// Copyright 2015 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! Building blocks for parsing DER-encoded ASN.1 structures. //! //! This module contains the foundational parts of an ASN.1 DER parser. use super::Positive; use crate::error; pub const CONSTRUCTED: u8 = 1 << 5; pub const CONTEXT_SPECIFIC: u8 = 2 << 6; #[derive(Clone, Copy, PartialEq)] #[repr(u8)] pub enum Tag { Boolean = 0x01, Integer = 0x02, BitString = 0x03, OctetString = 0x04, Null = 0x05, OID = 0x06, Sequence = CONSTRUCTED | 0x10, // 0x30 UTCTime = 0x17, GeneralizedTime = 0x18, ContextSpecificConstructed0 = CONTEXT_SPECIFIC | CONSTRUCTED | 0, ContextSpecificConstructed1 = CONTEXT_SPECIFIC | CONSTRUCTED | 1, ContextSpecificConstructed3 = CONTEXT_SPECIFIC | CONSTRUCTED | 3, } impl From for usize { fn from(tag: Tag) -> Self { tag as Self } } impl From for u8 { fn from(tag: Tag) -> Self { tag as Self } // XXX: narrowing conversion. } pub fn expect_tag_and_get_value<'a>( input: &mut untrusted::Reader<'a>, tag: Tag, ) -> Result, error::Unspecified> { let (actual_tag, inner) = read_tag_and_get_value(input)?; if usize::from(tag) != usize::from(actual_tag) { return Err(error::Unspecified); } Ok(inner) } pub fn read_tag_and_get_value<'a>( input: &mut untrusted::Reader<'a>, ) -> Result<(u8, untrusted::Input<'a>), error::Unspecified> { let tag = input.read_byte()?; if (tag & 0x1F) == 0x1F { return Err(error::Unspecified); // High tag number form is not allowed. } // If the high order bit of the first byte is set to zero then the length // is encoded in the seven remaining bits of that byte. Otherwise, those // seven bits represent the number of bytes used to encode the length. let length = match input.read_byte()? { n if (n & 0x80) == 0 => usize::from(n), 0x81 => { let second_byte = input.read_byte()?; if second_byte < 128 { return Err(error::Unspecified); // Not the canonical encoding. } usize::from(second_byte) } 0x82 => { let second_byte = usize::from(input.read_byte()?); let third_byte = usize::from(input.read_byte()?); let combined = (second_byte << 8) | third_byte; if combined < 256 { return Err(error::Unspecified); // Not the canonical encoding. } combined } _ => { return Err(error::Unspecified); // We don't support longer lengths. } }; let inner = input.read_bytes(length)?; Ok((tag, inner)) } pub fn bit_string_with_no_unused_bits<'a>( input: &mut untrusted::Reader<'a>, ) -> Result, error::Unspecified> { nested(input, Tag::BitString, error::Unspecified, |value| { let unused_bits_at_end = value.read_byte().map_err(|_| error::Unspecified)?; if unused_bits_at_end != 0 { return Err(error::Unspecified); } Ok(value.read_bytes_to_end()) }) } // TODO: investigate taking decoder as a reference to reduce generated code // size. pub fn nested<'a, F, R, E: Copy>( input: &mut untrusted::Reader<'a>, tag: Tag, error: E, decoder: F, ) -> Result where F: FnOnce(&mut untrusted::Reader<'a>) -> Result, { let inner = expect_tag_and_get_value(input, tag).map_err(|_| error)?; inner.read_all(error, decoder) } fn nonnegative_integer<'a>( input: &mut untrusted::Reader<'a>, min_value: u8, ) -> Result, error::Unspecified> { // Verify that |input|, which has had any leading zero stripped off, is the // encoding of a value of at least |min_value|. fn check_minimum(input: untrusted::Input, min_value: u8) -> Result<(), error::Unspecified> { input.read_all(error::Unspecified, |input| { let first_byte = input.read_byte()?; if input.at_end() && first_byte < min_value { return Err(error::Unspecified); } let _ = input.read_bytes_to_end(); Ok(()) }) } let value = expect_tag_and_get_value(input, Tag::Integer)?; value.read_all(error::Unspecified, |input| { // Empty encodings are not allowed. let first_byte = input.read_byte()?; if first_byte == 0 { if input.at_end() { // |value| is the legal encoding of zero. if min_value > 0 { return Err(error::Unspecified); } return Ok(value); } let r = input.read_bytes_to_end(); r.read_all(error::Unspecified, |input| { let second_byte = input.read_byte()?; if (second_byte & 0x80) == 0 { // A leading zero is only allowed when the value's high bit // is set. return Err(error::Unspecified); } let _ = input.read_bytes_to_end(); Ok(()) })?; check_minimum(r, min_value)?; return Ok(r); } // Negative values are not allowed. if (first_byte & 0x80) != 0 { return Err(error::Unspecified); } let _ = input.read_bytes_to_end(); check_minimum(value, min_value)?; Ok(value) }) } /// Parse as integer with a value in the in the range [0, 255], returning its /// numeric value. This is typically used for parsing version numbers. #[inline] pub fn small_nonnegative_integer(input: &mut untrusted::Reader) -> Result { let value = nonnegative_integer(input, 0)?; value.read_all(error::Unspecified, |input| { let r = input.read_byte()?; Ok(r) }) } /// Parses a positive DER integer, returning the big-endian-encoded value, /// sans any leading zero byte. pub fn positive_integer<'a>( input: &mut untrusted::Reader<'a>, ) -> Result, error::Unspecified> { Ok(Positive::new_non_empty_without_leading_zeros( nonnegative_integer(input, 1)?, )) } #[cfg(test)] mod tests { use super::*; use crate::error; fn with_good_i(value: &[u8], f: F) where F: FnOnce(&mut untrusted::Reader) -> Result, { let r = untrusted::Input::from(value).read_all(error::Unspecified, f); assert!(r.is_ok()); } fn with_bad_i(value: &[u8], f: F) where F: FnOnce(&mut untrusted::Reader) -> Result, { let r = untrusted::Input::from(value).read_all(error::Unspecified, f); assert!(r.is_err()); } static ZERO_INTEGER: &[u8] = &[0x02, 0x01, 0x00]; static GOOD_POSITIVE_INTEGERS: &[(&[u8], u8)] = &[ (&[0x02, 0x01, 0x01], 0x01), (&[0x02, 0x01, 0x02], 0x02), (&[0x02, 0x01, 0x7e], 0x7e), (&[0x02, 0x01, 0x7f], 0x7f), // Values that need to have an 0x00 prefix to disambiguate them from // them from negative values. (&[0x02, 0x02, 0x00, 0x80], 0x80), (&[0x02, 0x02, 0x00, 0x81], 0x81), (&[0x02, 0x02, 0x00, 0xfe], 0xfe), (&[0x02, 0x02, 0x00, 0xff], 0xff), ]; static BAD_NONNEGATIVE_INTEGERS: &[&[u8]] = &[ &[], // At end of input &[0x02], // Tag only &[0x02, 0x00], // Empty value // Length mismatch &[0x02, 0x00, 0x01], &[0x02, 0x01], &[0x02, 0x01, 0x00, 0x01], &[0x02, 0x01, 0x01, 0x00], // Would be valid if last byte is ignored. &[0x02, 0x02, 0x01], // Negative values &[0x02, 0x01, 0x80], &[0x02, 0x01, 0xfe], &[0x02, 0x01, 0xff], // Values that have an unnecessary leading 0x00 &[0x02, 0x02, 0x00, 0x00], &[0x02, 0x02, 0x00, 0x01], &[0x02, 0x02, 0x00, 0x02], &[0x02, 0x02, 0x00, 0x7e], &[0x02, 0x02, 0x00, 0x7f], ]; #[test] fn test_small_nonnegative_integer() { with_good_i(ZERO_INTEGER, |input| { assert_eq!(small_nonnegative_integer(input)?, 0x00); Ok(()) }); for &(test_in, test_out) in GOOD_POSITIVE_INTEGERS.iter() { with_good_i(test_in, |input| { assert_eq!(small_nonnegative_integer(input)?, test_out); Ok(()) }); } for &test_in in BAD_NONNEGATIVE_INTEGERS.iter() { with_bad_i(test_in, |input| { let _ = small_nonnegative_integer(input)?; Ok(()) }); } } #[test] fn test_positive_integer() { with_bad_i(ZERO_INTEGER, |input| { let _ = positive_integer(input)?; Ok(()) }); for &(test_in, test_out) in GOOD_POSITIVE_INTEGERS.iter() { with_good_i(test_in, |input| { let test_out = [test_out]; assert_eq!( positive_integer(input)?.big_endian_without_leading_zero_as_input(), untrusted::Input::from(&test_out[..]) ); Ok(()) }); } for &test_in in BAD_NONNEGATIVE_INTEGERS.iter() { with_bad_i(test_in, |input| { let _ = positive_integer(input)?; Ok(()) }); } } }