use crate::common::*; use crate::d2s; use crate::d2s_intrinsics::*; use crate::parse::Error; #[cfg(feature = "no-panic")] use no_panic::no_panic; const DOUBLE_EXPONENT_BIAS: usize = 1023; fn floor_log2(value: u64) -> u32 { 63_u32.wrapping_sub(value.leading_zeros()) } #[cfg_attr(feature = "no-panic", no_panic)] pub fn s2d(buffer: &[u8]) -> Result { let len = buffer.len(); if len == 0 { return Err(Error::InputTooShort); } let mut m10digits = 0; let mut e10digits = 0; let mut dot_index = len; let mut e_index = len; let mut m10 = 0u64; let mut e10 = 0i32; let mut signed_m = false; let mut signed_e = false; let mut i = 0; if unsafe { *buffer.get_unchecked(0) } == b'-' { signed_m = true; i += 1; } while let Some(c) = buffer.get(i).copied() { if c == b'.' { if dot_index != len { return Err(Error::MalformedInput); } dot_index = i; i += 1; continue; } if c < b'0' || c > b'9' { break; } if m10digits >= 17 { return Err(Error::InputTooLong); } m10 = 10 * m10 + (c - b'0') as u64; if m10 != 0 { m10digits += 1; } i += 1; } if let Some(b'e') | Some(b'E') = buffer.get(i) { e_index = i; i += 1; match buffer.get(i) { Some(b'-') => { signed_e = true; i += 1; } Some(b'+') => i += 1, _ => {} } while let Some(c) = buffer.get(i).copied() { if c < b'0' || c > b'9' { return Err(Error::MalformedInput); } if e10digits > 3 { // TODO: Be more lenient. Return +/-Infinity or +/-0 instead. return Err(Error::InputTooLong); } e10 = 10 * e10 + (c - b'0') as i32; if e10 != 0 { e10digits += 1; } i += 1; } } if i < len { return Err(Error::MalformedInput); } if signed_e { e10 = -e10; } e10 -= if dot_index < e_index { (e_index - dot_index - 1) as i32 } else { 0 }; if m10 == 0 { return Ok(if signed_m { -0.0 } else { 0.0 }); } if m10digits + e10 <= -324 || m10 == 0 { // Number is less than 1e-324, which should be rounded down to 0; return // +/-0.0. let ieee = (signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS); return Ok(f64::from_bits(ieee)); } if m10digits + e10 >= 310 { // Number is larger than 1e+309, which should be rounded to +/-Infinity. let ieee = ((signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS)) | (0x7ff_u64 << d2s::DOUBLE_MANTISSA_BITS); return Ok(f64::from_bits(ieee)); } // Convert to binary float m2 * 2^e2, while retaining information about // whether the conversion was exact (trailing_zeros). let e2: i32; let m2: u64; let mut trailing_zeros: bool; if e10 >= 0 { // The length of m * 10^e in bits is: // log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5) // // We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for // the implicit leading one in IEEE format). We therefore choose a // binary output exponent of // log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1). // // We use floor(log2(5^e10)) so that we get at least this many bits; // better to have an additional bit than to not have enough bits. e2 = floor_log2(m10) .wrapping_add(e10 as u32) .wrapping_add(log2_pow5(e10) as u32) .wrapping_sub(d2s::DOUBLE_MANTISSA_BITS + 1) as i32; // We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)]. // To that end, we use the DOUBLE_POW5_SPLIT table. let j = e2 .wrapping_sub(e10) .wrapping_sub(ceil_log2_pow5(e10)) .wrapping_add(d2s::DOUBLE_POW5_BITCOUNT); debug_assert!(j >= 0); debug_assert!(e10 < d2s::DOUBLE_POW5_SPLIT.len() as i32); m2 = mul_shift_64( m10, unsafe { d2s::DOUBLE_POW5_SPLIT.get_unchecked(e10 as usize) }, j as u32, ); // We also compute if the result is exact, i.e., // [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2. // This can only be the case if 2^e2 divides m10 * 10^e10, which in turn // requires that the largest power of 2 that divides m10 + e10 is // greater than e2. If e2 is less than e10, then the result must be // exact. Otherwise we use the existing multiple_of_power_of_2 function. trailing_zeros = e2 < e10 || e2 - e10 < 64 && multiple_of_power_of_2(m10, (e2 - e10) as u32); } else { e2 = floor_log2(m10) .wrapping_add(e10 as u32) .wrapping_sub(ceil_log2_pow5(-e10) as u32) .wrapping_sub(d2s::DOUBLE_MANTISSA_BITS + 1) as i32; let j = e2 .wrapping_sub(e10) .wrapping_add(ceil_log2_pow5(-e10)) .wrapping_sub(1) .wrapping_add(d2s::DOUBLE_POW5_INV_BITCOUNT); debug_assert!(-e10 < d2s::DOUBLE_POW5_INV_SPLIT.len() as i32); m2 = mul_shift_64( m10, unsafe { d2s::DOUBLE_POW5_INV_SPLIT.get_unchecked(-e10 as usize) }, j as u32, ); trailing_zeros = multiple_of_power_of_5(m10, -e10 as u32); } // Compute the final IEEE exponent. let mut ieee_e2 = i32::max(0, e2 + DOUBLE_EXPONENT_BIAS as i32 + floor_log2(m2) as i32) as u32; if ieee_e2 > 0x7fe { // Final IEEE exponent is larger than the maximum representable; return +/-Infinity. let ieee = ((signed_m as u64) << (d2s::DOUBLE_EXPONENT_BITS + d2s::DOUBLE_MANTISSA_BITS)) | (0x7ff_u64 << d2s::DOUBLE_MANTISSA_BITS); return Ok(f64::from_bits(ieee)); } // We need to figure out how much we need to shift m2. The tricky part is // that we need to take the final IEEE exponent into account, so we need to // reverse the bias and also special-case the value 0. let shift = if ieee_e2 == 0 { 1 } else { ieee_e2 as i32 } .wrapping_sub(e2) .wrapping_sub(DOUBLE_EXPONENT_BIAS as i32) .wrapping_sub(d2s::DOUBLE_MANTISSA_BITS as i32); debug_assert!(shift >= 0); // We need to round up if the exact value is more than 0.5 above the value // we computed. That's equivalent to checking if the last removed bit was 1 // and either the value was not just trailing zeros or the result would // otherwise be odd. // // We need to update trailing_zeros given that we have the exact output // exponent ieee_e2 now. trailing_zeros &= (m2 & ((1_u64 << (shift - 1)) - 1)) == 0; let last_removed_bit = (m2 >> (shift - 1)) & 1; let round_up = last_removed_bit != 0 && (!trailing_zeros || ((m2 >> shift) & 1) != 0); let mut ieee_m2 = (m2 >> shift).wrapping_add(round_up as u64); if ieee_m2 == (1_u64 << (d2s::DOUBLE_MANTISSA_BITS + 1)) { // Due to how the IEEE represents +/-Infinity, we don't need to check // for overflow here. ieee_e2 += 1; } ieee_m2 &= (1_u64 << d2s::DOUBLE_MANTISSA_BITS) - 1; let ieee = ((((signed_m as u64) << d2s::DOUBLE_EXPONENT_BITS) | ieee_e2 as u64) << d2s::DOUBLE_MANTISSA_BITS) | ieee_m2; Ok(f64::from_bits(ieee)) }