// Copyright (c) 2019, Google Inc. // Portions Copyright 2020 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // This file is based on BoringSSL's gcm_nohw.c. // This file contains a constant-time implementation of GHASH based on the notes // in https://bearssl.org/constanttime.html#ghash-for-gcm and the reduction // algorithm described in // https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf. // // Unlike the BearSSL notes, we use u128 in the 64-bit implementation. use super::{super::Block, Xi}; use crate::endian::BigEndian; use core::convert::TryInto; #[cfg(target_pointer_width = "64")] fn gcm_mul64_nohw(a: u64, b: u64) -> (u64, u64) { #[inline(always)] fn lo(a: u128) -> u64 { a as u64 } #[inline(always)] fn hi(a: u128) -> u64 { lo(a >> 64) } #[inline(always)] fn mul(a: u64, b: u64) -> u128 { u128::from(a) * u128::from(b) } // One term every four bits means the largest term is 64/4 = 16, which barely // overflows into the next term. Using one term every five bits would cost 25 // multiplications instead of 16. It is faster to mask off the bottom four // bits of |a|, giving a largest term of 60/4 = 15, and apply the bottom bits // separately. let a0 = a & 0x1111111111111110; let a1 = a & 0x2222222222222220; let a2 = a & 0x4444444444444440; let a3 = a & 0x8888888888888880; let b0 = b & 0x1111111111111111; let b1 = b & 0x2222222222222222; let b2 = b & 0x4444444444444444; let b3 = b & 0x8888888888888888; let c0 = mul(a0, b0) ^ mul(a1, b3) ^ mul(a2, b2) ^ mul(a3, b1); let c1 = mul(a0, b1) ^ mul(a1, b0) ^ mul(a2, b3) ^ mul(a3, b2); let c2 = mul(a0, b2) ^ mul(a1, b1) ^ mul(a2, b0) ^ mul(a3, b3); let c3 = mul(a0, b3) ^ mul(a1, b2) ^ mul(a2, b1) ^ mul(a3, b0); // Multiply the bottom four bits of |a| with |b|. let a0_mask = 0u64.wrapping_sub(a & 1); let a1_mask = 0u64.wrapping_sub((a >> 1) & 1); let a2_mask = 0u64.wrapping_sub((a >> 2) & 1); let a3_mask = 0u64.wrapping_sub((a >> 3) & 1); let extra = u128::from(a0_mask & b) ^ (u128::from(a1_mask & b) << 1) ^ (u128::from(a2_mask & b) << 2) ^ (u128::from(a3_mask & b) << 3); let lo = (lo(c0) & 0x1111111111111111) ^ (lo(c1) & 0x2222222222222222) ^ (lo(c2) & 0x4444444444444444) ^ (lo(c3) & 0x8888888888888888) ^ lo(extra); let hi = (hi(c0) & 0x1111111111111111) ^ (hi(c1) & 0x2222222222222222) ^ (hi(c2) & 0x4444444444444444) ^ (hi(c3) & 0x8888888888888888) ^ hi(extra); (lo, hi) } #[cfg(not(target_pointer_width = "64"))] fn gcm_mul32_nohw(a: u32, b: u32) -> u64 { #[inline(always)] fn mul(a: u32, b: u32) -> u64 { u64::from(a) * u64::from(b) } // One term every four bits means the largest term is 32/4 = 8, which does not // overflow into the next term. let a0 = a & 0x11111111; let a1 = a & 0x22222222; let a2 = a & 0x44444444; let a3 = a & 0x88888888; let b0 = b & 0x11111111; let b1 = b & 0x22222222; let b2 = b & 0x44444444; let b3 = b & 0x88888888; let c0 = mul(a0, b0) ^ mul(a1, b3) ^ mul(a2, b2) ^ mul(a3, b1); let c1 = mul(a0, b1) ^ mul(a1, b0) ^ mul(a2, b3) ^ mul(a3, b2); let c2 = mul(a0, b2) ^ mul(a1, b1) ^ mul(a2, b0) ^ mul(a3, b3); let c3 = mul(a0, b3) ^ mul(a1, b2) ^ mul(a2, b1) ^ mul(a3, b0); (c0 & 0x1111111111111111) | (c1 & 0x2222222222222222) | (c2 & 0x4444444444444444) | (c3 & 0x8888888888888888) } #[cfg(not(target_pointer_width = "64"))] fn gcm_mul64_nohw(a: u64, b: u64) -> (u64, u64) { #[inline(always)] fn lo(a: u64) -> u32 { a as u32 } #[inline(always)] fn hi(a: u64) -> u32 { lo(a >> 32) } let a0 = lo(a); let a1 = hi(a); let b0 = lo(b); let b1 = hi(b); // Karatsuba multiplication. let lo = gcm_mul32_nohw(a0, b0); let hi = gcm_mul32_nohw(a1, b1); let mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1) ^ lo ^ hi; (lo ^ (mid << 32), hi ^ (mid >> 32)) } pub(super) fn init(xi: [u64; 2]) -> super::u128 { // We implement GHASH in terms of POLYVAL, as described in RFC8452. This // avoids a shift by 1 in the multiplication, needed to account for bit // reversal losing a bit after multiplication, that is, // rev128(X) * rev128(Y) = rev255(X*Y). // // Per Appendix A, we run mulX_POLYVAL. Note this is the same transformation // applied by |gcm_init_clmul|, etc. Note |Xi| has already been byteswapped. // // See also slide 16 of // https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf let mut lo = xi[1]; let mut hi = xi[0]; let mut carry = hi >> 63; carry = 0u64.wrapping_sub(carry); hi <<= 1; hi |= lo >> 63; lo <<= 1; // The irreducible polynomial is 1 + x^121 + x^126 + x^127 + x^128, so we // conditionally add 0xc200...0001. lo ^= carry & 1; hi ^= carry & 0xc200000000000000; // This implementation does not use the rest of |Htable|. super::u128 { lo, hi } } fn gcm_polyval_nohw(xi: &mut [u64; 2], h: super::u128) { // Karatsuba multiplication. The product of |Xi| and |H| is stored in |r0| // through |r3|. Note there is no byte or bit reversal because we are // evaluating POLYVAL. let (r0, mut r1) = gcm_mul64_nohw(xi[0], h.lo); let (mut r2, mut r3) = gcm_mul64_nohw(xi[1], h.hi); let (mut mid0, mut mid1) = gcm_mul64_nohw(xi[0] ^ xi[1], h.hi ^ h.lo); mid0 ^= r0 ^ r2; mid1 ^= r1 ^ r3; r2 ^= mid1; r1 ^= mid0; // Now we multiply our 256-bit result by x^-128 and reduce. |r2| and // |r3| shifts into position and we must multiply |r0| and |r1| by x^-128. We // have: // // 1 = x^121 + x^126 + x^127 + x^128 // x^-128 = x^-7 + x^-2 + x^-1 + 1 // // This is the GHASH reduction step, but with bits flowing in reverse. // The x^-7, x^-2, and x^-1 terms shift bits past x^0, which would require // another reduction steps. Instead, we gather the excess bits, incorporate // them into |r0| and |r1| and reduce once. See slides 17-19 // of https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf. r1 ^= (r0 << 63) ^ (r0 << 62) ^ (r0 << 57); // 1 r2 ^= r0; r3 ^= r1; // x^-1 r2 ^= r0 >> 1; r2 ^= r1 << 63; r3 ^= r1 >> 1; // x^-2 r2 ^= r0 >> 2; r2 ^= r1 << 62; r3 ^= r1 >> 2; // x^-7 r2 ^= r0 >> 7; r2 ^= r1 << 57; r3 ^= r1 >> 7; *xi = [r2, r3]; } pub(super) fn gmult(xi: &mut Xi, h: super::u128) { with_swapped_xi(xi, |swapped| { gcm_polyval_nohw(swapped, h); }) } pub(super) fn ghash(xi: &mut Xi, h: super::u128, input: &[u8]) { with_swapped_xi(xi, |swapped| { input.chunks_exact(16).for_each(|inp| { swapped[0] ^= u64::from_be_bytes(inp[8..].try_into().unwrap()); swapped[1] ^= u64::from_be_bytes(inp[..8].try_into().unwrap()); gcm_polyval_nohw(swapped, h); }); }); } #[inline] fn with_swapped_xi(Xi(xi): &mut Xi, f: impl FnOnce(&mut [u64; 2])) { let unswapped = xi.u64s_be_to_native(); let mut swapped: [u64; 2] = [unswapped[1], unswapped[0]]; f(&mut swapped); *xi = Block::from_u64_be(BigEndian::from(swapped[1]), BigEndian::from(swapped[0])) }