//===-- combined_test.cpp ---------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "tests/scudo_unit_test.h" #include "allocator_config.h" #include "combined.h" #include #include #include #include #include #include #include static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc; static constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U); // Fuchsia complains that the function is not used. UNUSED static void disableDebuggerdMaybe() { #if SCUDO_ANDROID // Disable the debuggerd signal handler on Android, without this we can end // up spending a significant amount of time creating tombstones. signal(SIGSEGV, SIG_DFL); #endif } template bool isPrimaryAllocation(scudo::uptr Size, scudo::uptr Alignment) { const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG; if (Alignment < MinAlignment) Alignment = MinAlignment; const scudo::uptr NeededSize = scudo::roundUpTo(Size, MinAlignment) + ((Alignment > MinAlignment) ? Alignment : scudo::Chunk::getHeaderSize()); return AllocatorT::PrimaryT::canAllocate(NeededSize); } template void checkMemoryTaggingMaybe(AllocatorT *Allocator, void *P, scudo::uptr Size, scudo::uptr Alignment) { const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG; Size = scudo::roundUpTo(Size, MinAlignment); if (Allocator->useMemoryTaggingTestOnly()) EXPECT_DEATH( { disableDebuggerdMaybe(); reinterpret_cast(P)[-1] = 0xaa; }, ""); if (isPrimaryAllocation(Size, Alignment) ? Allocator->useMemoryTaggingTestOnly() : Alignment == MinAlignment) { EXPECT_DEATH( { disableDebuggerdMaybe(); reinterpret_cast(P)[Size] = 0xaa; }, ""); } } template struct TestAllocator : scudo::Allocator { TestAllocator() { this->reset(); this->initThreadMaybe(); if (scudo::archSupportsMemoryTagging() && !scudo::systemDetectsMemoryTagFaultsTestOnly()) this->disableMemoryTagging(); } ~TestAllocator() { this->unmapTestOnly(); } void *operator new(size_t size) { void *p = nullptr; EXPECT_EQ(0, posix_memalign(&p, alignof(TestAllocator), size)); return p; } void operator delete(void *ptr) { free(ptr); } }; template struct ScudoCombinedTest : public Test { ScudoCombinedTest() { UseQuarantine = std::is_same::value; Allocator = std::make_unique(); } ~ScudoCombinedTest() { Allocator->releaseToOS(); UseQuarantine = true; } void RunTest(); void BasicTest(scudo::uptr SizeLogMin, scudo::uptr SizeLogMax); using AllocatorT = TestAllocator; std::unique_ptr Allocator; }; #if SCUDO_FUCHSIA #define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \ SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, AndroidSvelteConfig) \ SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, FuchsiaConfig) #else #define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \ SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, AndroidSvelteConfig) \ SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, DefaultConfig) \ SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, AndroidConfig) #endif #define SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TYPE) \ using FIXTURE##NAME##_##TYPE = FIXTURE##NAME; \ TEST_F(FIXTURE##NAME##_##TYPE, NAME) { Run(); } #define SCUDO_TYPED_TEST(FIXTURE, NAME) \ template \ struct FIXTURE##NAME : public FIXTURE { \ void Run(); \ }; \ SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \ template void FIXTURE##NAME::Run() SCUDO_TYPED_TEST(ScudoCombinedTest, IsOwned) { auto *Allocator = this->Allocator.get(); static scudo::u8 StaticBuffer[scudo::Chunk::getHeaderSize() + 1]; EXPECT_FALSE( Allocator->isOwned(&StaticBuffer[scudo::Chunk::getHeaderSize()])); scudo::u8 StackBuffer[scudo::Chunk::getHeaderSize() + 1]; for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++) StackBuffer[I] = 0x42U; EXPECT_FALSE(Allocator->isOwned(&StackBuffer[scudo::Chunk::getHeaderSize()])); for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++) EXPECT_EQ(StackBuffer[I], 0x42U); } template void ScudoCombinedTest::BasicTest(scudo::uptr SizeLogMin, scudo::uptr SizeLogMax) { auto *Allocator = this->Allocator.get(); // This allocates and deallocates a bunch of chunks, with a wide range of // sizes and alignments, with a focus on sizes that could trigger weird // behaviors (plus or minus a small delta of a power of two for example). for (scudo::uptr SizeLog = SizeLogMin; SizeLog <= SizeLogMax; SizeLog++) { for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) { const scudo::uptr Align = 1U << AlignLog; for (scudo::sptr Delta = -32; Delta <= 32; Delta++) { if (static_cast(1U << SizeLog) + Delta <= 0) continue; const scudo::uptr Size = (1U << SizeLog) + Delta; void *P = Allocator->allocate(Size, Origin, Align); EXPECT_NE(P, nullptr); EXPECT_TRUE(Allocator->isOwned(P)); EXPECT_TRUE(scudo::isAligned(reinterpret_cast(P), Align)); EXPECT_LE(Size, Allocator->getUsableSize(P)); memset(P, 0xaa, Size); checkMemoryTaggingMaybe(Allocator, P, Size, Align); Allocator->deallocate(P, Origin, Size); } } } } SCUDO_TYPED_TEST(ScudoCombinedTest, BasicCombined0) { this->BasicTest(0, 16); } SCUDO_TYPED_TEST(ScudoCombinedTest, BasicCombined1) { this->BasicTest(17, 18); } SCUDO_TYPED_TEST(ScudoCombinedTest, BasicCombined2) { this->BasicTest(19, 19); } SCUDO_TYPED_TEST(ScudoCombinedTest, BasicCombined3) { this->BasicTest(20, 20); } SCUDO_TYPED_TEST(ScudoCombinedTest, ZeroContents) { auto *Allocator = this->Allocator.get(); // Ensure that specifying ZeroContents returns a zero'd out block. for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) { const scudo::uptr Size = (1U << SizeLog) + Delta * 128U; void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true); EXPECT_NE(P, nullptr); for (scudo::uptr I = 0; I < Size; I++) ASSERT_EQ((reinterpret_cast(P))[I], 0); memset(P, 0xaa, Size); Allocator->deallocate(P, Origin, Size); } } } SCUDO_TYPED_TEST(ScudoCombinedTest, ZeroFill) { auto *Allocator = this->Allocator.get(); // Ensure that specifying ZeroContents returns a zero'd out block. Allocator->setFillContents(scudo::ZeroFill); for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) { const scudo::uptr Size = (1U << SizeLog) + Delta * 128U; void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false); EXPECT_NE(P, nullptr); for (scudo::uptr I = 0; I < Size; I++) ASSERT_EQ((reinterpret_cast(P))[I], 0); memset(P, 0xaa, Size); Allocator->deallocate(P, Origin, Size); } } } SCUDO_TYPED_TEST(ScudoCombinedTest, PatternOrZeroFill) { auto *Allocator = this->Allocator.get(); // Ensure that specifying PatternOrZeroFill returns a pattern or zero filled // block. The primary allocator only produces pattern filled blocks if MTE // is disabled, so we only require pattern filled blocks in that case. Allocator->setFillContents(scudo::PatternOrZeroFill); for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) { const scudo::uptr Size = (1U << SizeLog) + Delta * 128U; void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false); EXPECT_NE(P, nullptr); for (scudo::uptr I = 0; I < Size; I++) { unsigned char V = (reinterpret_cast(P))[I]; if (isPrimaryAllocation>(Size, 1U << MinAlignLog) && !Allocator->useMemoryTaggingTestOnly()) ASSERT_EQ(V, scudo::PatternFillByte); else ASSERT_TRUE(V == scudo::PatternFillByte || V == 0); } memset(P, 0xaa, Size); Allocator->deallocate(P, Origin, Size); } } } SCUDO_TYPED_TEST(ScudoCombinedTest, BlockReuse) { auto *Allocator = this->Allocator.get(); // Verify that a chunk will end up being reused, at some point. const scudo::uptr NeedleSize = 1024U; void *NeedleP = Allocator->allocate(NeedleSize, Origin); Allocator->deallocate(NeedleP, Origin); bool Found = false; for (scudo::uptr I = 0; I < 1024U && !Found; I++) { void *P = Allocator->allocate(NeedleSize, Origin); if (Allocator->getHeaderTaggedPointer(P) == Allocator->getHeaderTaggedPointer(NeedleP)) Found = true; Allocator->deallocate(P, Origin); } EXPECT_TRUE(Found); } SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateLarge) { auto *Allocator = this->Allocator.get(); // Reallocate a large chunk all the way down to a byte, verifying that we // preserve the data in the process. scudo::uptr Size = TypeParam::Primary::SizeClassMap::MaxSize * 2; const scudo::uptr DataSize = 2048U; void *P = Allocator->allocate(Size, Origin); const char Marker = 0xab; memset(P, Marker, scudo::Min(Size, DataSize)); while (Size > 1U) { Size /= 2U; void *NewP = Allocator->reallocate(P, Size); EXPECT_NE(NewP, nullptr); for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++) EXPECT_EQ((reinterpret_cast(NewP))[J], Marker); P = NewP; } Allocator->deallocate(P, Origin); } SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateSame) { auto *Allocator = this->Allocator.get(); // Check that reallocating a chunk to a slightly smaller or larger size // returns the same chunk. This requires that all the sizes we iterate on use // the same block size, but that should be the case for MaxSize - 64 with our // default class size maps. constexpr scudo::uptr ReallocSize = TypeParam::Primary::SizeClassMap::MaxSize - 64; void *P = Allocator->allocate(ReallocSize, Origin); const char Marker = 0xab; memset(P, Marker, ReallocSize); for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) { const scudo::uptr NewSize = ReallocSize + Delta; void *NewP = Allocator->reallocate(P, NewSize); EXPECT_EQ(NewP, P); for (scudo::uptr I = 0; I < ReallocSize - 32; I++) EXPECT_EQ((reinterpret_cast(NewP))[I], Marker); checkMemoryTaggingMaybe(Allocator, NewP, NewSize, 0); } Allocator->deallocate(P, Origin); } SCUDO_TYPED_TEST(ScudoCombinedTest, IterateOverChunks) { auto *Allocator = this->Allocator.get(); // Allocates a bunch of chunks, then iterate over all the chunks, ensuring // they are the ones we allocated. This requires the allocator to not have any // other allocated chunk at this point (eg: won't work with the Quarantine). // FIXME: Make it work with UseQuarantine and tagging enabled. Internals of // iterateOverChunks reads header by tagged and non-tagger pointers so one of // them will fail. if (!UseQuarantine) { std::vector V; for (scudo::uptr I = 0; I < 64U; I++) V.push_back(Allocator->allocate( rand() % (TypeParam::Primary::SizeClassMap::MaxSize / 2U), Origin)); Allocator->disable(); Allocator->iterateOverChunks( 0U, static_cast(SCUDO_MMAP_RANGE_SIZE - 1), [](uintptr_t Base, size_t Size, void *Arg) { std::vector *V = reinterpret_cast *>(Arg); void *P = reinterpret_cast(Base); EXPECT_NE(std::find(V->begin(), V->end(), P), V->end()); }, reinterpret_cast(&V)); Allocator->enable(); for (auto P : V) Allocator->deallocate(P, Origin); } } SCUDO_TYPED_TEST(ScudoCombinedTest, UseAfterFree) { auto *Allocator = this->Allocator.get(); // Check that use-after-free is detected. for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { const scudo::uptr Size = 1U << SizeLog; if (!Allocator->useMemoryTaggingTestOnly()) continue; EXPECT_DEATH( { disableDebuggerdMaybe(); void *P = Allocator->allocate(Size, Origin); Allocator->deallocate(P, Origin); reinterpret_cast(P)[0] = 0xaa; }, ""); EXPECT_DEATH( { disableDebuggerdMaybe(); void *P = Allocator->allocate(Size, Origin); Allocator->deallocate(P, Origin); reinterpret_cast(P)[Size - 1] = 0xaa; }, ""); } } SCUDO_TYPED_TEST(ScudoCombinedTest, DisableMemoryTagging) { auto *Allocator = this->Allocator.get(); if (Allocator->useMemoryTaggingTestOnly()) { // Check that disabling memory tagging works correctly. void *P = Allocator->allocate(2048, Origin); EXPECT_DEATH(reinterpret_cast(P)[2048] = 0xaa, ""); scudo::disableMemoryTagChecksTestOnly(); Allocator->disableMemoryTagging(); reinterpret_cast(P)[2048] = 0xaa; Allocator->deallocate(P, Origin); P = Allocator->allocate(2048, Origin); EXPECT_EQ(scudo::untagPointer(P), P); reinterpret_cast(P)[2048] = 0xaa; Allocator->deallocate(P, Origin); Allocator->releaseToOS(); // Disabling memory tag checks may interfere with subsequent tests. // Re-enable them now. scudo::enableMemoryTagChecksTestOnly(); } } SCUDO_TYPED_TEST(ScudoCombinedTest, Stats) { auto *Allocator = this->Allocator.get(); scudo::uptr BufferSize = 8192; std::vector Buffer(BufferSize); scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize); while (ActualSize > BufferSize) { BufferSize = ActualSize + 1024; Buffer.resize(BufferSize); ActualSize = Allocator->getStats(Buffer.data(), BufferSize); } std::string Stats(Buffer.begin(), Buffer.end()); // Basic checks on the contents of the statistics output, which also allows us // to verify that we got it all. EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos); EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos); EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos); } SCUDO_TYPED_TEST(ScudoCombinedTest, CacheDrain) { auto *Allocator = this->Allocator.get(); std::vector V; for (scudo::uptr I = 0; I < 64U; I++) V.push_back(Allocator->allocate( rand() % (TypeParam::Primary::SizeClassMap::MaxSize / 2U), Origin)); for (auto P : V) Allocator->deallocate(P, Origin); bool UnlockRequired; auto *TSD = Allocator->getTSDRegistry()->getTSDAndLock(&UnlockRequired); EXPECT_TRUE(!TSD->Cache.isEmpty()); TSD->Cache.drain(); EXPECT_TRUE(TSD->Cache.isEmpty()); if (UnlockRequired) TSD->unlock(); } SCUDO_TYPED_TEST(ScudoCombinedTest, ThreadedCombined) { std::mutex Mutex; std::condition_variable Cv; bool Ready = false; auto *Allocator = this->Allocator.get(); std::thread Threads[32]; for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++) Threads[I] = std::thread([&]() { { std::unique_lock Lock(Mutex); while (!Ready) Cv.wait(Lock); } std::vector> V; for (scudo::uptr I = 0; I < 256U; I++) { const scudo::uptr Size = std::rand() % 4096U; void *P = Allocator->allocate(Size, Origin); // A region could have ran out of memory, resulting in a null P. if (P) V.push_back(std::make_pair(P, Size)); } while (!V.empty()) { auto Pair = V.back(); Allocator->deallocate(Pair.first, Origin, Pair.second); V.pop_back(); } }); { std::unique_lock Lock(Mutex); Ready = true; Cv.notify_all(); } for (auto &T : Threads) T.join(); Allocator->releaseToOS(); } #if SCUDO_FUCHSIA #define SKIP_ON_FUCHSIA(T) DISABLED_##T #else #define SKIP_ON_FUCHSIA(T) T #endif // Test that multiple instantiations of the allocator have not messed up the // process's signal handlers (GWP-ASan used to do this). TEST(ScudoCombinedTest, SKIP_ON_FUCHSIA(testSEGV)) { const scudo::uptr Size = 4 * scudo::getPageSizeCached(); scudo::MapPlatformData Data = {}; void *P = scudo::map(nullptr, Size, "testSEGV", MAP_NOACCESS, &Data); EXPECT_NE(P, nullptr); EXPECT_DEATH(memset(P, 0xaa, Size), ""); scudo::unmap(P, Size, UNMAP_ALL, &Data); } struct DeathSizeClassConfig { static const scudo::uptr NumBits = 1; static const scudo::uptr MinSizeLog = 10; static const scudo::uptr MidSizeLog = 10; static const scudo::uptr MaxSizeLog = 13; static const scudo::u32 MaxNumCachedHint = 4; static const scudo::uptr MaxBytesCachedLog = 12; }; static const scudo::uptr DeathRegionSizeLog = 20U; struct DeathConfig { static const bool MaySupportMemoryTagging = false; // Tiny allocator, its Primary only serves chunks of four sizes. using SizeClassMap = scudo::FixedSizeClassMap; typedef scudo::SizeClassAllocator64 Primary; static const scudo::uptr PrimaryRegionSizeLog = DeathRegionSizeLog; static const scudo::s32 PrimaryMinReleaseToOsIntervalMs = INT32_MIN; static const scudo::s32 PrimaryMaxReleaseToOsIntervalMs = INT32_MAX; typedef scudo::uptr PrimaryCompactPtrT; static const scudo::uptr PrimaryCompactPtrScale = 0; typedef scudo::MapAllocatorNoCache SecondaryCache; template using TSDRegistryT = scudo::TSDRegistrySharedT; }; TEST(ScudoCombinedTest, DeathCombined) { using AllocatorT = TestAllocator; auto Allocator = std::unique_ptr(new AllocatorT()); const scudo::uptr Size = 1000U; void *P = Allocator->allocate(Size, Origin); EXPECT_NE(P, nullptr); // Invalid sized deallocation. EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), ""); // Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available. UNUSED void *MisalignedP = reinterpret_cast(reinterpret_cast(P) | 1U); EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), ""); EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), ""); // Header corruption. scudo::u64 *H = reinterpret_cast(scudo::Chunk::getAtomicHeader(P)); *H ^= 0x42U; EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), ""); *H ^= 0x420042U; EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), ""); *H ^= 0x420000U; // Invalid chunk state. Allocator->deallocate(P, Origin, Size); EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), ""); EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), ""); EXPECT_DEATH(Allocator->getUsableSize(P), ""); } // Ensure that releaseToOS can be called prior to any other allocator // operation without issue. TEST(ScudoCombinedTest, ReleaseToOS) { using AllocatorT = TestAllocator; auto Allocator = std::unique_ptr(new AllocatorT()); Allocator->releaseToOS(); } // Verify that when a region gets full, the allocator will still manage to // fulfill the allocation through a larger size class. TEST(ScudoCombinedTest, FullRegion) { using AllocatorT = TestAllocator; auto Allocator = std::unique_ptr(new AllocatorT()); std::vector V; scudo::uptr FailedAllocationsCount = 0; for (scudo::uptr ClassId = 1U; ClassId <= DeathConfig::SizeClassMap::LargestClassId; ClassId++) { const scudo::uptr Size = DeathConfig::SizeClassMap::getSizeByClassId(ClassId); // Allocate enough to fill all of the regions above this one. const scudo::uptr MaxNumberOfChunks = ((1U << DeathRegionSizeLog) / Size) * (DeathConfig::SizeClassMap::LargestClassId - ClassId + 1); void *P; for (scudo::uptr I = 0; I <= MaxNumberOfChunks; I++) { P = Allocator->allocate(Size - 64U, Origin); if (!P) FailedAllocationsCount++; else V.push_back(P); } while (!V.empty()) { Allocator->deallocate(V.back(), Origin); V.pop_back(); } } EXPECT_EQ(FailedAllocationsCount, 0U); } TEST(ScudoCombinedTest, OddEven) { using AllocatorT = TestAllocator; using SizeClassMap = AllocatorT::PrimaryT::SizeClassMap; auto Allocator = std::unique_ptr(new AllocatorT()); if (!Allocator->useMemoryTaggingTestOnly()) return; auto CheckOddEven = [](scudo::uptr P1, scudo::uptr P2) { scudo::uptr Tag1 = scudo::extractTag(scudo::loadTag(P1)); scudo::uptr Tag2 = scudo::extractTag(scudo::loadTag(P2)); EXPECT_NE(Tag1 % 2, Tag2 % 2); }; for (scudo::uptr ClassId = 1U; ClassId <= SizeClassMap::LargestClassId; ClassId++) { const scudo::uptr Size = SizeClassMap::getSizeByClassId(ClassId); std::set Ptrs; bool Found = false; for (unsigned I = 0; I != 65536; ++I) { scudo::uptr P = scudo::untagPointer(reinterpret_cast( Allocator->allocate(Size - scudo::Chunk::getHeaderSize(), Origin))); if (Ptrs.count(P - Size)) { Found = true; CheckOddEven(P, P - Size); break; } if (Ptrs.count(P + Size)) { Found = true; CheckOddEven(P, P + Size); break; } Ptrs.insert(P); } EXPECT_TRUE(Found); } } TEST(ScudoCombinedTest, DisableMemInit) { using AllocatorT = TestAllocator; using SizeClassMap = AllocatorT::PrimaryT::SizeClassMap; auto Allocator = std::unique_ptr(new AllocatorT()); std::vector Ptrs(65536, nullptr); Allocator->setOption(scudo::Option::ThreadDisableMemInit, 1); constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U); // Test that if mem-init is disabled on a thread, calloc should still work as // expected. This is tricky to ensure when MTE is enabled, so this test tries // to exercise the relevant code on our MTE path. for (scudo::uptr ClassId = 1U; ClassId <= 8; ClassId++) { const scudo::uptr Size = SizeClassMap::getSizeByClassId(ClassId) - scudo::Chunk::getHeaderSize(); if (Size < 8) continue; for (unsigned I = 0; I != Ptrs.size(); ++I) { Ptrs[I] = Allocator->allocate(Size, Origin); memset(Ptrs[I], 0xaa, Size); } for (unsigned I = 0; I != Ptrs.size(); ++I) Allocator->deallocate(Ptrs[I], Origin, Size); for (unsigned I = 0; I != Ptrs.size(); ++I) { Ptrs[I] = Allocator->allocate(Size - 8, Origin); memset(Ptrs[I], 0xbb, Size - 8); } for (unsigned I = 0; I != Ptrs.size(); ++I) Allocator->deallocate(Ptrs[I], Origin, Size - 8); for (unsigned I = 0; I != Ptrs.size(); ++I) { Ptrs[I] = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true); for (scudo::uptr J = 0; J < Size; ++J) ASSERT_EQ((reinterpret_cast(Ptrs[I]))[J], 0); } } Allocator->setOption(scudo::Option::ThreadDisableMemInit, 0); }