/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/GrDrawingManager.h" #include #include #include "include/core/SkDeferredDisplayList.h" #include "include/gpu/GrBackendSemaphore.h" #include "include/gpu/GrDirectContext.h" #include "include/gpu/GrRecordingContext.h" #include "src/core/SkDeferredDisplayListPriv.h" #include "src/core/SkTInternalLList.h" #include "src/gpu/GrAuditTrail.h" #include "src/gpu/GrClientMappedBufferManager.h" #include "src/gpu/GrCopyRenderTask.h" #include "src/gpu/GrDDLTask.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrMemoryPool.h" #include "src/gpu/GrOnFlushResourceProvider.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrRenderTargetProxy.h" #include "src/gpu/GrRenderTask.h" #include "src/gpu/GrRenderTaskCluster.h" #include "src/gpu/GrResourceAllocator.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/GrSoftwarePathRenderer.h" #include "src/gpu/GrSurfaceContext.h" #include "src/gpu/GrSurfaceDrawContext.h" #include "src/gpu/GrSurfaceProxyPriv.h" #include "src/gpu/GrTTopoSort.h" #include "src/gpu/GrTexture.h" #include "src/gpu/GrTextureProxy.h" #include "src/gpu/GrTextureProxyPriv.h" #include "src/gpu/GrTextureResolveRenderTask.h" #include "src/gpu/GrTracing.h" #include "src/gpu/GrTransferFromRenderTask.h" #include "src/gpu/GrWaitRenderTask.h" #include "src/gpu/GrWritePixelsRenderTask.h" #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h" #include "src/gpu/text/GrSDFTControl.h" #include "src/image/SkSurface_Gpu.h" /////////////////////////////////////////////////////////////////////////////////////////////////// GrDrawingManager::GrDrawingManager(GrRecordingContext* context, const GrPathRendererChain::Options& optionsForPathRendererChain, bool reduceOpsTaskSplitting) : fContext(context) , fOptionsForPathRendererChain(optionsForPathRendererChain) , fPathRendererChain(nullptr) , fSoftwarePathRenderer(nullptr) , fFlushing(false) , fReduceOpsTaskSplitting(reduceOpsTaskSplitting) { } GrDrawingManager::~GrDrawingManager() { this->closeAllTasks(); this->removeRenderTasks(); } bool GrDrawingManager::wasAbandoned() const { return fContext->abandoned(); } void GrDrawingManager::freeGpuResources() { for (int i = fOnFlushCBObjects.count() - 1; i >= 0; --i) { if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) { // it's safe to just do this because we're iterating in reverse fOnFlushCBObjects.removeShuffle(i); } } // a path renderer may be holding onto resources fPathRendererChain = nullptr; fSoftwarePathRenderer = nullptr; } // MDB TODO: make use of the 'proxies' parameter. bool GrDrawingManager::flush( SkSpan proxies, SkSurface::BackendSurfaceAccess access, const GrFlushInfo& info, const GrBackendSurfaceMutableState* newState) { GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager", "flush", fContext); if (fFlushing || this->wasAbandoned()) { if (info.fSubmittedProc) { info.fSubmittedProc(info.fSubmittedContext, false); } if (info.fFinishedProc) { info.fFinishedProc(info.fFinishedContext); } return false; } SkDEBUGCODE(this->validate()); // As of now we only short-circuit if we got an explicit list of surfaces to flush. if (!proxies.empty() && !info.fNumSemaphores && !info.fFinishedProc && access == SkSurface::BackendSurfaceAccess::kNoAccess && !newState) { bool allUnused = std::all_of(proxies.begin(), proxies.end(), [&](GrSurfaceProxy* proxy) { bool used = std::any_of(fDAG.begin(), fDAG.end(), [&](auto& task) { return task && task->isUsed(proxy); }); return !used; }); if (allUnused) { if (info.fSubmittedProc) { info.fSubmittedProc(info.fSubmittedContext, true); } return false; } } auto dContext = fContext->asDirectContext(); SkASSERT(dContext); dContext->priv().clientMappedBufferManager()->process(); GrGpu* gpu = dContext->priv().getGpu(); // We have a non abandoned and direct GrContext. It must have a GrGpu. SkASSERT(gpu); fFlushing = true; auto resourceProvider = dContext->priv().resourceProvider(); auto resourceCache = dContext->priv().getResourceCache(); // Semi-usually the GrRenderTasks are already closed at this point, but sometimes Ganesh needs // to flush mid-draw. In that case, the SkGpuDevice's opsTasks won't be closed but need to be // flushed anyway. Closing such opsTasks here will mean new ones will be created to replace them // if the SkGpuDevice(s) write to them again. this->closeAllTasks(); fActiveOpsTask = nullptr; this->sortTasks(); if (!fCpuBufferCache) { // We cache more buffers when the backend is using client side arrays. Otherwise, we // expect each pool will use a CPU buffer as a staging buffer before uploading to a GPU // buffer object. Each pool only requires one staging buffer at a time. int maxCachedBuffers = fContext->priv().caps()->preferClientSideDynamicBuffers() ? 2 : 6; fCpuBufferCache = GrBufferAllocPool::CpuBufferCache::Make(maxCachedBuffers); } GrOpFlushState flushState(gpu, resourceProvider, &fTokenTracker, fCpuBufferCache); GrOnFlushResourceProvider onFlushProvider(this); // Prepare any onFlush op lists (e.g. atlases). if (!fOnFlushCBObjects.empty()) { fFlushingRenderTaskIDs.reserve_back(fDAG.count()); for (const auto& task : fDAG) { if (task) { task->gatherIDs(&fFlushingRenderTaskIDs); } } for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { onFlushCBObject->preFlush(&onFlushProvider, SkMakeSpan(fFlushingRenderTaskIDs)); } for (const auto& onFlushRenderTask : fOnFlushRenderTasks) { onFlushRenderTask->makeClosed(*fContext->priv().caps()); #ifdef SK_DEBUG // OnFlush callbacks are invoked during flush, and are therefore expected to handle // resource allocation & usage on their own. (No deferred or lazy proxies!) onFlushRenderTask->visitTargetAndSrcProxies_debugOnly( [](GrSurfaceProxy* p, GrMipmapped mipMapped) { SkASSERT(!p->asTextureProxy() || !p->asTextureProxy()->texPriv().isDeferred()); SkASSERT(!p->isLazy()); if (p->requiresManualMSAAResolve()) { // The onFlush callback is responsible for ensuring MSAA gets resolved. SkASSERT(p->asRenderTargetProxy() && !p->asRenderTargetProxy()->isMSAADirty()); } if (GrMipmapped::kYes == mipMapped) { // The onFlush callback is responsible for regenerating mips if needed. SkASSERT(p->asTextureProxy() && !p->asTextureProxy()->mipmapsAreDirty()); } }); #endif onFlushRenderTask->prepare(&flushState); } } bool usingReorderedDAG = false; GrResourceAllocator resourceAllocator(dContext); if (fReduceOpsTaskSplitting) { usingReorderedDAG = this->reorderTasks(&resourceAllocator); if (!usingReorderedDAG) { resourceAllocator.reset(); } } #if 0 // Enable this to print out verbose GrOp information SkDEBUGCODE(SkDebugf("onFlush renderTasks (%d):\n", fOnFlushRenderTasks.count())); for (const auto& onFlushRenderTask : fOnFlushRenderTasks) { SkDEBUGCODE(onFlushRenderTask->dump(/* printDependencies */ true);) } SkDEBUGCODE(SkDebugf("Normal renderTasks (%d):\n", fDAG.count())); for (const auto& task : fDAG) { SkDEBUGCODE(task->dump(/* printDependencies */ true);) } #endif if (!resourceAllocator.failedInstantiation()) { if (!usingReorderedDAG) { for (const auto& task : fDAG) { SkASSERT(task); task->gatherProxyIntervals(&resourceAllocator); } resourceAllocator.planAssignment(); } resourceAllocator.assign(); } bool flushed = !resourceAllocator.failedInstantiation() && this->executeRenderTasks(&flushState); this->removeRenderTasks(); gpu->executeFlushInfo(proxies, access, info, newState); // Give the cache a chance to purge resources that become purgeable due to flushing. if (flushed) { resourceCache->purgeAsNeeded(); flushed = false; } for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { onFlushCBObject->postFlush(fTokenTracker.nextTokenToFlush(), SkMakeSpan(fFlushingRenderTaskIDs)); flushed = true; } if (flushed) { resourceCache->purgeAsNeeded(); } fFlushingRenderTaskIDs.reset(); fFlushing = false; return true; } bool GrDrawingManager::submitToGpu(bool syncToCpu) { if (fFlushing || this->wasAbandoned()) { return false; } auto direct = fContext->asDirectContext(); if (!direct) { return false; // Can't submit while DDL recording } GrGpu* gpu = direct->priv().getGpu(); return gpu->submitToGpu(syncToCpu); } bool GrDrawingManager::executeRenderTasks(GrOpFlushState* flushState) { #if GR_FLUSH_TIME_OP_SPEW SkDebugf("Flushing %d opsTasks\n", fDAG.count()); for (int i = 0; i < fDAG.count(); ++i) { if (fDAG[i]) { SkString label; label.printf("task %d/%d", i, fDAG.count()); fDAG[i]->dump(label, {}, true, true); } } #endif bool anyRenderTasksExecuted = false; for (const auto& renderTask : fDAG) { if (!renderTask || !renderTask->isInstantiated()) { continue; } SkASSERT(renderTask->deferredProxiesAreInstantiated()); renderTask->prepare(flushState); } // Upload all data to the GPU flushState->preExecuteDraws(); // For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources // for each command buffer associated with the oplists. If this gets too large we can cause the // devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we // put a cap on the number of oplists we will execute before flushing to the GPU to relieve some // memory pressure. static constexpr int kMaxRenderTasksBeforeFlush = 100; int numRenderTasksExecuted = 0; // Execute the onFlush renderTasks first, if any. for (sk_sp& onFlushRenderTask : fOnFlushRenderTasks) { if (!onFlushRenderTask->execute(flushState)) { SkDebugf("WARNING: onFlushRenderTask failed to execute.\n"); } SkASSERT(onFlushRenderTask->unique()); onFlushRenderTask->disown(this); onFlushRenderTask = nullptr; if (++numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { flushState->gpu()->submitToGpu(false); numRenderTasksExecuted = 0; } } fOnFlushRenderTasks.reset(); // Execute the normal op lists. for (const auto& renderTask : fDAG) { SkASSERT(renderTask); if (!renderTask->isInstantiated()) { continue; } if (renderTask->execute(flushState)) { anyRenderTasksExecuted = true; } if (++numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { flushState->gpu()->submitToGpu(false); numRenderTasksExecuted = 0; } } SkASSERT(!flushState->opsRenderPass()); SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextTokenToFlush()); // We reset the flush state before the RenderTasks so that the last resources to be freed are // those that are written to in the RenderTasks. This helps to make sure the most recently used // resources are the last to be purged by the resource cache. flushState->reset(); return anyRenderTasksExecuted; } void GrDrawingManager::removeRenderTasks() { for (const auto& task : fDAG) { SkASSERT(task); if (!task->unique() || task->requiresExplicitCleanup()) { // TODO: Eventually uniqueness should be guaranteed: http://skbug.com/7111. // DDLs, however, will always require an explicit notification for when they // can clean up resources. task->endFlush(this); } task->disown(this); } fDAG.reset(); fLastRenderTasks.reset(); for (const sk_sp& onFlushRenderTask : fOnFlushRenderTasks) { onFlushRenderTask->disown(this); } fOnFlushRenderTasks.reset(); } void GrDrawingManager::sortTasks() { if (!GrTTopoSort(&fDAG)) { SkDEBUGFAIL("Render task topo sort failed."); return; } #ifdef SK_DEBUG // This block checks for any unnecessary splits in the opsTasks. If two sequential opsTasks // share the same backing GrSurfaceProxy it means the opsTask was artificially split. if (!fDAG.empty()) { GrOpsTask* prevOpsTask = fDAG[0]->asOpsTask(); for (int i = 1; i < fDAG.count(); ++i) { GrOpsTask* curOpsTask = fDAG[i]->asOpsTask(); if (prevOpsTask && curOpsTask) { SkASSERT(prevOpsTask->target(0) != curOpsTask->target(0)); } prevOpsTask = curOpsTask; } } #endif } // Reorder the array to match the llist without reffing & unreffing sk_sp's. // Both args must contain the same objects. // This is basically a shim because clustering uses LList but the rest of drawmgr uses array. template static void reorder_array_by_llist(const SkTInternalLList& llist, SkTArray>* array) { int i = 0; for (T* t : llist) { // Release the pointer that used to live here so it doesn't get unreffed. [[maybe_unused]] T* old = array->at(i).release(); array->at(i++).reset(t); } SkASSERT(i == array->count()); } bool GrDrawingManager::reorderTasks(GrResourceAllocator* resourceAllocator) { SkASSERT(fReduceOpsTaskSplitting); SkTInternalLList llist; bool clustered = GrClusterRenderTasks(SkMakeSpan(fDAG), &llist); if (!clustered) { return false; } for (GrRenderTask* task : llist) { task->gatherProxyIntervals(resourceAllocator); } if (!resourceAllocator->planAssignment()) { return false; } if (!resourceAllocator->makeBudgetHeadroom()) { auto dContext = fContext->asDirectContext(); SkASSERT(dContext); dContext->priv().getGpu()->stats()->incNumReorderedDAGsOverBudget(); return false; } reorder_array_by_llist(llist, &fDAG); int newCount = 0; for (int i = 0; i < fDAG.count(); i++) { sk_sp& task = fDAG[i]; if (auto opsTask = task->asOpsTask()) { size_t remaining = fDAG.size() - i - 1; SkSpan> nextTasks{fDAG.end() - remaining, remaining}; int removeCount = opsTask->mergeFrom(nextTasks); for (const auto& removed : nextTasks.first(removeCount)) { removed->disown(this); } i += removeCount; } fDAG[newCount++] = std::move(task); } fDAG.resize_back(newCount); return true; } void GrDrawingManager::closeAllTasks() { const GrCaps& caps = *fContext->priv().caps(); for (auto& task : fDAG) { if (task) { task->makeClosed(caps); } } } GrRenderTask* GrDrawingManager::insertTaskBeforeLast(sk_sp task) { SkASSERT(!fDAG.empty()); if (!task) { return nullptr; } // Release 'fDAG.back()' and grab the raw pointer, in case the SkTArray grows // and reallocates during emplace_back. // TODO: Either use std::vector that can do this for us, or use SkSTArray to get the // perf win. fDAG.emplace_back(fDAG.back().release()); return (fDAG[fDAG.count() - 2] = std::move(task)).get(); } GrRenderTask* GrDrawingManager::appendTask(sk_sp task) { if (!task) { return nullptr; } return fDAG.push_back(std::move(task)).get(); } static void resolve_and_mipmap(GrGpu* gpu, GrSurfaceProxy* proxy) { if (!proxy->isInstantiated()) { return; } // In the flushSurfaces case, we need to resolve MSAA immediately after flush. This is // because clients expect the flushed surface's backing texture to be fully resolved // upon return. if (proxy->requiresManualMSAAResolve()) { auto* rtProxy = proxy->asRenderTargetProxy(); SkASSERT(rtProxy); if (rtProxy->isMSAADirty()) { SkASSERT(rtProxy->peekRenderTarget()); gpu->resolveRenderTarget(rtProxy->peekRenderTarget(), rtProxy->msaaDirtyRect()); gpu->submitToGpu(false); rtProxy->markMSAAResolved(); } } // If, after a flush, any of the proxies of interest have dirty mipmaps, regenerate them in // case their backend textures are being stolen. // (This special case is exercised by the ReimportImageTextureWithMipLevels test.) // FIXME: It may be more ideal to plumb down a "we're going to steal the backends" flag. if (auto* textureProxy = proxy->asTextureProxy()) { if (textureProxy->mipmapsAreDirty()) { SkASSERT(textureProxy->peekTexture()); gpu->regenerateMipMapLevels(textureProxy->peekTexture()); textureProxy->markMipmapsClean(); } } } GrSemaphoresSubmitted GrDrawingManager::flushSurfaces( SkSpan proxies, SkSurface::BackendSurfaceAccess access, const GrFlushInfo& info, const GrBackendSurfaceMutableState* newState) { if (this->wasAbandoned()) { if (info.fSubmittedProc) { info.fSubmittedProc(info.fSubmittedContext, false); } if (info.fFinishedProc) { info.fFinishedProc(info.fFinishedContext); } return GrSemaphoresSubmitted::kNo; } SkDEBUGCODE(this->validate()); auto direct = fContext->asDirectContext(); SkASSERT(direct); GrGpu* gpu = direct->priv().getGpu(); // We have a non abandoned and direct GrContext. It must have a GrGpu. SkASSERT(gpu); // TODO: It is important to upgrade the drawingmanager to just flushing the // portion of the DAG required by 'proxies' in order to restore some of the // semantics of this method. bool didFlush = this->flush(proxies, access, info, newState); for (GrSurfaceProxy* proxy : proxies) { resolve_and_mipmap(gpu, proxy); } SkDEBUGCODE(this->validate()); if (!didFlush || (!direct->priv().caps()->semaphoreSupport() && info.fNumSemaphores)) { return GrSemaphoresSubmitted::kNo; } return GrSemaphoresSubmitted::kYes; } void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) { fOnFlushCBObjects.push_back(onFlushCBObject); } #if GR_TEST_UTILS void GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject* cb) { int n = std::find(fOnFlushCBObjects.begin(), fOnFlushCBObjects.end(), cb) - fOnFlushCBObjects.begin(); SkASSERT(n < fOnFlushCBObjects.count()); fOnFlushCBObjects.removeShuffle(n); } #endif void GrDrawingManager::setLastRenderTask(const GrSurfaceProxy* proxy, GrRenderTask* task) { #ifdef SK_DEBUG if (auto prior = this->getLastRenderTask(proxy)) { SkASSERT(prior->isClosed() || prior == task); } #endif uint32_t key = proxy->uniqueID().asUInt(); if (task) { fLastRenderTasks.set(key, task); } else if (fLastRenderTasks.find(key)) { fLastRenderTasks.remove(key); } } GrRenderTask* GrDrawingManager::getLastRenderTask(const GrSurfaceProxy* proxy) const { auto entry = fLastRenderTasks.find(proxy->uniqueID().asUInt()); return entry ? *entry : nullptr; } GrOpsTask* GrDrawingManager::getLastOpsTask(const GrSurfaceProxy* proxy) const { GrRenderTask* task = this->getLastRenderTask(proxy); return task ? task->asOpsTask() : nullptr; } void GrDrawingManager::moveRenderTasksToDDL(SkDeferredDisplayList* ddl) { SkDEBUGCODE(this->validate()); // no renderTask should receive a new command after this this->closeAllTasks(); fActiveOpsTask = nullptr; this->sortTasks(); fDAG.swap(ddl->fRenderTasks); SkASSERT(fDAG.empty()); for (auto& renderTask : ddl->fRenderTasks) { renderTask->disown(this); renderTask->prePrepare(fContext); } ddl->fArenas = std::move(fContext->priv().detachArenas()); fContext->priv().detachProgramData(&ddl->fProgramData); if (fPathRendererChain) { if (auto ccpr = fPathRendererChain->getCoverageCountingPathRenderer()) { ddl->fPendingPaths = ccpr->detachPendingPaths(); } } SkDEBUGCODE(this->validate()); } void GrDrawingManager::createDDLTask(sk_sp ddl, sk_sp newDest, SkIPoint offset) { SkDEBUGCODE(this->validate()); if (fActiveOpsTask) { // This is a temporary fix for the partial-MDB world. In that world we're not // reordering so ops that (in the single opsTask world) would've just glommed onto the // end of the single opsTask but referred to a far earlier RT need to appear in their // own opsTask. fActiveOpsTask->makeClosed(*fContext->priv().caps()); fActiveOpsTask = nullptr; } // Propagate the DDL proxy's state information to the replay target. if (ddl->priv().targetProxy()->isMSAADirty()) { auto nativeRect = GrNativeRect::MakeIRectRelativeTo( ddl->characterization().origin(), ddl->priv().targetProxy()->backingStoreDimensions().height(), ddl->priv().targetProxy()->msaaDirtyRect()); newDest->markMSAADirty(nativeRect); } GrTextureProxy* newTextureProxy = newDest->asTextureProxy(); if (newTextureProxy && GrMipmapped::kYes == newTextureProxy->mipmapped()) { newTextureProxy->markMipmapsDirty(); } // Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData. // The lazy proxy that references it (in the DDL opsTasks) will then steal its GrTexture. ddl->fLazyProxyData->fReplayDest = newDest.get(); if (ddl->fPendingPaths.size()) { GrCoverageCountingPathRenderer* ccpr = this->getCoverageCountingPathRenderer(); ccpr->mergePendingPaths(ddl->fPendingPaths); } // Add a task to handle drawing and lifetime management of the DDL. SkDEBUGCODE(auto ddlTask =) this->appendTask(sk_make_sp(this, std::move(newDest), std::move(ddl), offset)); SkASSERT(ddlTask->isClosed()); SkDEBUGCODE(this->validate()); } #ifdef SK_DEBUG void GrDrawingManager::validate() const { if (fActiveOpsTask) { SkASSERT(!fDAG.empty()); SkASSERT(!fActiveOpsTask->isClosed()); SkASSERT(fActiveOpsTask == fDAG.back().get()); } for (int i = 0; i < fDAG.count(); ++i) { if (fActiveOpsTask != fDAG[i].get()) { // The resolveTask associated with the activeTask remains open for as long as the // activeTask does. bool isActiveResolveTask = fActiveOpsTask && fActiveOpsTask->fTextureResolveTask == fDAG[i].get(); SkASSERT(isActiveResolveTask || fDAG[i]->isClosed()); } } if (!fDAG.empty() && !fDAG.back()->isClosed()) { SkASSERT(fActiveOpsTask == fDAG.back().get()); } } #endif void GrDrawingManager::closeActiveOpsTask() { if (fActiveOpsTask) { // This is a temporary fix for the partial-MDB world. In that world we're not // reordering so ops that (in the single opsTask world) would've just glommed onto the // end of the single opsTask but referred to a far earlier RT need to appear in their // own opsTask. fActiveOpsTask->makeClosed(*fContext->priv().caps()); fActiveOpsTask = nullptr; } } sk_sp GrDrawingManager::newOpsTask(GrSurfaceProxyView surfaceView, sk_sp arenas, bool flushTimeOpsTask) { SkDEBUGCODE(this->validate()); SkASSERT(fContext); this->closeActiveOpsTask(); sk_sp opsTask(new GrOpsTask(this, std::move(surfaceView), fContext->priv().auditTrail(), std::move(arenas))); SkASSERT(this->getLastRenderTask(opsTask->target(0)) == opsTask.get()); if (flushTimeOpsTask) { fOnFlushRenderTasks.push_back(opsTask); } else { this->appendTask(opsTask); fActiveOpsTask = opsTask.get(); } SkDEBUGCODE(this->validate()); return opsTask; } GrTextureResolveRenderTask* GrDrawingManager::newTextureResolveRenderTask(const GrCaps& caps) { // Unlike in the "new opsTask" case, we do not want to close the active opsTask, nor (if we are // in sorting and opsTask reduction mode) the render tasks that depend on any proxy's current // state. This is because those opsTasks can still receive new ops and because if they refer to // the mipmapped version of 'proxy', they will then come to depend on the render task being // created here. // // Add the new textureResolveTask before the fActiveOpsTask (if not in // sorting/opsTask-splitting-reduction mode) because it will depend upon this resolve task. // NOTE: Putting it here will also reduce the amount of work required by the topological sort. GrRenderTask* task = this->insertTaskBeforeLast(sk_make_sp()); return static_cast(task); } void GrDrawingManager::newWaitRenderTask(sk_sp proxy, std::unique_ptr[]> semaphores, int numSemaphores) { SkDEBUGCODE(this->validate()); SkASSERT(fContext); const GrCaps& caps = *fContext->priv().caps(); sk_sp waitTask = sk_make_sp(GrSurfaceProxyView(proxy), std::move(semaphores), numSemaphores); if (fActiveOpsTask && (fActiveOpsTask->target(0) == proxy.get())) { SkASSERT(this->getLastRenderTask(proxy.get()) == fActiveOpsTask); this->insertTaskBeforeLast(waitTask); // In this case we keep the current renderTask open but just insert the new waitTask // before it in the list. The waitTask will never need to trigger any resolves or mip // map generation which is the main advantage of going through the proxy version. // Additionally we would've had to temporarily set the wait task as the lastRenderTask // on the proxy, add the dependency, and then reset the lastRenderTask to // fActiveOpsTask. Additionally we make the waitTask depend on all of fActiveOpsTask // dependencies so that we don't unnecessarily reorder the waitTask before them. // Note: Any previous Ops already in fActiveOpsTask will get blocked by the wait // semaphore even though they don't need to be for correctness. // Make sure we add the dependencies of fActiveOpsTask to waitTask first or else we'll // get a circular self dependency of waitTask on waitTask. waitTask->addDependenciesFromOtherTask(fActiveOpsTask); fActiveOpsTask->addDependency(waitTask.get()); } else { // In this case we just close the previous RenderTask and start and append the waitTask // to the DAG. Since it is the last task now we call setLastRenderTask on the proxy. If // there is a lastTask on the proxy we make waitTask depend on that task. This // dependency isn't strictly needed but it does keep the DAG from reordering the // waitTask earlier and blocking more tasks. if (GrRenderTask* lastTask = this->getLastRenderTask(proxy.get())) { waitTask->addDependency(lastTask); } this->setLastRenderTask(proxy.get(), waitTask.get()); this->closeActiveOpsTask(); this->appendTask(waitTask); } waitTask->makeClosed(caps); SkDEBUGCODE(this->validate()); } void GrDrawingManager::newTransferFromRenderTask(sk_sp srcProxy, const SkIRect& srcRect, GrColorType surfaceColorType, GrColorType dstColorType, sk_sp dstBuffer, size_t dstOffset) { SkDEBUGCODE(this->validate()); SkASSERT(fContext); this->closeActiveOpsTask(); GrRenderTask* task = this->appendTask(sk_make_sp( srcProxy, srcRect, surfaceColorType, dstColorType, std::move(dstBuffer), dstOffset)); const GrCaps& caps = *fContext->priv().caps(); // We always say GrMipmapped::kNo here since we are always just copying from the base layer. We // don't need to make sure the whole mip map chain is valid. task->addDependency(this, srcProxy.get(), GrMipmapped::kNo, GrTextureResolveManager(this), caps); task->makeClosed(caps); // We have closed the previous active oplist but since a new oplist isn't being added there // shouldn't be an active one. SkASSERT(!fActiveOpsTask); SkDEBUGCODE(this->validate()); } sk_sp GrDrawingManager::newCopyRenderTask(sk_sp src, SkIRect srcRect, sk_sp dst, SkIPoint dstPoint, GrSurfaceOrigin origin) { SkDEBUGCODE(this->validate()); SkASSERT(fContext); // It'd be nicer to check this in GrCopyRenderTask::Make. This gets complicated because of // "active ops task" tracking. dst will be the target of our copy task but it might also be the // target of the active ops task. We currently require the active ops task to be closed before // making a new task that targets the same proxy. However, if we first close the active ops // task, then fail to make a copy task, the next active ops task may target the same proxy. This // will trip an assert related to unnecessary ops task splitting. if (src->framebufferOnly()) { return nullptr; } this->closeActiveOpsTask(); sk_sp task = GrCopyRenderTask::Make(this, src, srcRect, std::move(dst), dstPoint, origin); if (!task) { return nullptr; } this->appendTask(task); const GrCaps& caps = *fContext->priv().caps(); // We always say GrMipmapped::kNo here since we are always just copying from the base layer to // another base layer. We don't need to make sure the whole mip map chain is valid. task->addDependency(this, src.get(), GrMipmapped::kNo, GrTextureResolveManager(this), caps); task->makeClosed(caps); // We have closed the previous active oplist but since a new oplist isn't being added there // shouldn't be an active one. SkASSERT(!fActiveOpsTask); SkDEBUGCODE(this->validate()); return task; } bool GrDrawingManager::newWritePixelsTask(sk_sp dst, SkIRect rect, GrColorType srcColorType, GrColorType dstColorType, const GrMipLevel levels[], int levelCount) { SkDEBUGCODE(this->validate()); SkASSERT(fContext); this->closeActiveOpsTask(); const GrCaps& caps = *fContext->priv().caps(); // On platforms that prefer flushes over VRAM use (i.e., ANGLE) we're better off forcing a // complete flush here. if (!caps.preferVRAMUseOverFlushes()) { this->flushSurfaces(SkSpan{}, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo{}, nullptr); } GrRenderTask* task = this->appendTask(GrWritePixelsTask::Make(this, std::move(dst), rect, srcColorType, dstColorType, levels, levelCount)); if (!task) { return false; } task->makeClosed(caps); // We have closed the previous active oplist but since a new oplist isn't being added there // shouldn't be an active one. SkASSERT(!fActiveOpsTask); SkDEBUGCODE(this->validate()); return true; } /* * This method finds a path renderer that can draw the specified path on * the provided target. * Due to its expense, the software path renderer has split out so it can * can be individually allowed/disallowed via the "allowSW" boolean. */ GrPathRenderer* GrDrawingManager::getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args, bool allowSW, GrPathRendererChain::DrawType drawType, GrPathRenderer::StencilSupport* stencilSupport) { if (!fPathRendererChain) { fPathRendererChain = std::make_unique(fContext, fOptionsForPathRendererChain); } GrPathRenderer* pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport); if (!pr && allowSW) { auto swPR = this->getSoftwarePathRenderer(); if (GrPathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) { pr = swPR; } } #if GR_PATH_RENDERER_SPEW if (pr) { SkDebugf("getPathRenderer: %s\n", pr->name()); } #endif return pr; } GrPathRenderer* GrDrawingManager::getSoftwarePathRenderer() { if (!fSoftwarePathRenderer) { fSoftwarePathRenderer.reset( new GrSoftwarePathRenderer(fContext->priv().proxyProvider(), fOptionsForPathRendererChain.fAllowPathMaskCaching)); } return fSoftwarePathRenderer.get(); } GrCoverageCountingPathRenderer* GrDrawingManager::getCoverageCountingPathRenderer() { if (!fPathRendererChain) { fPathRendererChain = std::make_unique(fContext, fOptionsForPathRendererChain); } return fPathRendererChain->getCoverageCountingPathRenderer(); } GrPathRenderer* GrDrawingManager::getTessellationPathRenderer() { if (!fPathRendererChain) { fPathRendererChain = std::make_unique(fContext, fOptionsForPathRendererChain); } return fPathRendererChain->getTessellationPathRenderer(); } void GrDrawingManager::flushIfNecessary() { auto direct = fContext->asDirectContext(); if (!direct) { return; } auto resourceCache = direct->priv().getResourceCache(); if (resourceCache && resourceCache->requestsFlush()) { if (this->flush({}, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(), nullptr)) { this->submitToGpu(false); } resourceCache->purgeAsNeeded(); } }