/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "modules/skottie/src/effects/Effects.h" #include "include/core/SkColorFilter.h" #include "include/effects/SkColorMatrix.h" #include "include/effects/SkImageFilters.h" #include "include/private/SkTPin.h" #include "modules/skottie/src/Adapter.h" #include "modules/skottie/src/SkottieValue.h" #include "modules/sksg/include/SkSGRenderEffect.h" #include "src/utils/SkJSON.h" namespace skottie::internal { namespace { class ShadowAdapter final : public DiscardableAdapterBase { public: enum Type { kDropShadow, kInnerShadow, }; ShadowAdapter(const skjson::ObjectValue& jstyle, const AnimationBuilder& abuilder, Type type) : fType(type) { this->bind(abuilder, jstyle["c"], fColor); this->bind(abuilder, jstyle["o"], fOpacity); this->bind(abuilder, jstyle["a"], fAngle); this->bind(abuilder, jstyle["s"], fSize); this->bind(abuilder, jstyle["d"], fDistance); } private: void onSync() override { const auto rad = SkDegreesToRadians(180 + fAngle), // 0deg -> left (style) sigma = fSize * kBlurSizeToSigma, opacity = SkTPin(fOpacity / 100, 0.0f, 1.0f); const auto color = static_cast(fColor); const auto offset = SkV2{ fDistance * SkScalarCos(rad), -fDistance * SkScalarSin(rad)}; // Shadow effects largely follow the feDropShadow spec [1]: // // 1) isolate source alpha // 2) apply a gaussian blur // 3) apply an offset // 4) modulate with a flood/color generator // 5) composite with the source // // Note: as an optimization, we can fold #1 and #4 into a single color matrix filter. // // Inner shadow differences: // // a) operates on the inverse of source alpha // b) the result is masked against the source // c) composited on top of source // // [1] https://drafts.fxtf.org/filter-effects/#feDropShadowElement // Select and colorize the source alpha channel. SkColorMatrix cm{0, 0, 0, 0, color.fR, 0, 0, 0, 0, color.fG, 0, 0, 0, 0, color.fB, 0, 0, 0, opacity * color.fA, 0}; // Inner shadows use the alpha inverse. if (fType == Type::kInnerShadow) { cm.preConcat({1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,-1, 1}); } auto f = SkImageFilters::ColorFilter(SkColorFilters::Matrix(cm), nullptr); if (sigma > 0) { f = SkImageFilters::Blur(sigma, sigma, std::move(f)); } if (!SkScalarNearlyZero(offset.x) || !SkScalarNearlyZero(offset.y)) { f = SkImageFilters::Offset(offset.x, offset.y, std::move(f)); } sk_sp source; if (fType == Type::kInnerShadow) { // Inner shadows draw on top of, and are masked with, the source. f = SkImageFilters::Blend(SkBlendMode::kDstIn, std::move(f)); std::swap(source, f); } this->node()->setImageFilter(SkImageFilters::Merge(std::move(f), std::move(source))); } const Type fType; VectorValue fColor; ScalarValue fOpacity = 100, // percentage fAngle = 0, // degrees fSize = 0, fDistance = 0; using INHERITED = DiscardableAdapterBase; }; static sk_sp make_shadow_effect(const skjson::ObjectValue& jstyle, const AnimationBuilder& abuilder, sk_sp layer, ShadowAdapter::Type type) { auto filter_node = abuilder.attachDiscardableAdapter(jstyle, abuilder, type); return sksg::ImageFilterEffect::Make(std::move(layer), std::move(filter_node)); } } // namespace sk_sp EffectBuilder::attachDropShadowStyle(const skjson::ObjectValue& jstyle, sk_sp layer) const { return make_shadow_effect(jstyle, *fBuilder, std::move(layer), ShadowAdapter::Type::kDropShadow); } sk_sp EffectBuilder::attachInnerShadowStyle(const skjson::ObjectValue& jstyle, sk_sp layer) const { return make_shadow_effect(jstyle, *fBuilder, std::move(layer), ShadowAdapter::Type::kInnerShadow); } } // namespace skottie::internal