// Copyright 2018 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Sequence-related functionality //! //! This module provides: //! //! * [`SliceRandom`] slice sampling and mutation //! * [`IteratorRandom`] iterator sampling //! * [`index::sample`] low-level API to choose multiple indices from //! `0..length` //! //! Also see: //! //! * [`crate::distributions::WeightedIndex`] distribution which provides //! weighted index sampling. //! //! In order to make results reproducible across 32-64 bit architectures, all //! `usize` indices are sampled as a `u32` where possible (also providing a //! small performance boost in some cases). #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] pub mod index; #[cfg(feature = "alloc")] use core::ops::Index; #[cfg(feature = "alloc")] use alloc::vec::Vec; #[cfg(feature = "alloc")] use crate::distributions::uniform::{SampleBorrow, SampleUniform}; #[cfg(feature = "alloc")] use crate::distributions::WeightedError; use crate::Rng; /// Extension trait on slices, providing random mutation and sampling methods. /// /// This trait is implemented on all `[T]` slice types, providing several /// methods for choosing and shuffling elements. You must `use` this trait: /// /// ``` /// use rand::seq::SliceRandom; /// /// let mut rng = rand::thread_rng(); /// let mut bytes = "Hello, random!".to_string().into_bytes(); /// bytes.shuffle(&mut rng); /// let str = String::from_utf8(bytes).unwrap(); /// println!("{}", str); /// ``` /// Example output (non-deterministic): /// ```none /// l,nmroHado !le /// ``` pub trait SliceRandom { /// The element type. type Item; /// Returns a reference to one random element of the slice, or `None` if the /// slice is empty. /// /// For slices, complexity is `O(1)`. /// /// # Example /// /// ``` /// use rand::thread_rng; /// use rand::seq::SliceRandom; /// /// let choices = [1, 2, 4, 8, 16, 32]; /// let mut rng = thread_rng(); /// println!("{:?}", choices.choose(&mut rng)); /// assert_eq!(choices[..0].choose(&mut rng), None); /// ``` fn choose(&self, rng: &mut R) -> Option<&Self::Item> where R: Rng + ?Sized; /// Returns a mutable reference to one random element of the slice, or /// `None` if the slice is empty. /// /// For slices, complexity is `O(1)`. fn choose_mut(&mut self, rng: &mut R) -> Option<&mut Self::Item> where R: Rng + ?Sized; /// Chooses `amount` elements from the slice at random, without repetition, /// and in random order. The returned iterator is appropriate both for /// collection into a `Vec` and filling an existing buffer (see example). /// /// In case this API is not sufficiently flexible, use [`index::sample`]. /// /// For slices, complexity is the same as [`index::sample`]. /// /// # Example /// ``` /// use rand::seq::SliceRandom; /// /// let mut rng = &mut rand::thread_rng(); /// let sample = "Hello, audience!".as_bytes(); /// /// // collect the results into a vector: /// let v: Vec = sample.choose_multiple(&mut rng, 3).cloned().collect(); /// /// // store in a buffer: /// let mut buf = [0u8; 5]; /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { /// *slot = *b; /// } /// ``` #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] fn choose_multiple(&self, rng: &mut R, amount: usize) -> SliceChooseIter where R: Rng + ?Sized; /// Similar to [`choose`], but where the likelihood of each outcome may be /// specified. /// /// The specified function `weight` maps each item `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// For slices of length `n`, complexity is `O(n)`. /// See also [`choose_weighted_mut`], [`distributions::weighted`]. /// /// # Example /// /// ``` /// use rand::prelude::*; /// /// let choices = [('a', 2), ('b', 1), ('c', 1)]; /// let mut rng = thread_rng(); /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); /// ``` /// [`choose`]: SliceRandom::choose /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut /// [`distributions::weighted`]: crate::distributions::weighted #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] fn choose_weighted( &self, rng: &mut R, weight: F, ) -> Result<&Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default; /// Similar to [`choose_mut`], but where the likelihood of each outcome may /// be specified. /// /// The specified function `weight` maps each item `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// For slices of length `n`, complexity is `O(n)`. /// See also [`choose_weighted`], [`distributions::weighted`]. /// /// [`choose_mut`]: SliceRandom::choose_mut /// [`choose_weighted`]: SliceRandom::choose_weighted /// [`distributions::weighted`]: crate::distributions::weighted #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] fn choose_weighted_mut( &mut self, rng: &mut R, weight: F, ) -> Result<&mut Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default; /// Similar to [`choose_multiple`], but where the likelihood of each element's /// inclusion in the output may be specified. The elements are returned in an /// arbitrary, unspecified order. /// /// The specified function `weight` maps each item `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// If all of the weights are equal, even if they are all zero, each element has /// an equal likelihood of being selected. /// /// The complexity of this method depends on the feature `partition_at_index`. /// If the feature is enabled, then for slices of length `n`, the complexity /// is `O(n)` space and `O(n)` time. Otherwise, the complexity is `O(n)` space and /// `O(n * log amount)` time. /// /// # Example /// /// ``` /// use rand::prelude::*; /// /// let choices = [('a', 2), ('b', 1), ('c', 1)]; /// let mut rng = thread_rng(); /// // First Draw * Second Draw = total odds /// // ----------------------- /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order. /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order. /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order. /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::>()); /// ``` /// [`choose_multiple`]: SliceRandom::choose_multiple // // Note: this is feature-gated on std due to usage of f64::powf. // If necessary, we may use alloc+libm as an alternative (see PR #1089). #[cfg(feature = "std")] #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))] fn choose_multiple_weighted( &self, rng: &mut R, amount: usize, weight: F, ) -> Result, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> X, X: Into; /// Shuffle a mutable slice in place. /// /// For slices of length `n`, complexity is `O(n)`. /// /// # Example /// /// ``` /// use rand::seq::SliceRandom; /// use rand::thread_rng; /// /// let mut rng = thread_rng(); /// let mut y = [1, 2, 3, 4, 5]; /// println!("Unshuffled: {:?}", y); /// y.shuffle(&mut rng); /// println!("Shuffled: {:?}", y); /// ``` fn shuffle(&mut self, rng: &mut R) where R: Rng + ?Sized; /// Shuffle a slice in place, but exit early. /// /// Returns two mutable slices from the source slice. The first contains /// `amount` elements randomly permuted. The second has the remaining /// elements that are not fully shuffled. /// /// This is an efficient method to select `amount` elements at random from /// the slice, provided the slice may be mutated. /// /// If you only need to choose elements randomly and `amount > self.len()/2` /// then you may improve performance by taking /// `amount = values.len() - amount` and using only the second slice. /// /// If `amount` is greater than the number of elements in the slice, this /// will perform a full shuffle. /// /// For slices, complexity is `O(m)` where `m = amount`. fn partial_shuffle( &mut self, rng: &mut R, amount: usize, ) -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized; } /// Extension trait on iterators, providing random sampling methods. /// /// This trait is implemented on all iterators `I` where `I: Iterator + Sized` /// and provides methods for /// choosing one or more elements. You must `use` this trait: /// /// ``` /// use rand::seq::IteratorRandom; /// /// let mut rng = rand::thread_rng(); /// /// let faces = "πŸ˜€πŸ˜ŽπŸ˜πŸ˜•πŸ˜ πŸ˜’"; /// println!("I am {}!", faces.chars().choose(&mut rng).unwrap()); /// ``` /// Example output (non-deterministic): /// ```none /// I am πŸ˜€! /// ``` pub trait IteratorRandom: Iterator + Sized { /// Choose one element at random from the iterator. /// /// Returns `None` if and only if the iterator is empty. /// /// This method uses [`Iterator::size_hint`] for optimisation. With an /// accurate hint and where [`Iterator::nth`] is a constant-time operation /// this method can offer `O(1)` performance. Where no size hint is /// available, complexity is `O(n)` where `n` is the iterator length. /// Partial hints (where `lower > 0`) also improve performance. /// /// Note that the output values and the number of RNG samples used /// depends on size hints. In particular, `Iterator` combinators that don't /// change the values yielded but change the size hints may result in /// `choose` returning different elements. If you want consistent results /// and RNG usage consider using [`IteratorRandom::choose_stable`]. fn choose(mut self, rng: &mut R) -> Option where R: Rng + ?Sized { let (mut lower, mut upper) = self.size_hint(); let mut consumed = 0; let mut result = None; // Handling for this condition outside the loop allows the optimizer to eliminate the loop // when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g. // seq_iter_choose_from_1000. if upper == Some(lower) { return if lower == 0 { None } else { self.nth(gen_index(rng, lower)) }; } // Continue until the iterator is exhausted loop { if lower > 1 { let ix = gen_index(rng, lower + consumed); let skip = if ix < lower { result = self.nth(ix); lower - (ix + 1) } else { lower }; if upper == Some(lower) { return result; } consumed += lower; if skip > 0 { self.nth(skip - 1); } } else { let elem = self.next(); if elem.is_none() { return result; } consumed += 1; if gen_index(rng, consumed) == 0 { result = elem; } } let hint = self.size_hint(); lower = hint.0; upper = hint.1; } } /// Choose one element at random from the iterator. /// /// Returns `None` if and only if the iterator is empty. /// /// This method is very similar to [`choose`] except that the result /// only depends on the length of the iterator and the values produced by /// `rng`. Notably for any iterator of a given length this will make the /// same requests to `rng` and if the same sequence of values are produced /// the same index will be selected from `self`. This may be useful if you /// need consistent results no matter what type of iterator you are working /// with. If you do not need this stability prefer [`choose`]. /// /// Note that this method still uses [`Iterator::size_hint`] to skip /// constructing elements where possible, however the selection and `rng` /// calls are the same in the face of this optimization. If you want to /// force every element to be created regardless call `.inspect(|e| ())`. /// /// [`choose`]: IteratorRandom::choose fn choose_stable(mut self, rng: &mut R) -> Option where R: Rng + ?Sized { let mut consumed = 0; let mut result = None; loop { // Currently the only way to skip elements is `nth()`. So we need to // store what index to access next here. // This should be replaced by `advance_by()` once it is stable: // https://github.com/rust-lang/rust/issues/77404 let mut next = 0; let (lower, _) = self.size_hint(); if lower >= 2 { let highest_selected = (0..lower) .filter(|ix| gen_index(rng, consumed+ix+1) == 0) .last(); consumed += lower; next = lower; if let Some(ix) = highest_selected { result = self.nth(ix); next -= ix + 1; debug_assert!(result.is_some(), "iterator shorter than size_hint().0"); } } let elem = self.nth(next); if elem.is_none() { return result } if gen_index(rng, consumed+1) == 0 { result = elem; } consumed += 1; } } /// Collects values at random from the iterator into a supplied buffer /// until that buffer is filled. /// /// Although the elements are selected randomly, the order of elements in /// the buffer is neither stable nor fully random. If random ordering is /// desired, shuffle the result. /// /// Returns the number of elements added to the buffer. This equals the length /// of the buffer unless the iterator contains insufficient elements, in which /// case this equals the number of elements available. /// /// Complexity is `O(n)` where `n` is the length of the iterator. /// For slices, prefer [`SliceRandom::choose_multiple`]. fn choose_multiple_fill(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize where R: Rng + ?Sized { let amount = buf.len(); let mut len = 0; while len < amount { if let Some(elem) = self.next() { buf[len] = elem; len += 1; } else { // Iterator exhausted; stop early return len; } } // Continue, since the iterator was not exhausted for (i, elem) in self.enumerate() { let k = gen_index(rng, i + 1 + amount); if let Some(slot) = buf.get_mut(k) { *slot = elem; } } len } /// Collects `amount` values at random from the iterator into a vector. /// /// This is equivalent to `choose_multiple_fill` except for the result type. /// /// Although the elements are selected randomly, the order of elements in /// the buffer is neither stable nor fully random. If random ordering is /// desired, shuffle the result. /// /// The length of the returned vector equals `amount` unless the iterator /// contains insufficient elements, in which case it equals the number of /// elements available. /// /// Complexity is `O(n)` where `n` is the length of the iterator. /// For slices, prefer [`SliceRandom::choose_multiple`]. #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] fn choose_multiple(mut self, rng: &mut R, amount: usize) -> Vec where R: Rng + ?Sized { let mut reservoir = Vec::with_capacity(amount); reservoir.extend(self.by_ref().take(amount)); // Continue unless the iterator was exhausted // // note: this prevents iterators that "restart" from causing problems. // If the iterator stops once, then so do we. if reservoir.len() == amount { for (i, elem) in self.enumerate() { let k = gen_index(rng, i + 1 + amount); if let Some(slot) = reservoir.get_mut(k) { *slot = elem; } } } else { // Don't hang onto extra memory. There is a corner case where // `amount` was much less than `self.len()`. reservoir.shrink_to_fit(); } reservoir } } impl SliceRandom for [T] { type Item = T; fn choose(&self, rng: &mut R) -> Option<&Self::Item> where R: Rng + ?Sized { if self.is_empty() { None } else { Some(&self[gen_index(rng, self.len())]) } } fn choose_mut(&mut self, rng: &mut R) -> Option<&mut Self::Item> where R: Rng + ?Sized { if self.is_empty() { None } else { let len = self.len(); Some(&mut self[gen_index(rng, len)]) } } #[cfg(feature = "alloc")] fn choose_multiple(&self, rng: &mut R, amount: usize) -> SliceChooseIter where R: Rng + ?Sized { let amount = ::core::cmp::min(amount, self.len()); SliceChooseIter { slice: self, _phantom: Default::default(), indices: index::sample(rng, self.len(), amount).into_iter(), } } #[cfg(feature = "alloc")] fn choose_weighted( &self, rng: &mut R, weight: F, ) -> Result<&Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default, { use crate::distributions::{Distribution, WeightedIndex}; let distr = WeightedIndex::new(self.iter().map(weight))?; Ok(&self[distr.sample(rng)]) } #[cfg(feature = "alloc")] fn choose_weighted_mut( &mut self, rng: &mut R, weight: F, ) -> Result<&mut Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default, { use crate::distributions::{Distribution, WeightedIndex}; let distr = WeightedIndex::new(self.iter().map(weight))?; Ok(&mut self[distr.sample(rng)]) } #[cfg(feature = "std")] fn choose_multiple_weighted( &self, rng: &mut R, amount: usize, weight: F, ) -> Result, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> X, X: Into, { let amount = ::core::cmp::min(amount, self.len()); Ok(SliceChooseIter { slice: self, _phantom: Default::default(), indices: index::sample_weighted( rng, self.len(), |idx| weight(&self[idx]).into(), amount, )? .into_iter(), }) } fn shuffle(&mut self, rng: &mut R) where R: Rng + ?Sized { for i in (1..self.len()).rev() { // invariant: elements with index > i have been locked in place. self.swap(i, gen_index(rng, i + 1)); } } fn partial_shuffle( &mut self, rng: &mut R, amount: usize, ) -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized { // This applies Durstenfeld's algorithm for the // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) // for an unbiased permutation, but exits early after choosing `amount` // elements. let len = self.len(); let end = if amount >= len { 0 } else { len - amount }; for i in (end..len).rev() { // invariant: elements with index > i have been locked in place. self.swap(i, gen_index(rng, i + 1)); } let r = self.split_at_mut(end); (r.1, r.0) } } impl IteratorRandom for I where I: Iterator + Sized {} /// An iterator over multiple slice elements. /// /// This struct is created by /// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple). #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] #[derive(Debug)] pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { slice: &'a S, _phantom: ::core::marker::PhantomData, indices: index::IndexVecIntoIter, } #[cfg(feature = "alloc")] impl<'a, S: Index + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { type Item = &'a T; fn next(&mut self) -> Option { // TODO: investigate using SliceIndex::get_unchecked when stable self.indices.next().map(|i| &self.slice[i as usize]) } fn size_hint(&self) -> (usize, Option) { (self.indices.len(), Some(self.indices.len())) } } #[cfg(feature = "alloc")] impl<'a, S: Index + ?Sized + 'a, T: 'a> ExactSizeIterator for SliceChooseIter<'a, S, T> { fn len(&self) -> usize { self.indices.len() } } // Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where // possible, primarily in order to produce the same output on 32-bit and 64-bit // platforms. #[inline] fn gen_index(rng: &mut R, ubound: usize) -> usize { if ubound <= (core::u32::MAX as usize) { rng.gen_range(0..ubound as u32) as usize } else { rng.gen_range(0..ubound) } } #[cfg(test)] mod test { use super::*; #[cfg(feature = "alloc")] use crate::Rng; #[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec; #[test] fn test_slice_choose() { let mut r = crate::test::rng(107); let chars = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', ]; let mut chosen = [0i32; 14]; // The below all use a binomial distribution with n=1000, p=1/14. // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 for _ in 0..1000 { let picked = *chars.choose(&mut r).unwrap(); chosen[(picked as usize) - ('a' as usize)] += 1; } for count in chosen.iter() { assert!(40 < *count && *count < 106); } chosen.iter_mut().for_each(|x| *x = 0); for _ in 0..1000 { *chosen.choose_mut(&mut r).unwrap() += 1; } for count in chosen.iter() { assert!(40 < *count && *count < 106); } let mut v: [isize; 0] = []; assert_eq!(v.choose(&mut r), None); assert_eq!(v.choose_mut(&mut r), None); } #[test] fn value_stability_slice() { let mut r = crate::test::rng(413); let chars = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', ]; let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; assert_eq!(chars.choose(&mut r), Some(&'l')); assert_eq!(nums.choose_mut(&mut r), Some(&mut 10)); #[cfg(feature = "alloc")] assert_eq!( &chars .choose_multiple(&mut r, 8) .cloned() .collect::>(), &['d', 'm', 'b', 'n', 'c', 'k', 'h', 'e'] ); #[cfg(feature = "alloc")] assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'f')); #[cfg(feature = "alloc")] assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 5)); let mut r = crate::test::rng(414); nums.shuffle(&mut r); assert_eq!(nums, [9, 5, 3, 10, 7, 12, 8, 11, 6, 4, 0, 2, 1]); nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; let res = nums.partial_shuffle(&mut r, 6); assert_eq!(res.0, &mut [7, 4, 8, 6, 9, 3]); assert_eq!(res.1, &mut [0, 1, 2, 12, 11, 5, 10]); } #[derive(Clone)] struct UnhintedIterator { iter: I, } impl Iterator for UnhintedIterator { type Item = I::Item; fn next(&mut self) -> Option { self.iter.next() } } #[derive(Clone)] struct ChunkHintedIterator { iter: I, chunk_remaining: usize, chunk_size: usize, hint_total_size: bool, } impl Iterator for ChunkHintedIterator { type Item = I::Item; fn next(&mut self) -> Option { if self.chunk_remaining == 0 { self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len()); } self.chunk_remaining = self.chunk_remaining.saturating_sub(1); self.iter.next() } fn size_hint(&self) -> (usize, Option) { ( self.chunk_remaining, if self.hint_total_size { Some(self.iter.len()) } else { None }, ) } } #[derive(Clone)] struct WindowHintedIterator { iter: I, window_size: usize, hint_total_size: bool, } impl Iterator for WindowHintedIterator { type Item = I::Item; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { ( ::core::cmp::min(self.iter.len(), self.window_size), if self.hint_total_size { Some(self.iter.len()) } else { None }, ) } } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_iterator_choose() { let r = &mut crate::test::rng(109); fn test_iter + Clone>(r: &mut R, iter: Iter) { let mut chosen = [0i32; 9]; for _ in 0..1000 { let picked = iter.clone().choose(r).unwrap(); chosen[picked] += 1; } for count in chosen.iter() { // Samples should follow Binomial(1000, 1/9) // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x // Note: have seen 153, which is unlikely but not impossible. assert!( 72 < *count && *count < 154, "count not close to 1000/9: {}", count ); } } test_iter(r, 0..9); test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); #[cfg(feature = "alloc")] test_iter(r, (0..9).collect::>().into_iter()); test_iter(r, UnhintedIterator { iter: 0..9 }); test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: false, }); test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: true, }); test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: false, }); test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: true, }); assert_eq!((0..0).choose(r), None); assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None); } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_iterator_choose_stable() { let r = &mut crate::test::rng(109); fn test_iter + Clone>(r: &mut R, iter: Iter) { let mut chosen = [0i32; 9]; for _ in 0..1000 { let picked = iter.clone().choose_stable(r).unwrap(); chosen[picked] += 1; } for count in chosen.iter() { // Samples should follow Binomial(1000, 1/9) // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x // Note: have seen 153, which is unlikely but not impossible. assert!( 72 < *count && *count < 154, "count not close to 1000/9: {}", count ); } } test_iter(r, 0..9); test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); #[cfg(feature = "alloc")] test_iter(r, (0..9).collect::>().into_iter()); test_iter(r, UnhintedIterator { iter: 0..9 }); test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: false, }); test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: true, }); test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: false, }); test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: true, }); assert_eq!((0..0).choose(r), None); assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None); } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_iterator_choose_stable_stability() { fn test_iter(iter: impl Iterator + Clone) -> [i32; 9] { let r = &mut crate::test::rng(109); let mut chosen = [0i32; 9]; for _ in 0..1000 { let picked = iter.clone().choose_stable(r).unwrap(); chosen[picked] += 1; } chosen } let reference = test_iter(0..9); assert_eq!(test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()), reference); #[cfg(feature = "alloc")] assert_eq!(test_iter((0..9).collect::>().into_iter()), reference); assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference); assert_eq!(test_iter(ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: false, }), reference); assert_eq!(test_iter(ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: true, }), reference); assert_eq!(test_iter(WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: false, }), reference); assert_eq!(test_iter(WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: true, }), reference); } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_shuffle() { let mut r = crate::test::rng(108); let empty: &mut [isize] = &mut []; empty.shuffle(&mut r); let mut one = [1]; one.shuffle(&mut r); let b: &[_] = &[1]; assert_eq!(one, b); let mut two = [1, 2]; two.shuffle(&mut r); assert!(two == [1, 2] || two == [2, 1]); fn move_last(slice: &mut [usize], pos: usize) { // use slice[pos..].rotate_left(1); once we can use that let last_val = slice[pos]; for i in pos..slice.len() - 1 { slice[i] = slice[i + 1]; } *slice.last_mut().unwrap() = last_val; } let mut counts = [0i32; 24]; for _ in 0..10000 { let mut arr: [usize; 4] = [0, 1, 2, 3]; arr.shuffle(&mut r); let mut permutation = 0usize; let mut pos_value = counts.len(); for i in 0..4 { pos_value /= 4 - i; let pos = arr.iter().position(|&x| x == i).unwrap(); assert!(pos < (4 - i)); permutation += pos * pos_value; move_last(&mut arr, pos); assert_eq!(arr[3], i); } for i in 0..4 { assert_eq!(arr[i], i); } counts[permutation] += 1; } for count in counts.iter() { // Binomial(10000, 1/24) with average 416.667 // Octave: binocdf(n, 10000, 1/24) // 99.9% chance samples lie within this range: assert!(352 <= *count && *count <= 483, "count: {}", count); } } #[test] fn test_partial_shuffle() { let mut r = crate::test::rng(118); let mut empty: [u32; 0] = []; let res = empty.partial_shuffle(&mut r, 10); assert_eq!((res.0.len(), res.1.len()), (0, 0)); let mut v = [1, 2, 3, 4, 5]; let res = v.partial_shuffle(&mut r, 2); assert_eq!((res.0.len(), res.1.len()), (2, 3)); assert!(res.0[0] != res.0[1]); // First elements are only modified if selected, so at least one isn't modified: assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); } #[test] #[cfg(feature = "alloc")] fn test_sample_iter() { let min_val = 1; let max_val = 100; let mut r = crate::test::rng(401); let vals = (min_val..max_val).collect::>(); let small_sample = vals.iter().choose_multiple(&mut r, 5); let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5); assert_eq!(small_sample.len(), 5); assert_eq!(large_sample.len(), vals.len()); // no randomization happens when amount >= len assert_eq!(large_sample, vals.iter().collect::>()); assert!(small_sample .iter() .all(|e| { **e >= min_val && **e <= max_val })); } #[test] #[cfg(feature = "alloc")] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_weighted() { let mut r = crate::test::rng(406); const N_REPS: u32 = 3000; let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; let total_weight = weights.iter().sum::() as f32; let verify = |result: [i32; 14]| { for (i, count) in result.iter().enumerate() { let exp = (weights[i] * N_REPS) as f32 / total_weight; let mut err = (*count as f32 - exp).abs(); if err != 0.0 { err /= exp; } assert!(err <= 0.25); } }; // choose_weighted fn get_weight(item: &(u32, T)) -> u32 { item.0 } let mut chosen = [0i32; 14]; let mut items = [(0u32, 0usize); 14]; // (weight, index) for (i, item) in items.iter_mut().enumerate() { *item = (weights[i], i); } for _ in 0..N_REPS { let item = items.choose_weighted(&mut r, get_weight).unwrap(); chosen[item.1] += 1; } verify(chosen); // choose_weighted_mut let mut items = [(0u32, 0i32); 14]; // (weight, count) for (i, item) in items.iter_mut().enumerate() { *item = (weights[i], 0); } for _ in 0..N_REPS { items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; } for (ch, item) in chosen.iter_mut().zip(items.iter()) { *ch = item.1; } verify(chosen); // Check error cases let empty_slice = &mut [10][0..0]; assert_eq!( empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightedError::NoItem) ); assert_eq!( empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightedError::NoItem) ); assert_eq!( ['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightedError::AllWeightsZero) ); assert_eq!( [0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight) ); assert_eq!( [-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight) ); } #[test] fn value_stability_choose() { fn choose>(iter: I) -> Option { let mut rng = crate::test::rng(411); iter.choose(&mut rng) } assert_eq!(choose([].iter().cloned()), None); assert_eq!(choose(0..100), Some(33)); assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40)); assert_eq!( choose(ChunkHintedIterator { iter: 0..100, chunk_size: 32, chunk_remaining: 32, hint_total_size: false, }), Some(39) ); assert_eq!( choose(ChunkHintedIterator { iter: 0..100, chunk_size: 32, chunk_remaining: 32, hint_total_size: true, }), Some(39) ); assert_eq!( choose(WindowHintedIterator { iter: 0..100, window_size: 32, hint_total_size: false, }), Some(90) ); assert_eq!( choose(WindowHintedIterator { iter: 0..100, window_size: 32, hint_total_size: true, }), Some(90) ); } #[test] fn value_stability_choose_stable() { fn choose>(iter: I) -> Option { let mut rng = crate::test::rng(411); iter.choose_stable(&mut rng) } assert_eq!(choose([].iter().cloned()), None); assert_eq!(choose(0..100), Some(40)); assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40)); assert_eq!( choose(ChunkHintedIterator { iter: 0..100, chunk_size: 32, chunk_remaining: 32, hint_total_size: false, }), Some(40) ); assert_eq!( choose(ChunkHintedIterator { iter: 0..100, chunk_size: 32, chunk_remaining: 32, hint_total_size: true, }), Some(40) ); assert_eq!( choose(WindowHintedIterator { iter: 0..100, window_size: 32, hint_total_size: false, }), Some(40) ); assert_eq!( choose(WindowHintedIterator { iter: 0..100, window_size: 32, hint_total_size: true, }), Some(40) ); } #[test] fn value_stability_choose_multiple() { fn do_test>(iter: I, v: &[u32]) { let mut rng = crate::test::rng(412); let mut buf = [0u32; 8]; assert_eq!(iter.choose_multiple_fill(&mut rng, &mut buf), v.len()); assert_eq!(&buf[0..v.len()], v); } do_test(0..4, &[0, 1, 2, 3]); do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]); do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]); #[cfg(feature = "alloc")] { fn do_test>(iter: I, v: &[u32]) { let mut rng = crate::test::rng(412); assert_eq!(iter.choose_multiple(&mut rng, v.len()), v); } do_test(0..4, &[0, 1, 2, 3]); do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]); do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]); } } #[test] #[cfg(feature = "std")] fn test_multiple_weighted_edge_cases() { use super::*; let mut rng = crate::test::rng(413); // Case 1: One of the weights is 0 let choices = [('a', 2), ('b', 1), ('c', 0)]; for _ in 0..100 { let result = choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap() .collect::>(); assert_eq!(result.len(), 2); assert!(!result.iter().any(|val| val.0 == 'c')); } // Case 2: All of the weights are 0 let choices = [('a', 0), ('b', 0), ('c', 0)]; let result = choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap() .collect::>(); assert_eq!(result.len(), 2); // Case 3: Negative weights let choices = [('a', -1), ('b', 1), ('c', 1)]; assert_eq!( choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap_err(), WeightedError::InvalidWeight ); // Case 4: Empty list let choices = []; let result = choices .choose_multiple_weighted(&mut rng, 0, |_: &()| 0) .unwrap() .collect::>(); assert_eq!(result.len(), 0); // Case 5: NaN weights let choices = [('a', core::f64::NAN), ('b', 1.0), ('c', 1.0)]; assert_eq!( choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap_err(), WeightedError::InvalidWeight ); // Case 6: +infinity weights let choices = [('a', core::f64::INFINITY), ('b', 1.0), ('c', 1.0)]; for _ in 0..100 { let result = choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap() .collect::>(); assert_eq!(result.len(), 2); assert!(result.iter().any(|val| val.0 == 'a')); } // Case 7: -infinity weights let choices = [('a', core::f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)]; assert_eq!( choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap_err(), WeightedError::InvalidWeight ); // Case 8: -0 weights let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)]; assert!(choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .is_ok()); } #[test] #[cfg(feature = "std")] fn test_multiple_weighted_distributions() { use super::*; // The theoretical probabilities of the different outcomes are: // AB: 0.5 * 0.5 = 0.250 // AC: 0.5 * 0.5 = 0.250 // BA: 0.25 * 0.67 = 0.167 // BC: 0.25 * 0.33 = 0.082 // CA: 0.25 * 0.67 = 0.167 // CB: 0.25 * 0.33 = 0.082 let choices = [('a', 2), ('b', 1), ('c', 1)]; let mut rng = crate::test::rng(414); let mut results = [0i32; 3]; let expected_results = [4167, 4167, 1666]; for _ in 0..10000 { let result = choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap() .collect::>(); assert_eq!(result.len(), 2); match (result[0].0, result[1].0) { ('a', 'b') | ('b', 'a') => { results[0] += 1; } ('a', 'c') | ('c', 'a') => { results[1] += 1; } ('b', 'c') | ('c', 'b') => { results[2] += 1; } (_, _) => panic!("unexpected result"), } } let mut diffs = results .iter() .zip(&expected_results) .map(|(a, b)| (a - b).abs()); assert!(!diffs.any(|deviation| deviation > 100)); } }