/* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016, 2018 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ #include "zbuild.h" #include "zendian.h" #include #include "deflate.h" #include "functable.h" #include "crc32_p.h" #include "crc32_tbl.h" /* Local functions for crc concatenation */ static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2); static void crc32_combine_gen_(uint32_t *op, z_off64_t len2); /* ========================================================================= * This function can be used by asm versions of crc32() */ const uint32_t * Z_EXPORT PREFIX(get_crc_table)(void) { return (const uint32_t *)crc_table; } #ifdef ZLIB_COMPAT unsigned long Z_EXPORT PREFIX(crc32_z)(unsigned long crc, const unsigned char *buf, size_t len) { if (buf == NULL) return 0; return (unsigned long)functable.crc32((uint32_t)crc, buf, len); } #else uint32_t Z_EXPORT PREFIX(crc32_z)(uint32_t crc, const unsigned char *buf, size_t len) { if (buf == NULL) return 0; return functable.crc32(crc, buf, len); } #endif /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 #define DO4 DO1; DO1; DO1; DO1 /* ========================================================================= */ Z_INTERNAL uint32_t crc32_generic(uint32_t crc, const unsigned char *buf, uint64_t len) { crc = crc ^ 0xffffffff; #ifdef UNROLL_MORE while (len >= 8) { DO8; len -= 8; } #else while (len >= 4) { DO4; len -= 4; } #endif if (len) do { DO1; } while (--len); return crc ^ 0xffffffff; } #ifdef ZLIB_COMPAT unsigned long Z_EXPORT PREFIX(crc32)(unsigned long crc, const unsigned char *buf, unsigned int len) { return (unsigned long)PREFIX(crc32_z)((uint32_t)crc, buf, len); } #else uint32_t Z_EXPORT PREFIX(crc32)(uint32_t crc, const unsigned char *buf, uint32_t len) { return PREFIX(crc32_z)(crc, buf, len); } #endif /* This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit integer pointer type. This violates the strict aliasing rule, where a compiler can assume, for optimization purposes, that two pointers to fundamentally different types won't ever point to the same memory. This can manifest as a problem only if one of the pointers is written to. This code only reads from those pointers. So long as this code remains isolated in this compilation unit, there won't be a problem. For this reason, this code should not be copied and pasted into a compilation unit in which other code writes to the buffer that is passed to these routines. */ /* ========================================================================= */ #if BYTE_ORDER == LITTLE_ENDIAN #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ Z_INTERNAL uint32_t crc32_little(uint32_t crc, const unsigned char *buf, uint64_t len) { Z_REGISTER uint32_t c; Z_REGISTER const uint32_t *buf4; c = crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const uint32_t *)(const void *)buf; #ifdef UNROLL_MORE while (len >= 32) { DOLIT32; len -= 32; } #endif while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return c; } #endif /* BYTE_ORDER == LITTLE_ENDIAN */ /* ========================================================================= */ #if BYTE_ORDER == BIG_ENDIAN #define DOBIG4 c ^= *buf4++; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ Z_INTERNAL uint32_t crc32_big(uint32_t crc, const unsigned char *buf, uint64_t len) { Z_REGISTER uint32_t c; Z_REGISTER const uint32_t *buf4; c = ZSWAP32(crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const uint32_t *)(const void *)buf; #ifdef UNROLL_MORE while (len >= 32) { DOBIG32; len -= 32; } #endif while (len >= 4) { DOBIG4; len -= 4; } buf = (const unsigned char *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return ZSWAP32(c); } #endif /* BYTE_ORDER == BIG_ENDIAN */ /* ========================================================================= */ static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2) { int n; if (len2 > 0) /* operator for 2^n zeros repeats every GF2_DIM n values */ for (n = 0; len2; n = (n + 1) % GF2_DIM, len2 >>= 1) if (len2 & 1) crc1 = gf2_matrix_times(crc_comb[n], crc1); return crc1 ^ crc2; } /* ========================================================================= */ #ifdef ZLIB_COMPAT unsigned long Z_EXPORT PREFIX(crc32_combine)(unsigned long crc1, unsigned long crc2, z_off_t len2) { return (unsigned long)crc32_combine_((uint32_t)crc1, (uint32_t)crc2, len2); } unsigned long Z_EXPORT PREFIX4(crc32_combine)(unsigned long crc1, unsigned long crc2, z_off64_t len2) { return (unsigned long)crc32_combine_((uint32_t)crc1, (uint32_t)crc2, len2); } #else uint32_t Z_EXPORT PREFIX4(crc32_combine)(uint32_t crc1, uint32_t crc2, z_off64_t len2) { return crc32_combine_(crc1, crc2, len2); } #endif #ifdef X86_PCLMULQDQ_CRC #include "arch/x86/x86.h" #include "arch/x86/crc_folding.h" Z_INTERNAL void crc_finalize(deflate_state *const s) { if (x86_cpu_has_pclmulqdq) s->strm->adler = crc_fold_512to32(s); } #endif Z_INTERNAL void crc_reset(deflate_state *const s) { #ifdef X86_PCLMULQDQ_CRC x86_check_features(); if (x86_cpu_has_pclmulqdq) { crc_fold_init(s); return; } #endif s->strm->adler = PREFIX(crc32)(0L, NULL, 0); } Z_INTERNAL void copy_with_crc(PREFIX3(stream) *strm, unsigned char *dst, unsigned long size) { #ifdef X86_PCLMULQDQ_CRC if (x86_cpu_has_pclmulqdq) { crc_fold_copy(strm->state, dst, strm->next_in, size); return; } #endif memcpy(dst, strm->next_in, size); strm->adler = PREFIX(crc32)(strm->adler, dst, size); } /* ========================================================================= */ static void crc32_combine_gen_(uint32_t *op, z_off64_t len2) { uint32_t row; int j; unsigned i; /* if len2 is zero or negative, return the identity matrix */ if (len2 <= 0) { row = 1; for (j = 0; j < GF2_DIM; j++) { op[j] = row; row <<= 1; } return; } /* at least one bit in len2 is set -- find it, and copy the operator corresponding to that position into op */ i = 0; for (;;) { if (len2 & 1) { for (j = 0; j < GF2_DIM; j++) op[j] = crc_comb[i][j]; break; } len2 >>= 1; i = (i + 1) % GF2_DIM; } /* for each remaining bit set in len2 (if any), multiply op by the operator corresponding to that position */ for (;;) { len2 >>= 1; i = (i + 1) % GF2_DIM; if (len2 == 0) break; if (len2 & 1) for (j = 0; j < GF2_DIM; j++) op[j] = gf2_matrix_times(crc_comb[i], op[j]); } } /* ========================================================================= */ #ifdef ZLIB_COMPAT void Z_EXPORT PREFIX(crc32_combine_gen)(uint32_t *op, z_off_t len2) { crc32_combine_gen_(op, len2); } #endif void Z_EXPORT PREFIX4(crc32_combine_gen)(uint32_t *op, z_off64_t len2) { crc32_combine_gen_(op, len2); } /* ========================================================================= */ uint32_t Z_EXPORT PREFIX(crc32_combine_op)(uint32_t crc1, uint32_t crc2, const uint32_t *op) { return gf2_matrix_times(op, crc1) ^ crc2; }