/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SRC_TRACE_PROCESSOR_CONTAINERS_NULLABLE_VECTOR_H_ #define SRC_TRACE_PROCESSOR_CONTAINERS_NULLABLE_VECTOR_H_ #include #include #include "perfetto/base/logging.h" #include "perfetto/ext/base/optional.h" #include "src/trace_processor/containers/row_map.h" namespace perfetto { namespace trace_processor { // Base class for NullableVector which allows type erasure to be implemented // (e.g. allows for std::unique_ptr). class NullableVectorBase { public: NullableVectorBase() = default; virtual ~NullableVectorBase(); NullableVectorBase(const NullableVectorBase&) = delete; NullableVectorBase& operator=(const NullableVectorBase&) = delete; NullableVectorBase(NullableVectorBase&&) = default; NullableVectorBase& operator=(NullableVectorBase&&) noexcept = default; }; // A data structure which compactly stores a list of possibly nullable data. // // Internally, this class is implemented using a combination of a std::deque // with a BitVector used to store whether each index is null or not. // By default, for each null value, it only uses a single bit inside the // BitVector at a slight cost (searching the BitVector to find the index into // the std::deque) when looking up the data. template class NullableVector : public NullableVectorBase { private: enum class Mode { // Sparse mode is the default mode and ensures that nulls are stored using // only // a single bit (at the cost of making setting null entries to non-null // O(n)). kSparse, // Dense mode forces the reservation of space for null entries which // increases // memory usage but allows for O(1) set operations. kDense, }; public: // Creates an empty NullableVector. NullableVector() : NullableVector(Mode::kSparse) {} ~NullableVector() override = default; explicit NullableVector(const NullableVector&) = delete; NullableVector& operator=(const NullableVector&) = delete; NullableVector(NullableVector&&) = default; NullableVector& operator=(NullableVector&&) noexcept = default; // Creates a sparse nullable vector static NullableVector Sparse() { return NullableVector(Mode::kSparse); } // Creates a dense nullable vector static NullableVector Dense() { return NullableVector(Mode::kDense); } // Returns the optional value at |idx| or base::nullopt if the value is null. base::Optional Get(uint32_t idx) const { if (mode_ == Mode::kDense) { bool contains = valid_.Contains(idx); return contains ? base::Optional(data_[idx]) : base::nullopt; } else { auto opt_idx = valid_.IndexOf(idx); return opt_idx ? base::Optional(data_[*opt_idx]) : base::nullopt; } } // Returns the non-null value at |ordinal| where |ordinal| gives the index // of the entry in-terms of non-null entries only. // // For example: // this = [0, null, 2, null, 4] // // GetNonNull(0) = 0 // GetNonNull(1) = 2 // GetNonNull(2) = 4 // ... T GetNonNull(uint32_t ordinal) const { if (mode_ == Mode::kDense) { return data_[valid_.Get(ordinal)]; } else { PERFETTO_DCHECK(ordinal < data_.size()); return data_[ordinal]; } } // Adds the given value to the NullableVector. void Append(T val) { data_.emplace_back(val); valid_.Insert(size_++); } // Adds a null value to the NullableVector. void AppendNull() { if (mode_ == Mode::kDense) { data_.emplace_back(); } size_++; } // Adds the given optional value to the NullableVector. void Append(base::Optional val) { if (val) { Append(*val); } else { AppendNull(); } } // Sets the value at |idx| to the given |val|. void Set(uint32_t idx, T val) { if (mode_ == Mode::kDense) { if (!valid_.Contains(idx)) { valid_.Insert(idx); } data_[idx] = val; } else { auto opt_idx = valid_.IndexOf(idx); // Generally, we will be setting a null row to non-null so optimize for // that path. if (PERFETTO_UNLIKELY(opt_idx)) { data_[*opt_idx] = val; } else { valid_.Insert(idx); opt_idx = valid_.IndexOf(idx); PERFETTO_DCHECK(opt_idx); data_.insert(data_.begin() + static_cast(*opt_idx), val); } } } // Returns the size of the NullableVector; this includes any null values. uint32_t size() const { return size_; } // Returns whether data in this NullableVector is stored densely. bool IsDense() const { return mode_ == Mode::kDense; } private: NullableVector(Mode mode) : mode_(mode) {} Mode mode_ = Mode::kSparse; std::deque data_; RowMap valid_; uint32_t size_ = 0; }; } // namespace trace_processor } // namespace perfetto #endif // SRC_TRACE_PROCESSOR_CONTAINERS_NULLABLE_VECTOR_H_