LP_INTERP_FACING; break; case TGSI_SEMANTIC_POSITION: /* Position was already emitted above */ shader->inputs[i].interp = LP_INTERP_POSITION; shader->inputs[i].src_index = 0; continue; } /* XXX this is a completely pointless index map... */ shader->inputs[i].src_index = i+1; } if (LP_DEBUG & DEBUG_TGSI) { unsigned attrib; debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader); tgsi_dump(templ->tokens, 0); debug_printf("usage masks:\n"); for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) { unsigned usage_mask = shader->info.base.input_usage_mask[attrib]; debug_printf(" IN[%u].%s%s%s%s\n", attrib, usage_mask & TGSI_WRITEMASK_X ? "x" : "", usage_mask & TGSI_WRITEMASK_Y ? "y" : "", usage_mask & TGSI_WRITEMASK_Z ? "z" : "", usage_mask & TGSI_WRITEMASK_W ? "w" : ""); } debug_printf("\n"); } return shader; } static void llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs; if (llvmpipe->fs == lp_fs) return; draw_bind_fragment_shader(llvmpipe->draw, (lp_fs ? lp_fs->draw_data : NULL)); lp_fs_reference(llvmpipe, &llvmpipe->fs, lp_fs); /* invalidate the setup link, NEW_FS will make it update */ lp_setup_set_fs_variant(llvmpipe->setup, NULL); llvmpipe->dirty |= LP_NEW_FS; } /** * Remove shader variant from two lists: the shader's variant list * and the context's variant list. */ static void llvmpipe_remove_shader_variant(struct llvmpipe_context *lp, struct lp_fragment_shader_variant *variant) { if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) { debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u " "v total cached %u inst %u total inst %u\n", variant->shader->no, variant->no, variant->shader->variants_created, variant->shader->variants_cached, lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs); } /* remove from shader's list */ remove_from_list(&variant->list_item_local); variant->shader->variants_cached--; /* remove from context's list */ remove_from_list(&variant->list_item_global); lp->nr_fs_variants--; lp->nr_fs_instrs -= variant->nr_instrs; } void llvmpipe_destroy_shader_variant(struct llvmpipe_context *lp, struct lp_fragment_shader_variant *variant) { gallivm_destroy(variant->gallivm); lp_fs_reference(lp, &variant->shader, NULL); FREE(variant); } void llvmpipe_destroy_fs(struct llvmpipe_context *llvmpipe, struct lp_fragment_shader *shader) { /* Delete draw module's data */ draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data); if (shader->base.ir.nir) ralloc_free(shader->base.ir.nir); assert(shader->variants_cached == 0); FREE((void *) shader->base.tokens); FREE(shader); } static void llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct lp_fragment_shader *shader = fs; struct lp_fs_variant_list_item *li; /* Delete all the variants */ li = first_elem(&shader->variants); while(!at_end(&shader->variants, li)) { struct lp_fs_variant_list_item *next = next_elem(li); struct lp_fragment_shader_variant *variant; variant = li->base; llvmpipe_remove_shader_variant(llvmpipe, li->base); lp_fs_variant_reference(llvmpipe, &variant, NULL); li = next; } lp_fs_reference(llvmpipe, &shader, NULL); } static void llvmpipe_set_constant_buffer(struct pipe_context *pipe, enum pipe_shader_type shader, uint index, const struct pipe_constant_buffer *cb) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct pipe_resource *constants = cb ? cb->buffer : NULL; assert(shader < PIPE_SHADER_TYPES); assert(index < ARRAY_SIZE(llvmpipe->constants[shader])); /* note: reference counting */ util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb); if (constants) { if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) { debug_printf("Illegal set constant without bind flag\n"); constants->bind |= PIPE_BIND_CONSTANT_BUFFER; } } if (shader == PIPE_SHADER_VERTEX || shader == PIPE_SHADER_GEOMETRY || shader == PIPE_SHADER_TESS_CTRL || shader == PIPE_SHADER_TESS_EVAL) { /* Pass the constants to the 'draw' module */ const unsigned size = cb ? cb->buffer_size : 0; const ubyte *data; if (constants) { data = (ubyte *) llvmpipe_resource_data(constants); } else if (cb && cb->user_buffer) { data = (ubyte *) cb->user_buffer; } else { data = NULL; } if (data) data += cb->buffer_offset; draw_set_mapped_constant_buffer(llvmpipe->draw, shader, index, data, size); } else if (shader == PIPE_SHADER_COMPUTE) llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS; else llvmpipe->dirty |= LP_NEW_FS_CONSTANTS; if (cb && cb->user_buffer) { pipe_resource_reference(&constants, NULL); } } static void llvmpipe_set_shader_buffers(struct pipe_context *pipe, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_shader_buffer *buffers, unsigned writable_bitmask) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); unsigned i, idx; for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) { const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL; util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer); if (shader == PIPE_SHADER_VERTEX || shader == PIPE_SHADER_GEOMETRY || shader == PIPE_SHADER_TESS_CTRL || shader == PIPE_SHADER_TESS_EVAL) { const unsigned size = buffer ? buffer->buffer_size : 0; const ubyte *data = NULL; if (buffer && buffer->buffer) data = (ubyte *) llvmpipe_resource_data(buffer->buffer); if (data) data += buffer->buffer_offset; draw_set_mapped_shader_buffer(llvmpipe->draw, shader, i, data, size); } else if (shader == PIPE_SHADER_COMPUTE) { llvmpipe->cs_dirty |= LP_CSNEW_SSBOS; } else if (shader == PIPE_SHADER_FRAGMENT) { llvmpipe->dirty |= LP_NEW_FS_SSBOS; } } } static void llvmpipe_set_shader_images(struct pipe_context *pipe, enum pipe_shader_type shader, unsigned start_slot, unsigned count, const struct pipe_image_view *images) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); unsigned i, idx; draw_flush(llvmpipe->draw); for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) { const struct pipe_image_view *image = images ? &images[idx] : NULL; util_copy_image_view(&llvmpipe->images[shader][i], image); } llvmpipe->num_images[shader] = start_slot + count; if (shader == PIPE_SHADER_VERTEX || shader == PIPE_SHADER_GEOMETRY || shader == PIPE_SHADER_TESS_CTRL || shader == PIPE_SHADER_TESS_EVAL) { draw_set_images(llvmpipe->draw, shader, llvmpipe->images[shader], start_slot + count); } else if (shader == PIPE_SHADER_COMPUTE) llvmpipe->cs_dirty |= LP_CSNEW_IMAGES; else llvmpipe->dirty |= LP_NEW_FS_IMAGES; } /** * Return the blend factor equivalent to a destination alpha of one. */ static inline unsigned force_dst_alpha_one(unsigned factor, boolean clamped_zero) { switch(factor) { case PIPE_BLENDFACTOR_DST_ALPHA: return PIPE_BLENDFACTOR_ONE; case PIPE_BLENDFACTOR_INV_DST_ALPHA: return PIPE_BLENDFACTOR_ZERO; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: if (clamped_zero) return PIPE_BLENDFACTOR_ZERO; else return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE; } return factor; } /** * We need to generate several variants of the fragment pipeline to match * all the combinations of the contributing state atoms. * * TODO: there is actually no reason to tie this to context state -- the * generated code could be cached globally in the screen. */ static struct lp_fragment_shader_variant_key * make_variant_key(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, char *store) { unsigned i; struct lp_fragment_shader_variant_key *key; key = (struct lp_fragment_shader_variant_key *)store; memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1])); if (lp->framebuffer.zsbuf) { enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format; const struct util_format_description *zsbuf_desc = util_format_description(zsbuf_format); if (lp->depth_stencil->depth.enabled && util_format_has_depth(zsbuf_desc)) { key->zsbuf_format = zsbuf_format; memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth); } if (lp->depth_stencil->stencil[0].enabled && util_format_has_stencil(zsbuf_desc)) { key->zsbuf_format = zsbuf_format; memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil); } if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) { key->resource_1d = TRUE; } key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture); } /* * Propagate the depth clamp setting from the rasterizer state. * depth_clip == 0 implies depth clamping is enabled. * * When clip_halfz is enabled, then always clamp the depth values. * * XXX: This is incorrect for GL, but correct for d3d10 (depth * clamp is always active in d3d10, regardless if depth clip is * enabled or not). * (GL has an always-on [0,1] clamp on fs depth output instead * to ensure the depth values stay in range. Doesn't look like * we do that, though...) */ if (lp->rasterizer->clip_halfz) { key->depth_clamp = 1; } else { key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0; } /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */ if (!lp->framebuffer.nr_cbufs || !lp->framebuffer.cbufs[0] || !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) { key->alpha.enabled = lp->depth_stencil->alpha.enabled; } if(key->alpha.enabled) key->alpha.func = lp->depth_stencil->alpha.func; /* alpha.ref_value is passed in jit_context */ key->flatshade = lp->rasterizer->flatshade; key->multisample = lp->rasterizer->multisample; key->no_ms_sample_mask_out = lp->rasterizer->no_ms_sample_mask_out; if (lp->active_occlusion_queries && !lp->queries_disabled) { key->occlusion_count = TRUE; } memcpy(&key->blend, lp->blend, sizeof key->blend); key->coverage_samples = 1; key->min_samples = 1; if (key->multisample) { key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer); key->min_samples = lp->min_samples == 1 ? 1 : key->coverage_samples; } key->nr_cbufs = lp->framebuffer.nr_cbufs; if (!key->blend.independent_blend_enable) { /* we always need independent blend otherwise the fixups below won't work */ for (i = 1; i < key->nr_cbufs; i++) { memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0])); } key->blend.independent_blend_enable = 1; } for (i = 0; i < lp->framebuffer.nr_cbufs; i++) { struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i]; if (lp->framebuffer.cbufs[i]) { enum pipe_format format = lp->framebuffer.cbufs[i]->format; const struct util_format_description *format_desc; key->cbuf_format[i] = format; key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture); /* * Figure out if this is a 1d resource. Note that OpenGL allows crazy * mixing of 2d textures with height 1 and 1d textures, so make sure * we pick 1d if any cbuf or zsbuf is 1d. */ if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) { key->resource_1d = TRUE; } format_desc = util_format_description(format); assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB || format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB); /* * Mask out color channels not present in the color buffer. */ blend_rt->colormask &= util_format_colormask(format_desc); /* * Disable blend for integer formats. */ if (util_format_is_pure_integer(format)) { blend_rt->blend_enable = 0; } /* * Our swizzled render tiles always have an alpha channel, but the * linear render target format often does not, so force here the dst * alpha to be one. * * This is not a mere optimization. Wrong results will be produced if * the dst alpha is used, the dst format does not have alpha, and the * previous rendering was not flushed from the swizzled to linear * buffer. For example, NonPowTwo DCT. * * TODO: This should be generalized to all channels for better * performance, but only alpha causes correctness issues. * * Also, force rgb/alpha func/factors match, to make AoS blending * easier. */ if (format_desc->swizzle[3] > PIPE_SWIZZLE_W || format_desc->swizzle[3] == format_desc->swizzle[0]) { /* Doesn't cover mixed snorm/unorm but can't render to them anyway */ boolean clamped_zero = !util_format_is_float(format) && !util_format_is_snorm(format); blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero); blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero); blend_rt->alpha_func = blend_rt->rgb_func; blend_rt->alpha_src_factor = blend_rt->rgb_src_factor; blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor; } } else { /* no color buffer for this fragment output */ key->cbuf_format[i] = PIPE_FORMAT_NONE; key->cbuf_nr_samples[i] = 0; blend_rt->colormask = 0x0; blend_rt->blend_enable = 0; } } /* This value will be the same for all the variants of a given shader: */ key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1; struct lp_sampler_static_state *fs_sampler; fs_sampler = key->samplers; memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler); for(i = 0; i < key->nr_samplers; ++i) { if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) { lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state, lp->samplers[PIPE_SHADER_FRAGMENT][i]); } } /* * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes * are dx10-style? Can't really have mixed opcodes, at least not * if we want to skip the holes here (without rescanning tgsi). */ if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) { key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1; for(i = 0; i < key->nr_sampler_views; ++i) { /* * Note sview may exceed what's representable by file_mask. * This will still work, the only downside is that not actually * used views may be included in the shader key. */ if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) { lp_sampler_static_texture_state(&fs_sampler[i].texture_state, lp->sampler_views[PIPE_SHADER_FRAGMENT][i]); } } } else { key->nr_sampler_views = key->nr_samplers; for(i = 0; i < key->nr_sampler_views; ++i) { if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) { lp_sampler_static_texture_state(&fs_sampler[i].texture_state, lp->sampler_views[PIPE_SHADER_FRAGMENT][i]); } } } struct lp_image_static_state *lp_image; lp_image = lp_fs_variant_key_images(key); key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1; for (i = 0; i < key->nr_images; ++i) { if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) { lp_sampler_static_texture_state_image(&lp_image[i].image_state, &lp->images[PIPE_SHADER_FRAGMENT][i]); } } return key; } /** * Update fragment shader state. This is called just prior to drawing * something when some fragment-related state has changed. */ void llvmpipe_update_fs(struct llvmpipe_context *lp) { struct lp_fragment_shader *shader = lp->fs; struct lp_fragment_shader_variant_key *key; struct lp_fragment_shader_variant *variant = NULL; struct lp_fs_variant_list_item *li; char store[LP_FS_MAX_VARIANT_KEY_SIZE]; key = make_variant_key(lp, shader, store); /* Search the variants for one which matches the key */ li = first_elem(&shader->variants); while(!at_end(&shader->variants, li)) { if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) { variant = li->base; break; } li = next_elem(li); } if (variant) { /* Move this variant to the head of the list to implement LRU * deletion of shader's when we have too many. */ move_to_head(&lp->fs_variants_list, &variant->list_item_global); } else { /* variant not found, create it now */ int64_t t0, t1, dt; unsigned i; unsigned variants_to_cull; if (LP_DEBUG & DEBUG_FS) { debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n", lp->nr_fs_variants, lp->nr_fs_instrs, lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0); } /* First, check if we've exceeded the max number of shader variants. * If so, free 6.25% of them (the least recently used ones). */ variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0; if (variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) { if (gallivm_debug & GALLIVM_DEBUG_PERF) { debug_printf("Evicting FS: %u fs variants,\t%u total variants," "\t%u instrs,\t%u instrs/variant\n", shader->variants_cached, lp->nr_fs_variants, lp->nr_fs_instrs, lp->nr_fs_instrs / lp->nr_fs_variants); } /* * We need to re-check lp->nr_fs_variants because an arbitrarliy large * number of shader variants (potentially all of them) could be * pending for destruction on flush. */ for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) { struct lp_fs_variant_list_item *item; if (is_empty_list(&lp->fs_variants_list)) { break; } item = last_elem(&lp->fs_variants_list); assert(item); assert(item->base); llvmpipe_remove_shader_variant(lp, item->base); lp_fs_variant_reference(lp, &item->base, NULL); } } /* * Generate the new variant. */ t0 = os_time_get(); variant = generate_variant(lp, shader, key); t1 = os_time_get(); dt = t1 - t0; LP_COUNT_ADD(llvm_compile_time, dt); LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */ /* Put the new variant into the list */ if (variant) { insert_at_head(&shader->variants, &variant->list_item_local); insert_at_head(&lp->fs_variants_list, &variant->list_item_global); lp->nr_fs_variants++; lp->nr_fs_instrs += variant->nr_instrs; shader->variants_cached++; } } /* Bind this variant */ lp_setup_set_fs_variant(lp->setup, variant); } void llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe) { llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state; llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state; llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state; llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer; llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers; llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images; }