#![cfg(feature = "derive")] use arbitrary::*; fn arbitrary_from<'a, T: Arbitrary<'a>>(input: &'a [u8]) -> T { let mut buf = Unstructured::new(input); T::arbitrary(&mut buf).expect("can create arbitrary instance OK") } #[derive(Copy, Clone, Debug, Eq, PartialEq, Arbitrary)] pub struct Rgb { pub r: u8, pub g: u8, pub b: u8, } #[test] fn struct_with_named_fields() { let rgb: Rgb = arbitrary_from(&[4, 5, 6]); assert_eq!(rgb.r, 4); assert_eq!(rgb.g, 5); assert_eq!(rgb.b, 6); assert_eq!((3, Some(3)), ::size_hint(0)); } #[derive(Copy, Clone, Debug, Arbitrary)] struct MyTupleStruct(u8, bool); #[test] fn tuple_struct() { let s: MyTupleStruct = arbitrary_from(&[43, 42]); assert_eq!(s.0, 43); assert_eq!(s.1, false); let s: MyTupleStruct = arbitrary_from(&[42, 43]); assert_eq!(s.0, 42); assert_eq!(s.1, true); assert_eq!((2, Some(2)), ::size_hint(0)); } #[derive(Clone, Debug, Arbitrary)] struct EndingInVec(u8, bool, u32, Vec); #[derive(Clone, Debug, Arbitrary)] struct EndingInString(u8, bool, u32, String); #[test] fn test_take_rest() { let bytes = [1, 1, 1, 2, 3, 4, 5, 6, 7, 8]; let s1 = EndingInVec::arbitrary_take_rest(Unstructured::new(&bytes)).unwrap(); let s2 = EndingInString::arbitrary_take_rest(Unstructured::new(&bytes)).unwrap(); assert_eq!(s1.0, 1); assert_eq!(s2.0, 1); assert_eq!(s1.1, true); assert_eq!(s2.1, true); assert_eq!(s1.2, 0x4030201); assert_eq!(s2.2, 0x4030201); assert_eq!(s1.3, vec![0x605, 0x807]); assert_eq!(s2.3, "\x05\x06\x07\x08"); } #[derive(Copy, Clone, Debug, Arbitrary)] enum MyEnum { Unit, Tuple(u8, u16), Struct { a: u32, b: (bool, u64) }, } #[test] fn derive_enum() { let mut raw = vec![ // The choice of which enum variant takes 4 bytes. 1, 2, 3, 4, // And then we need up to 13 bytes for creating `MyEnum::Struct`, the // largest variant. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ]; let mut saw_unit = false; let mut saw_tuple = false; let mut saw_struct = false; for i in 0..=255 { // Choose different variants each iteration. for el in &mut raw[..4] { *el = i; } let e: MyEnum = arbitrary_from(&raw); match e { MyEnum::Unit => { saw_unit = true; } MyEnum::Tuple(a, b) => { saw_tuple = true; assert_eq!(a, arbitrary_from(&raw[4..5])); assert_eq!(b, arbitrary_from(&raw[5..])); } MyEnum::Struct { a, b } => { saw_struct = true; assert_eq!(a, arbitrary_from(&raw[4..8])); assert_eq!(b, arbitrary_from(&raw[8..])); } } } assert!(saw_unit); assert!(saw_tuple); assert!(saw_struct); assert_eq!((4, Some(17)), ::size_hint(0)); } #[derive(Arbitrary, Debug)] enum RecursiveTree { Leaf, Node { left: Box, right: Box, }, } #[test] fn recursive() { let raw = vec![1, 2, 3, 4, 5, 6, 7, 8, 9]; let _rec: RecursiveTree = arbitrary_from(&raw); let (lower, upper) = ::size_hint(0); assert_eq!(lower, 4, "need a u32 for the discriminant at minimum"); assert!( upper.is_none(), "potentially infinitely recursive, so no upper bound" ); } #[derive(Arbitrary, Debug)] struct Generic { inner: T, } #[test] fn generics() { let raw = vec![1, 2, 3, 4, 5, 6, 7, 8, 9]; let gen: Generic = arbitrary_from(&raw); assert!(gen.inner); let (lower, upper) = as Arbitrary>::size_hint(0); assert_eq!(lower, 4); assert_eq!(upper, Some(4)); } #[derive(Arbitrary, Debug)] struct OneLifetime<'a> { alpha: &'a str, } #[test] fn one_lifetime() { // Last byte is used for length let raw: Vec = vec![97, 98, 99, 100, 3]; let lifetime: OneLifetime = arbitrary_from(&raw); assert_eq!("abc", lifetime.alpha); let (lower, upper) = ::size_hint(0); assert_eq!(lower, 8); assert_eq!(upper, None); } #[derive(Arbitrary, Debug)] struct TwoLifetimes<'a, 'b> { alpha: &'a str, beta: &'b str, } #[test] fn two_lifetimes() { // Last byte is used for length let raw: Vec = vec![97, 98, 99, 100, 101, 102, 103, 3]; let lifetime: TwoLifetimes = arbitrary_from(&raw); assert_eq!("abc", lifetime.alpha); assert_eq!("def", lifetime.beta); let (lower, upper) = ::size_hint(0); assert_eq!(lower, 16); assert_eq!(upper, None); }