/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // LibSha1 // // Implementation of SHA1 hash function. // Original author: Steve Reid // Contributions by: James H. Brown , Saul Kravitz , // and Ralph Giles // Modified by WaterJuice retaining Public Domain license. // // This is free and unencumbered software released into the public domain - June 2013 waterjuice.org // Modified to: // - stop symbols being exported for libselinux shared library - October 2015 // Richard Haines // - Not cast the workspace from a byte array to a CHAR64LONG16 due to alignment isses. // Fixes: // sha1.c:73:33: error: cast from 'uint8_t *' (aka 'unsigned char *') to 'CHAR64LONG16 *' increases required alignment from 1 to 4 [-Werror,-Wcast-align] // CHAR64LONG16* block = (CHAR64LONG16*) workspace; // William Roberts /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // IMPORTS /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include "sha1.h" #include "dso.h" #include /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // TYPES /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// typedef union { uint8_t c [64]; uint32_t l [16]; } CHAR64LONG16; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // INTERNAL FUNCTIONS /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) // blk0() and blk() perform the initial expand. #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ |(rol(block->l[i],8)&0x00FF00FF)) #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ ^block->l[(i+2)&15]^block->l[i&15],1)) // (R0+R1), R2, R3, R4 are the different operations used in SHA1 #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i)+ 0x5A827999 + rol(v,5); w=rol(w,30); #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk(i) + 0x5A827999 + rol(v,5); w=rol(w,30); #define R2(v,w,x,y,z,i) z += (w^x^y) + blk(i) + 0x6ED9EBA1 + rol(v,5); w=rol(w,30); #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk(i) + 0x8F1BBCDC + rol(v,5); w=rol(w,30); #define R4(v,w,x,y,z,i) z += (w^x^y) + blk(i) + 0xCA62C1D6 + rol(v,5); w=rol(w,30); /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // TransformFunction // // Hash a single 512-bit block. This is the core of the algorithm /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static void TransformFunction ( uint32_t state[5], const uint8_t buffer[64] ) { uint32_t a; uint32_t b; uint32_t c; uint32_t d; uint32_t e; CHAR64LONG16 workspace; CHAR64LONG16* block = &workspace; memcpy(block, buffer, 64); // Copy context->state[] to working vars a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; // 4 rounds of 20 operations each. Loop unrolled. R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); // Add the working vars back into context.state[] state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PUBLIC FUNCTIONS /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Sha1Initialise // // Initialises an SHA1 Context. Use this to initialise/reset a context. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void hidden Sha1Initialise ( Sha1Context* Context ) { // SHA1 initialization constants Context->State[0] = 0x67452301; Context->State[1] = 0xEFCDAB89; Context->State[2] = 0x98BADCFE; Context->State[3] = 0x10325476; Context->State[4] = 0xC3D2E1F0; Context->Count[0] = 0; Context->Count[1] = 0; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Sha1Update // // Adds data to the SHA1 context. This will process the data and update the internal state of the context. Keep on // calling this function until all the data has been added. Then call Sha1Finalise to calculate the hash. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void hidden Sha1Update ( Sha1Context* Context, void* Buffer, uint32_t BufferSize ) { uint32_t i; uint32_t j; j = (Context->Count[0] >> 3) & 63; if ((Context->Count[0] += BufferSize << 3) < (BufferSize << 3)) { Context->Count[1]++; } Context->Count[1] += (BufferSize >> 29); if ((j + BufferSize) > 63) { i = 64 - j; memcpy(&Context->Buffer[j], Buffer, i); TransformFunction(Context->State, Context->Buffer); for (; i + 63 < BufferSize; i += 64) { TransformFunction(Context->State, (uint8_t*)Buffer + i); } j = 0; } else { i = 0; } memcpy(&Context->Buffer[j], &((uint8_t*)Buffer)[i], BufferSize - i); } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Sha1Finalise // // Performs the final calculation of the hash and returns the digest (20 byte buffer containing 160bit hash). After // calling this, Sha1Initialised must be used to reuse the context. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void hidden Sha1Finalise ( Sha1Context* Context, SHA1_HASH* Digest ) { uint32_t i; uint8_t finalcount[8]; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((Context->Count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); // Endian independent } Sha1Update(Context, (uint8_t*)"\x80", 1); while ((Context->Count[0] & 504) != 448) { Sha1Update(Context, (uint8_t*)"\0", 1); } Sha1Update(Context, finalcount, 8); // Should cause a Sha1TransformFunction() for (i = 0; i < SHA1_HASH_SIZE; i++) { Digest->bytes[i] = (uint8_t)((Context->State[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } }