// Std use std::borrow::Cow; use std::collections::HashMap; use std::ffi::{OsStr, OsString}; use std::iter::Map; use std::slice::Iter; // Internal use args::MatchedArg; use args::SubCommand; use INVALID_UTF8; /// Used to get information about the arguments that were supplied to the program at runtime by /// the user. New instances of this struct are obtained by using the [`App::get_matches`] family of /// methods. /// /// # Examples /// /// ```no_run /// # use clap::{App, Arg}; /// let matches = App::new("MyApp") /// .arg(Arg::with_name("out") /// .long("output") /// .required(true) /// .takes_value(true)) /// .arg(Arg::with_name("debug") /// .short("d") /// .multiple(true)) /// .arg(Arg::with_name("cfg") /// .short("c") /// .takes_value(true)) /// .get_matches(); // builds the instance of ArgMatches /// /// // to get information about the "cfg" argument we created, such as the value supplied we use /// // various ArgMatches methods, such as ArgMatches::value_of /// if let Some(c) = matches.value_of("cfg") { /// println!("Value for -c: {}", c); /// } /// /// // The ArgMatches::value_of method returns an Option because the user may not have supplied /// // that argument at runtime. But if we specified that the argument was "required" as we did /// // with the "out" argument, we can safely unwrap because `clap` verifies that was actually /// // used at runtime. /// println!("Value for --output: {}", matches.value_of("out").unwrap()); /// /// // You can check the presence of an argument /// if matches.is_present("out") { /// // Another way to check if an argument was present, or if it occurred multiple times is to /// // use occurrences_of() which returns 0 if an argument isn't found at runtime, or the /// // number of times that it occurred, if it was. To allow an argument to appear more than /// // once, you must use the .multiple(true) method, otherwise it will only return 1 or 0. /// if matches.occurrences_of("debug") > 2 { /// println!("Debug mode is REALLY on, don't be crazy"); /// } else { /// println!("Debug mode kind of on"); /// } /// } /// ``` /// [`App::get_matches`]: ./struct.App.html#method.get_matches #[derive(Debug, Clone)] pub struct ArgMatches<'a> { #[doc(hidden)] pub args: HashMap<&'a str, MatchedArg>, #[doc(hidden)] pub subcommand: Option>>, #[doc(hidden)] pub usage: Option, } impl<'a> Default for ArgMatches<'a> { fn default() -> Self { ArgMatches { args: HashMap::new(), subcommand: None, usage: None, } } } impl<'a> ArgMatches<'a> { #[doc(hidden)] pub fn new() -> Self { ArgMatches { ..Default::default() } } /// Gets the value of a specific [option] or [positional] argument (i.e. an argument that takes /// an additional value at runtime). If the option wasn't present at runtime /// it returns `None`. /// /// *NOTE:* If getting a value for an option or positional argument that allows multiples, /// prefer [`ArgMatches::values_of`] as `ArgMatches::value_of` will only return the *first* /// value. /// /// # Panics /// /// This method will [`panic!`] if the value contains invalid UTF-8 code points. /// /// # Examples /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("output") /// .takes_value(true)) /// .get_matches_from(vec!["myapp", "something"]); /// /// assert_eq!(m.value_of("output"), Some("something")); /// ``` /// [option]: ./struct.Arg.html#method.takes_value /// [positional]: ./struct.Arg.html#method.index /// [`ArgMatches::values_of`]: ./struct.ArgMatches.html#method.values_of /// [`panic!`]: https://doc.rust-lang.org/std/macro.panic!.html pub fn value_of>(&self, name: S) -> Option<&str> { if let Some(arg) = self.args.get(name.as_ref()) { if let Some(v) = arg.vals.get(0) { return Some(v.to_str().expect(INVALID_UTF8)); } } None } /// Gets the lossy value of a specific argument. If the argument wasn't present at runtime /// it returns `None`. A lossy value is one which contains invalid UTF-8 code points, those /// invalid points will be replaced with `\u{FFFD}` /// /// *NOTE:* If getting a value for an option or positional argument that allows multiples, /// prefer [`Arg::values_of_lossy`] as `value_of_lossy()` will only return the *first* value. /// /// # Examples /// #[cfg_attr(not(unix), doc = " ```ignore")] #[cfg_attr(unix, doc = " ```")] /// # use clap::{App, Arg}; /// use std::ffi::OsString; /// use std::os::unix::ffi::{OsStrExt,OsStringExt}; /// /// let m = App::new("utf8") /// .arg(Arg::from_usage(" 'some arg'")) /// .get_matches_from(vec![OsString::from("myprog"), /// // "Hi {0xe9}!" /// OsString::from_vec(vec![b'H', b'i', b' ', 0xe9, b'!'])]); /// assert_eq!(&*m.value_of_lossy("arg").unwrap(), "Hi \u{FFFD}!"); /// ``` /// [`Arg::values_of_lossy`]: ./struct.ArgMatches.html#method.values_of_lossy pub fn value_of_lossy>(&'a self, name: S) -> Option> { if let Some(arg) = self.args.get(name.as_ref()) { if let Some(v) = arg.vals.get(0) { return Some(v.to_string_lossy()); } } None } /// Gets the OS version of a string value of a specific argument. If the option wasn't present /// at runtime it returns `None`. An OS value on Unix-like systems is any series of bytes, /// regardless of whether or not they contain valid UTF-8 code points. Since [`String`]s in /// Rust are guaranteed to be valid UTF-8, a valid filename on a Unix system as an argument /// value may contain invalid UTF-8 code points. /// /// *NOTE:* If getting a value for an option or positional argument that allows multiples, /// prefer [`ArgMatches::values_of_os`] as `Arg::value_of_os` will only return the *first* /// value. /// /// # Examples /// #[cfg_attr(not(unix), doc = " ```ignore")] #[cfg_attr(unix, doc = " ```")] /// # use clap::{App, Arg}; /// use std::ffi::OsString; /// use std::os::unix::ffi::{OsStrExt,OsStringExt}; /// /// let m = App::new("utf8") /// .arg(Arg::from_usage(" 'some arg'")) /// .get_matches_from(vec![OsString::from("myprog"), /// // "Hi {0xe9}!" /// OsString::from_vec(vec![b'H', b'i', b' ', 0xe9, b'!'])]); /// assert_eq!(&*m.value_of_os("arg").unwrap().as_bytes(), [b'H', b'i', b' ', 0xe9, b'!']); /// ``` /// [`String`]: https://doc.rust-lang.org/std/string/struct.String.html /// [`ArgMatches::values_of_os`]: ./struct.ArgMatches.html#method.values_of_os pub fn value_of_os>(&self, name: S) -> Option<&OsStr> { self.args .get(name.as_ref()) .and_then(|arg| arg.vals.get(0).map(|v| v.as_os_str())) } /// Gets a [`Values`] struct which implements [`Iterator`] for values of a specific argument /// (i.e. an argument that takes multiple values at runtime). If the option wasn't present at /// runtime it returns `None` /// /// # Panics /// /// This method will panic if any of the values contain invalid UTF-8 code points. /// /// # Examples /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myprog") /// .arg(Arg::with_name("output") /// .multiple(true) /// .short("o") /// .takes_value(true)) /// .get_matches_from(vec![ /// "myprog", "-o", "val1", "val2", "val3" /// ]); /// let vals: Vec<&str> = m.values_of("output").unwrap().collect(); /// assert_eq!(vals, ["val1", "val2", "val3"]); /// ``` /// [`Values`]: ./struct.Values.html /// [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html pub fn values_of>(&'a self, name: S) -> Option> { if let Some(arg) = self.args.get(name.as_ref()) { fn to_str_slice(o: &OsString) -> &str { o.to_str().expect(INVALID_UTF8) } let to_str_slice: fn(&OsString) -> &str = to_str_slice; // coerce to fn pointer return Some(Values { iter: arg.vals.iter().map(to_str_slice), }); } None } /// Gets the lossy values of a specific argument. If the option wasn't present at runtime /// it returns `None`. A lossy value is one where if it contains invalid UTF-8 code points, /// those invalid points will be replaced with `\u{FFFD}` /// /// # Examples /// #[cfg_attr(not(unix), doc = " ```ignore")] #[cfg_attr(unix, doc = " ```")] /// # use clap::{App, Arg}; /// use std::ffi::OsString; /// use std::os::unix::ffi::OsStringExt; /// /// let m = App::new("utf8") /// .arg(Arg::from_usage("... 'some arg'")) /// .get_matches_from(vec![OsString::from("myprog"), /// // "Hi" /// OsString::from_vec(vec![b'H', b'i']), /// // "{0xe9}!" /// OsString::from_vec(vec![0xe9, b'!'])]); /// let mut itr = m.values_of_lossy("arg").unwrap().into_iter(); /// assert_eq!(&itr.next().unwrap()[..], "Hi"); /// assert_eq!(&itr.next().unwrap()[..], "\u{FFFD}!"); /// assert_eq!(itr.next(), None); /// ``` pub fn values_of_lossy>(&'a self, name: S) -> Option> { if let Some(arg) = self.args.get(name.as_ref()) { return Some( arg.vals .iter() .map(|v| v.to_string_lossy().into_owned()) .collect(), ); } None } /// Gets a [`OsValues`] struct which is implements [`Iterator`] for [`OsString`] values of a /// specific argument. If the option wasn't present at runtime it returns `None`. An OS value /// on Unix-like systems is any series of bytes, regardless of whether or not they contain /// valid UTF-8 code points. Since [`String`]s in Rust are guaranteed to be valid UTF-8, a valid /// filename as an argument value on Linux (for example) may contain invalid UTF-8 code points. /// /// # Examples /// #[cfg_attr(not(unix), doc = " ```ignore")] #[cfg_attr(unix, doc = " ```")] /// # use clap::{App, Arg}; /// use std::ffi::{OsStr,OsString}; /// use std::os::unix::ffi::{OsStrExt,OsStringExt}; /// /// let m = App::new("utf8") /// .arg(Arg::from_usage("... 'some arg'")) /// .get_matches_from(vec![OsString::from("myprog"), /// // "Hi" /// OsString::from_vec(vec![b'H', b'i']), /// // "{0xe9}!" /// OsString::from_vec(vec![0xe9, b'!'])]); /// /// let mut itr = m.values_of_os("arg").unwrap().into_iter(); /// assert_eq!(itr.next(), Some(OsStr::new("Hi"))); /// assert_eq!(itr.next(), Some(OsStr::from_bytes(&[0xe9, b'!']))); /// assert_eq!(itr.next(), None); /// ``` /// [`OsValues`]: ./struct.OsValues.html /// [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html /// [`OsString`]: https://doc.rust-lang.org/std/ffi/struct.OsString.html /// [`String`]: https://doc.rust-lang.org/std/string/struct.String.html pub fn values_of_os>(&'a self, name: S) -> Option> { fn to_str_slice(o: &OsString) -> &OsStr { &*o } let to_str_slice: fn(&'a OsString) -> &'a OsStr = to_str_slice; // coerce to fn pointer if let Some(arg) = self.args.get(name.as_ref()) { return Some(OsValues { iter: arg.vals.iter().map(to_str_slice), }); } None } /// Returns `true` if an argument was present at runtime, otherwise `false`. /// /// # Examples /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myprog") /// .arg(Arg::with_name("debug") /// .short("d")) /// .get_matches_from(vec![ /// "myprog", "-d" /// ]); /// /// assert!(m.is_present("debug")); /// ``` pub fn is_present>(&self, name: S) -> bool { if let Some(ref sc) = self.subcommand { if sc.name == name.as_ref() { return true; } } self.args.contains_key(name.as_ref()) } /// Returns the number of times an argument was used at runtime. If an argument isn't present /// it will return `0`. /// /// **NOTE:** This returns the number of times the argument was used, *not* the number of /// values. For example, `-o val1 val2 val3 -o val4` would return `2` (2 occurrences, but 4 /// values). /// /// # Examples /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myprog") /// .arg(Arg::with_name("debug") /// .short("d") /// .multiple(true)) /// .get_matches_from(vec![ /// "myprog", "-d", "-d", "-d" /// ]); /// /// assert_eq!(m.occurrences_of("debug"), 3); /// ``` /// /// This next example shows that counts actual uses of the argument, not just `-`'s /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myprog") /// .arg(Arg::with_name("debug") /// .short("d") /// .multiple(true)) /// .arg(Arg::with_name("flag") /// .short("f")) /// .get_matches_from(vec![ /// "myprog", "-ddfd" /// ]); /// /// assert_eq!(m.occurrences_of("debug"), 3); /// assert_eq!(m.occurrences_of("flag"), 1); /// ``` pub fn occurrences_of>(&self, name: S) -> u64 { self.args.get(name.as_ref()).map_or(0, |a| a.occurs) } /// Gets the starting index of the argument in respect to all other arguments. Indices are /// similar to argv indices, but are not exactly 1:1. /// /// For flags (i.e. those arguments which don't have an associated value), indices refer /// to occurrence of the switch, such as `-f`, or `--flag`. However, for options the indices /// refer to the *values* `-o val` would therefore not represent two distinct indices, only the /// index for `val` would be recorded. This is by design. /// /// Besides the flag/option descrepancy, the primary difference between an argv index and clap /// index, is that clap continues counting once all arguments have properly seperated, whereas /// an argv index does not. /// /// The examples should clear this up. /// /// *NOTE:* If an argument is allowed multiple times, this method will only give the *first* /// index. /// /// # Examples /// /// The argv indices are listed in the comments below. See how they correspond to the clap /// indices. Note that if it's not listed in a clap index, this is becuase it's not saved in /// in an `ArgMatches` struct for querying. /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("flag") /// .short("f")) /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true)) /// .get_matches_from(vec!["myapp", "-f", "-o", "val"]); /// // ARGV idices: ^0 ^1 ^2 ^3 /// // clap idices: ^1 ^3 /// /// assert_eq!(m.index_of("flag"), Some(1)); /// assert_eq!(m.index_of("option"), Some(3)); /// ``` /// /// Now notice, if we use one of the other styles of options: /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("flag") /// .short("f")) /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true)) /// .get_matches_from(vec!["myapp", "-f", "-o=val"]); /// // ARGV idices: ^0 ^1 ^2 /// // clap idices: ^1 ^3 /// /// assert_eq!(m.index_of("flag"), Some(1)); /// assert_eq!(m.index_of("option"), Some(3)); /// ``` /// /// Things become much more complicated, or clear if we look at a more complex combination of /// flags. Let's also throw in the final option style for good measure. /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("flag") /// .short("f")) /// .arg(Arg::with_name("flag2") /// .short("F")) /// .arg(Arg::with_name("flag3") /// .short("z")) /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true)) /// .get_matches_from(vec!["myapp", "-fzF", "-oval"]); /// // ARGV idices: ^0 ^1 ^2 /// // clap idices: ^1,2,3 ^5 /// // /// // clap sees the above as 'myapp -f -z -F -o val' /// // ^0 ^1 ^2 ^3 ^4 ^5 /// assert_eq!(m.index_of("flag"), Some(1)); /// assert_eq!(m.index_of("flag2"), Some(3)); /// assert_eq!(m.index_of("flag3"), Some(2)); /// assert_eq!(m.index_of("option"), Some(5)); /// ``` /// /// One final combination of flags/options to see how they combine: /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("flag") /// .short("f")) /// .arg(Arg::with_name("flag2") /// .short("F")) /// .arg(Arg::with_name("flag3") /// .short("z")) /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true) /// .multiple(true)) /// .get_matches_from(vec!["myapp", "-fzFoval"]); /// // ARGV idices: ^0 ^1 /// // clap idices: ^1,2,3^5 /// // /// // clap sees the above as 'myapp -f -z -F -o val' /// // ^0 ^1 ^2 ^3 ^4 ^5 /// assert_eq!(m.index_of("flag"), Some(1)); /// assert_eq!(m.index_of("flag2"), Some(3)); /// assert_eq!(m.index_of("flag3"), Some(2)); /// assert_eq!(m.index_of("option"), Some(5)); /// ``` /// /// The last part to mention is when values are sent in multiple groups with a [delimiter]. /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true) /// .multiple(true)) /// .get_matches_from(vec!["myapp", "-o=val1,val2,val3"]); /// // ARGV idices: ^0 ^1 /// // clap idices: ^2 ^3 ^4 /// // /// // clap sees the above as 'myapp -o val1 val2 val3' /// // ^0 ^1 ^2 ^3 ^4 /// assert_eq!(m.index_of("option"), Some(2)); /// ``` /// [`ArgMatches`]: ./struct.ArgMatches.html /// [delimiter]: ./struct.Arg.html#method.value_delimiter pub fn index_of>(&self, name: S) -> Option { if let Some(arg) = self.args.get(name.as_ref()) { if let Some(i) = arg.indices.get(0) { return Some(*i); } } None } /// Gets all indices of the argument in respect to all other arguments. Indices are /// similar to argv indices, but are not exactly 1:1. /// /// For flags (i.e. those arguments which don't have an associated value), indices refer /// to occurrence of the switch, such as `-f`, or `--flag`. However, for options the indices /// refer to the *values* `-o val` would therefore not represent two distinct indices, only the /// index for `val` would be recorded. This is by design. /// /// *NOTE:* For more information about how clap indices compare to argv indices, see /// [`ArgMatches::index_of`] /// /// # Examples /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true) /// .use_delimiter(true) /// .multiple(true)) /// .get_matches_from(vec!["myapp", "-o=val1,val2,val3"]); /// // ARGV idices: ^0 ^1 /// // clap idices: ^2 ^3 ^4 /// // /// // clap sees the above as 'myapp -o val1 val2 val3' /// // ^0 ^1 ^2 ^3 ^4 /// assert_eq!(m.indices_of("option").unwrap().collect::>(), &[2, 3, 4]); /// ``` /// /// Another quick example is when flags and options are used together /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true) /// .multiple(true)) /// .arg(Arg::with_name("flag") /// .short("f") /// .multiple(true)) /// .get_matches_from(vec!["myapp", "-o", "val1", "-f", "-o", "val2", "-f"]); /// // ARGV idices: ^0 ^1 ^2 ^3 ^4 ^5 ^6 /// // clap idices: ^2 ^3 ^5 ^6 /// /// assert_eq!(m.indices_of("option").unwrap().collect::>(), &[2, 5]); /// assert_eq!(m.indices_of("flag").unwrap().collect::>(), &[3, 6]); /// ``` /// /// One final example, which is an odd case; if we *don't* use value delimiter as we did with /// the first example above instead of `val1`, `val2` and `val3` all being distinc values, they /// would all be a single value of `val1,val2,val3`, in which case case they'd only receive a /// single index. /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("option") /// .short("o") /// .takes_value(true) /// .multiple(true)) /// .get_matches_from(vec!["myapp", "-o=val1,val2,val3"]); /// // ARGV idices: ^0 ^1 /// // clap idices: ^2 /// // /// // clap sees the above as 'myapp -o "val1,val2,val3"' /// // ^0 ^1 ^2 /// assert_eq!(m.indices_of("option").unwrap().collect::>(), &[2]); /// ``` /// [`ArgMatches`]: ./struct.ArgMatches.html /// [`ArgMatches::index_of`]: ./struct.ArgMatches.html#method.index_of /// [delimiter]: ./struct.Arg.html#method.value_delimiter pub fn indices_of>(&'a self, name: S) -> Option> { if let Some(arg) = self.args.get(name.as_ref()) { fn to_usize(i: &usize) -> usize { *i } let to_usize: fn(&usize) -> usize = to_usize; // coerce to fn pointer return Some(Indices { iter: arg.indices.iter().map(to_usize), }); } None } /// Because [`Subcommand`]s are essentially "sub-[`App`]s" they have their own [`ArgMatches`] /// as well. This method returns the [`ArgMatches`] for a particular subcommand or `None` if /// the subcommand wasn't present at runtime. /// /// # Examples /// /// ```rust /// # use clap::{App, Arg, SubCommand}; /// let app_m = App::new("myprog") /// .arg(Arg::with_name("debug") /// .short("d")) /// .subcommand(SubCommand::with_name("test") /// .arg(Arg::with_name("opt") /// .long("option") /// .takes_value(true))) /// .get_matches_from(vec![ /// "myprog", "-d", "test", "--option", "val" /// ]); /// /// // Both parent commands, and child subcommands can have arguments present at the same times /// assert!(app_m.is_present("debug")); /// /// // Get the subcommand's ArgMatches instance /// if let Some(sub_m) = app_m.subcommand_matches("test") { /// // Use the struct like normal /// assert_eq!(sub_m.value_of("opt"), Some("val")); /// } /// ``` /// [`Subcommand`]: ./struct.SubCommand.html /// [`App`]: ./struct.App.html /// [`ArgMatches`]: ./struct.ArgMatches.html pub fn subcommand_matches>(&self, name: S) -> Option<&ArgMatches<'a>> { if let Some(ref s) = self.subcommand { if s.name == name.as_ref() { return Some(&s.matches); } } None } /// Because [`Subcommand`]s are essentially "sub-[`App`]s" they have their own [`ArgMatches`] /// as well.But simply getting the sub-[`ArgMatches`] doesn't help much if we don't also know /// which subcommand was actually used. This method returns the name of the subcommand that was /// used at runtime, or `None` if one wasn't. /// /// *NOTE*: Subcommands form a hierarchy, where multiple subcommands can be used at runtime, /// but only a single subcommand from any group of sibling commands may used at once. /// /// An ASCII art depiction may help explain this better...Using a fictional version of `git` as /// the demo subject. Imagine the following are all subcommands of `git` (note, the author is /// aware these aren't actually all subcommands in the real `git` interface, but it makes /// explanation easier) /// /// ```notrust /// Top Level App (git) TOP /// | /// ----------------------------------------- /// / | \ \ /// clone push add commit LEVEL 1 /// | / \ / \ | /// url origin remote ref name message LEVEL 2 /// / /\ /// path remote local LEVEL 3 /// ``` /// /// Given the above fictional subcommand hierarchy, valid runtime uses would be (not an all /// inclusive list, and not including argument options per command for brevity and clarity): /// /// ```sh /// $ git clone url /// $ git push origin path /// $ git add ref local /// $ git commit message /// ``` /// /// Notice only one command per "level" may be used. You could not, for example, do `$ git /// clone url push origin path` /// /// # Examples /// /// ```no_run /// # use clap::{App, Arg, SubCommand}; /// let app_m = App::new("git") /// .subcommand(SubCommand::with_name("clone")) /// .subcommand(SubCommand::with_name("push")) /// .subcommand(SubCommand::with_name("commit")) /// .get_matches(); /// /// match app_m.subcommand_name() { /// Some("clone") => {}, // clone was used /// Some("push") => {}, // push was used /// Some("commit") => {}, // commit was used /// _ => {}, // Either no subcommand or one not tested for... /// } /// ``` /// [`Subcommand`]: ./struct.SubCommand.html /// [`App`]: ./struct.App.html /// [`ArgMatches`]: ./struct.ArgMatches.html pub fn subcommand_name(&self) -> Option<&str> { self.subcommand.as_ref().map(|sc| &sc.name[..]) } /// This brings together [`ArgMatches::subcommand_matches`] and [`ArgMatches::subcommand_name`] /// by returning a tuple with both pieces of information. /// /// # Examples /// /// ```no_run /// # use clap::{App, Arg, SubCommand}; /// let app_m = App::new("git") /// .subcommand(SubCommand::with_name("clone")) /// .subcommand(SubCommand::with_name("push")) /// .subcommand(SubCommand::with_name("commit")) /// .get_matches(); /// /// match app_m.subcommand() { /// ("clone", Some(sub_m)) => {}, // clone was used /// ("push", Some(sub_m)) => {}, // push was used /// ("commit", Some(sub_m)) => {}, // commit was used /// _ => {}, // Either no subcommand or one not tested for... /// } /// ``` /// /// Another useful scenario is when you want to support third party, or external, subcommands. /// In these cases you can't know the subcommand name ahead of time, so use a variable instead /// with pattern matching! /// /// ```rust /// # use clap::{App, AppSettings}; /// // Assume there is an external subcommand named "subcmd" /// let app_m = App::new("myprog") /// .setting(AppSettings::AllowExternalSubcommands) /// .get_matches_from(vec![ /// "myprog", "subcmd", "--option", "value", "-fff", "--flag" /// ]); /// /// // All trailing arguments will be stored under the subcommand's sub-matches using an empty /// // string argument name /// match app_m.subcommand() { /// (external, Some(sub_m)) => { /// let ext_args: Vec<&str> = sub_m.values_of("").unwrap().collect(); /// assert_eq!(external, "subcmd"); /// assert_eq!(ext_args, ["--option", "value", "-fff", "--flag"]); /// }, /// _ => {}, /// } /// ``` /// [`ArgMatches::subcommand_matches`]: ./struct.ArgMatches.html#method.subcommand_matches /// [`ArgMatches::subcommand_name`]: ./struct.ArgMatches.html#method.subcommand_name pub fn subcommand(&self) -> (&str, Option<&ArgMatches<'a>>) { self.subcommand .as_ref() .map_or(("", None), |sc| (&sc.name[..], Some(&sc.matches))) } /// Returns a string slice of the usage statement for the [`App`] or [`SubCommand`] /// /// # Examples /// /// ```no_run /// # use clap::{App, Arg, SubCommand}; /// let app_m = App::new("myprog") /// .subcommand(SubCommand::with_name("test")) /// .get_matches(); /// /// println!("{}", app_m.usage()); /// ``` /// [`Subcommand`]: ./struct.SubCommand.html /// [`App`]: ./struct.App.html pub fn usage(&self) -> &str { self.usage.as_ref().map_or("", |u| &u[..]) } } // The following were taken and adapated from vec_map source // repo: https://github.com/contain-rs/vec-map // commit: be5e1fa3c26e351761b33010ddbdaf5f05dbcc33 // license: MIT - Copyright (c) 2015 The Rust Project Developers /// An iterator for getting multiple values out of an argument via the [`ArgMatches::values_of`] /// method. /// /// # Examples /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("output") /// .short("o") /// .multiple(true) /// .takes_value(true)) /// .get_matches_from(vec!["myapp", "-o", "val1", "val2"]); /// /// let mut values = m.values_of("output").unwrap(); /// /// assert_eq!(values.next(), Some("val1")); /// assert_eq!(values.next(), Some("val2")); /// assert_eq!(values.next(), None); /// ``` /// [`ArgMatches::values_of`]: ./struct.ArgMatches.html#method.values_of #[derive(Debug, Clone)] pub struct Values<'a> { iter: Map, fn(&'a OsString) -> &'a str>, } impl<'a> Iterator for Values<'a> { type Item = &'a str; fn next(&mut self) -> Option<&'a str> { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a> DoubleEndedIterator for Values<'a> { fn next_back(&mut self) -> Option<&'a str> { self.iter.next_back() } } impl<'a> ExactSizeIterator for Values<'a> {} /// Creates an empty iterator. impl<'a> Default for Values<'a> { fn default() -> Self { static EMPTY: [OsString; 0] = []; // This is never called because the iterator is empty: fn to_str_slice(_: &OsString) -> &str { unreachable!() }; Values { iter: EMPTY[..].iter().map(to_str_slice), } } } /// An iterator for getting multiple values out of an argument via the [`ArgMatches::values_of_os`] /// method. Usage of this iterator allows values which contain invalid UTF-8 code points unlike /// [`Values`]. /// /// # Examples /// #[cfg_attr(not(unix), doc = " ```ignore")] #[cfg_attr(unix, doc = " ```")] /// # use clap::{App, Arg}; /// use std::ffi::OsString; /// use std::os::unix::ffi::{OsStrExt,OsStringExt}; /// /// let m = App::new("utf8") /// .arg(Arg::from_usage(" 'some arg'")) /// .get_matches_from(vec![OsString::from("myprog"), /// // "Hi {0xe9}!" /// OsString::from_vec(vec![b'H', b'i', b' ', 0xe9, b'!'])]); /// assert_eq!(&*m.value_of_os("arg").unwrap().as_bytes(), [b'H', b'i', b' ', 0xe9, b'!']); /// ``` /// [`ArgMatches::values_of_os`]: ./struct.ArgMatches.html#method.values_of_os /// [`Values`]: ./struct.Values.html #[derive(Debug, Clone)] pub struct OsValues<'a> { iter: Map, fn(&'a OsString) -> &'a OsStr>, } impl<'a> Iterator for OsValues<'a> { type Item = &'a OsStr; fn next(&mut self) -> Option<&'a OsStr> { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a> DoubleEndedIterator for OsValues<'a> { fn next_back(&mut self) -> Option<&'a OsStr> { self.iter.next_back() } } impl<'a> ExactSizeIterator for OsValues<'a> {} /// Creates an empty iterator. impl<'a> Default for OsValues<'a> { fn default() -> Self { static EMPTY: [OsString; 0] = []; // This is never called because the iterator is empty: fn to_str_slice(_: &OsString) -> &OsStr { unreachable!() }; OsValues { iter: EMPTY[..].iter().map(to_str_slice), } } } /// An iterator for getting multiple indices out of an argument via the [`ArgMatches::indices_of`] /// method. /// /// # Examples /// /// ```rust /// # use clap::{App, Arg}; /// let m = App::new("myapp") /// .arg(Arg::with_name("output") /// .short("o") /// .multiple(true) /// .takes_value(true)) /// .get_matches_from(vec!["myapp", "-o", "val1", "val2"]); /// /// let mut indices = m.indices_of("output").unwrap(); /// /// assert_eq!(indices.next(), Some(2)); /// assert_eq!(indices.next(), Some(3)); /// assert_eq!(indices.next(), None); /// ``` /// [`ArgMatches::indices_of`]: ./struct.ArgMatches.html#method.indices_of #[derive(Debug, Clone)] pub struct Indices<'a> { // would rather use '_, but: https://github.com/rust-lang/rust/issues/48469 iter: Map, fn(&'a usize) -> usize>, } impl<'a> Iterator for Indices<'a> { type Item = usize; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a> DoubleEndedIterator for Indices<'a> { fn next_back(&mut self) -> Option { self.iter.next_back() } } impl<'a> ExactSizeIterator for Indices<'a> {} /// Creates an empty iterator. impl<'a> Default for Indices<'a> { fn default() -> Self { static EMPTY: [usize; 0] = []; // This is never called because the iterator is empty: fn to_usize(_: &usize) -> usize { unreachable!() }; Indices { iter: EMPTY[..].iter().map(to_usize), } } } #[cfg(test)] mod tests { use super::*; #[test] fn test_default_values() { let mut values: Values = Values::default(); assert_eq!(values.next(), None); } #[test] fn test_default_values_with_shorter_lifetime() { let matches = ArgMatches::new(); let mut values = matches.values_of("").unwrap_or_default(); assert_eq!(values.next(), None); } #[test] fn test_default_osvalues() { let mut values: OsValues = OsValues::default(); assert_eq!(values.next(), None); } #[test] fn test_default_osvalues_with_shorter_lifetime() { let matches = ArgMatches::new(); let mut values = matches.values_of_os("").unwrap_or_default(); assert_eq!(values.next(), None); } #[test] fn test_default_indices() { let mut indices: Indices = Indices::default(); assert_eq!(indices.next(), None); } #[test] fn test_default_indices_with_shorter_lifetime() { let matches = ArgMatches::new(); let mut indices = matches.indices_of("").unwrap_or_default(); assert_eq!(indices.next(), None); } }